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15 July 2024



Introduction Plane quartics Stable reduction

Warming up: elliptic curves

Let E be an elliptic curve over Q. Then E is given by a minimal Weierstraß equation

y 2 = x3 + Ax + B

with coefficients in Z. Let p > 3 be prime.

Lemma

Let ∆ = −16(4A3 + 27B2) be the discriminant of E . Then

E has good reduction at p if p ∤ ∆
E has bad additive reduction if p | A,∆,

E has bad multiplicative reduction if p | ∆, but p ∤ A.

After extending the base field, every curve will have either good reduction or bad multiplicative
reduction, and we can distinguish the cases as follows.

Lemma

Let j = 1728 · −64A3

∆
be the j-invariant of E . Then E has potential good reduction if the denominator

of j is not divisible by p, and potential bad multiplicative reduction otherwise.
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Stable reduction and invariants

Definition

A stable curve over an algebraically closed field K is a proper, connected, 1-dimensional, reduced
scheme C over K , such that

(i) all singular points are ordinary double points,

(ii) the arithmetic genus of C is at least 2,

(iii) every irreducible component of genus 0 has at least three singular points, counted with multiplicity.

Now consider the case of a curve C over a local field Qp and suppose that the reduction of C modulo
p is a stable curve.

Definition

The stable reduction type of C is the following combinatorial data:

the number of irreducible components of Cs and their genera;

for each singular point the two components it connects.

The goal of our work is to relate the stable reduction type of a curve to the invariants (e.g.
j-invariants, Igusa-, Shioda-, Dixmier-Ohno invariants).
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An example of stable reduction

After extending the local base field if necessary, any curve of genus at least 2 attains stable reduction.
We will determine this reduction for a specific curve.

Example

Suppose p > 2 and consider the genus 2 curve

H : y 2 = x(x − 1)(x − 2)(x − p)(x − p − 1)(x − 2p).

Reducing this modulo p we get a genus 0 curve with a cusp at (x , y) = (0, 0) and a node at
(x , y) = (1, 0). If we “zoom in” on the cusp by substituting x = px ′ and y = p3/2y ′ we get

y ′2 = x ′(px ′ − 1)(px ′ − 2)(x ′ − 1)(px ′ − p − 1)(x ′ − 2)

and the reduction is a genus 1 curve with a cusp at infinity.

It turns out the the stable reduction of H is the curve obtained by gluing these genus 0 and genus 1
curves at their cusps.
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Situation in genus 2 (Liu, 1993)
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All 42 stable reduction types for genus 3 curves

(3)

(2n) (2e)

(1nn) (1=1)
H (2m) (1ne) (1ee)

(0nnn) (1---0) (1=0n)
H (0nne) (1nm) (1=0e)

H (1me) (0nee) (0eee)

(0----0) (0---0n) (0n=0n)
H (0nnm) (Z=1)

H (0---0e) (1=0m)
H

(0n=0e)
H (1mm) (0nme) (0e=0e)

H (0mee)

(CAVE) (Z=0n)
H (0---0m) (0n=0m)

H (0nmm) (Z=0e)
H

(0m=0e)
H (0mme)

(BRAID) (Z=Z)
H

(Z=0m)
H

(0m=0m)
H (0mmm)
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Ternary quartics and Dixmier-Ohno invariants

A plane quartic curve is given by a ternary quartic form, i.e. a homogeneous degree 4 equation in 3
variables x , y , and z . A general ternary quartic is∑

i,j,k=0,...,4
i+j+k=4

cijkx
iy jzk ∈ K [c004, . . . , c400][x , y , z].

The group SL3 acts on these ternary quartics. We consider the ring of invariants

K [c004, . . . , c400]
SL3 .

Dixmier (1987) and Ohno (2005) came up with a list of 13 invariants

I3, I6, I9, J9, I12, J12, I15, J15, I18, J18, I21, J21, I27

that generate this ring, as long as char(K) > 7.

Proposition

The map that associates to a smooth plane quartic curve, up to isomorphism, its Dixmier-Ohno
invariants, considered as element of the weighted projective space P12

3,6,9,9,12,12,15,15,18,18,21,21,27(K) is
well defined and injective.
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Singular quartics

In the PhD thesis of Hui, one can find a complete stratification of singular plane quartics in char. 0.
Moreover, there is also a list of normal forms up to the action of SL3. Here we use the Arnol’d
classification to indicate the singularities, i.e. A1 is a node, A2 is a cusp, A3 is a tacnode, et cetera.

