ANTS ANT

Thirteenth Algorithmic Number Theory Symposium ANTS-XIII
University of Wisconsin, Madison
July 16 – 20, 2018

Thirteenth Algorithmic Number Theory Symposium (ANTS-XIII)
July 16 – 20, 2018

Zeta functions of nondegenerate hypersurfaces in toric varieties via controlled reduction in p-adic cohomology

Edgar Costa, David Harvey and Kiran S. Kedlaya

Abstract: We give an interim report on some improvements and generalizations of the Abbott-Kedlaya-Roe method to compute the zeta function of a nondegenerate ample hypersurface in a projectively normal toric variety over Fp in linear time in p. These are illustrated with a number of examples including K3 surfaces, Calabi-Yau threefolds, and a cubic fourfold. The latter example is a non-special cubic fourfold appearing in the Ranestad-Voisin coplanar divisor on moduli space; this verifies that the coplanar divisor is not a Noether-Lefschetz divisor in the sense of Hassett.

Published Paper
Talk Slides

© 2017-2018 Jennifer Paulhus (with thanks to Kiran S. Kedlaya, and by extension Pierrick Gaudry and Emmanuel Thomé)