Type Dim. Normal forms

Smooth 6 xz3 + z(α x3 + β x2y + y 3) + γ x4 + δ x3y + ϵ x2y 2 + ζ xy 3 + y 4

A1 5 yz3 + (α y 2 + x2)z2 + (β y 3 + γ y 2x + yx2)z + δ y 4 + ϵ y 3x

A2 4 yz3 + (α y 2 + β yx + x2)z2 + (γ y 3 + δ y 2x)z + y 3x

A3 3 x2z2 + α y 2xz + y 4 + β y 3x + γ y 2x2 + yx3

...
...

...
...

There can be multiple singularities (A2
1A2), reducible quartics, and double components (conic2).

Definition

If at least one of the Dixmier-Ohno invariants of such a normal form is non-zero, then the singularity
type is called GIT-semi-stable.
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Relating Dixmier-Ohno invariants with singularity type

First we find algebraic relations in the Dixmier-Ohno invariants that are satisfied by all quartics with a
certain singularity type.

Algorithm

Step 1. Given a normal form with parameters α, . . . ,, generate a lot of random examples by picking
random values for α, . . ..

Step 2. For each of these examples, compute the Dixmier-Ohno invariants.

Step 3. For some small values of d , use linear algebra to determine if there are any homogeneous
relations of degree d in the Dixmier-Ohno variants that are satisfied by all the tuples found in Step 2.

Step 4. Evaluate the relation in the Dixmier-Ohno invariants of the normal form to verify these
relations hold for all forms.

Note that for some of the singularity types, it is impossible to distinguish between them using just
Dixmier-Ohno invariants.

Example

The quartics x2z2 + y 4 + yx3 and x2z2 + y 4 + y 3z + y 2z2 have the same Dixmier-Ohno invariants, even
though the first quartic has singularity type A3 and the second has singularity type A1A3.
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Relating Dixmier-Ohno invariants with singularity type

We still need to prove that we found enough equations to determine the singularity type. The following
example illustrates a strategy to prove this.

Example

Consider the normal form

(y 2 + αyx + x2)z2 + (βy 2x + γyx2)z + y 2z2

for a quartic of singularity type A3
1. Suppose that the Dixmier-Ohno invariants of this quartic also

satisfy the relations for the type rA4
1,con. Expressing these relations in terms of the parameters α, β, γ,

by doing a Gröbner basis computation, we obtain

α2 + β2 + γ2 − αβγ − 4 = 0.

We can then check that such quartics have 4 singular points, namely

(1 : 0 : 0), (0 : 1 : 0), (0 : 0 : 1),

(
2β − αγ

γ2 − 4
:
2γ − αβ

β2 − 4
: 1

)
.

Hence, such quartics are not of singularity type A3
1.



Introduction Plane quartics Stable reduction

An algorithm to determine the singularity type

Algorithm

Input : Dixmier-Ohno invariants (I3 : I6 : · · · : I27) ∈ P12
3,6,...,27(K) of a plane quartic, char(K) = 0

Output: A set of possible singularity types for the plane quartic

// Easy cases
If I27 ̸= 0, then return { Smooth }
If (I3 : I6 : · · · : I27) = 0, then return { Unstable }
// Dimension 0

If (I3 : I6 : · · · : I27) is in V (rA6
1), then return { rA6

1 }
If (I3 : I6 : · · · : I27) is in V (A3

2), then return {A3
2 }

If (I3 : I6 : · · · : I27) is in V (A4), then return {A4, A5, A6, A1 A4, A2 A4, rA7, rA1 A5, c2 }
If (I3 : I6 : · · · : I27) is in V (rA1A3), then return { rA1 A3, rA2

1 A3, rA1 A2 A3, rA1 A
2
3,

rA3
1 A3}

// Dimension 1

If (I3 : I6 : · · · : I27) is in V (rA5
1), then return { rA5

1 }
If (I3 : I6 : · · · : I27) is in V (rA3

1A2), then return { rA3
1 A2 }

If (I3 : I6 : · · · : I27) is in V (A1A
2
2), then return {A1 A

2
2 }

If (I3 : I6 : · · · : I27) is in V (A3), then return {A3, A1 A3, A2 A3, rA2
3,

rA2
1 A3 }

// Dimension 2, 3, etc.
· · ·
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Relating stable reduction type with singularity type: cusps

Suppose C/Qp is a plane quartic and the reduction Cp/Fp is GIT-semi-stable. Then the singularity
type of Cp gives some information about the stable reduction type of C . Wherever there are nodes on
Cp, there will also be nodes in the stable reduction of C . Even in the case of cusps and worse
singularities we can get some information.

Theorem

If you “zoom in” on a cusp on Cp, you will see a curve of arithmetic genus 1. In fact, the (singular)
plane quartic that you get will factor as (cubic) · (line) and the line and the cubic intersect in an
A5-singularity.

It is impossible to determine from Cp only whether the arithmetic genus 1 curve that you get is a
smooth curve of genus 1 or a curve of genus 0 with one self-intersection.

Remark

“Zooming in” on a cusp, means putting Cp in a standard form and then doing a change of coordinates
to see the rest of the curve, as in T. Dokchitser’s ∆v -regular models (T. Dokchitser, 2021).
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Relating stable reduction type with singularity type: tacnodes

Tacnodes hide two genus 1 components intersecting in two points.

Theorem

If Cp has a tacnode (A3-singularity), then the rest of Cp is of arithmetic genus 1, and upon “zooming
in” on the tacnode, one finds another curve of arithmetic genus 1, possibly a genus 0 with a node or
cusp, with a tacnode.
The two arithmetic genus 1 parts intersect in two points.

Finally, A4-singularities and the case of the square of a conic give hyperelliptic reduction.

Theorem

If Cp has a A4-singularity or is (conic)2, we can find a so-called toggle model for C of the shape

Q2 + πsG = 0,

where Q and G are homogeneous of degree 2 and 4 with integral coefficients such that Q mod p is
irreducible and G mod p is non-zero.
By the theory of toggle models, the reduction is a hyperelliptic curve.
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From singularity type to stable reduction types

Sing. type Red. type

A1 (2n)

A2
1 (1nn)

A3
1 (0nnn)

rA3
1 (1---0)

rA4
1 con (0----0)

rA4
1 cub (0---0n)

rA5
1 (CAVE)

rA6
1 (BRAID)

(a) A1-singularities

Sing. type Red. type

Smooth (3)

≥ A4, incl. c2 (∗)H

(b) Other types

Sing. type Red. type

A2 (2e) or (2m)

A1A2 (1ne) or (1nm)

A2
1A2 (0nne) or (0nnm)

rA3
1A2 (0---0e) or (0---0m)

A2
2 (1ee) or (1em) or (1mm)

A1A
2
2 (0nee) or (0nem) or (0nmm)

A3
2 (0eee) / (0eem) / (0emm) / (0mmm)

(c) A2-singularities

Sing. type Red. type

A3 (1 = ∗)H
A1A3 (0n = ∗)H or (∗ = 0n)H

rA2
1A3 con (Z = ∗)H

A2A3 (∗ = 0e)H or (∗ = 0m)H
rA2

3 (1 = ∗)H or (0n = ∗)H or (Z = ∗)H

(d) A3-singularities

Sing. type Red. type

rA1A3 (1 = ∗)H or (∗ = 1)H
rA2

1A3 cub (0n = ∗)H or (∗ = 0n)H
rA3

1A3 (Z = ∗)H
rA1A2A3 (∗ = 0e)H or (∗ = 0m)H
rA1A

2
3 (1 = ∗)H or (0n = ∗)H or (Z = ∗)H

(e) rA3-singularities
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From stable reduction type to singularity type

(3)

(2n) (2e)

(1nn) (1=1)
H (2m) (1ne) (1ee)

(0nnn) (1---0) (1=0n)
H (0nne) (1nm) (1=0e)

H (1me) (0nee) (0eee)

(0----0) (0---0n) (0n=0n)
H (0nnm) (Z=1)

H (0---0e) (1=0m)
H

(0n=0e)
H (1mm) (0nme) (0e=0e)

H (0mee)

(CAVE) (Z=0n)
H (0---0m) (0n=0m)

H (0nmm) (Z=0e)
H

(0m=0e)
H (0mme)

(BRAID) (Z=Z)
H

(Z=0m)
H

(0m=0m)
H (0mmm)

A1

A2
1

A3
1

rA3
1

rA4
1 cub

rA4
1 con

rA5
1

rA6
1

A2 A1A2

A2
1A2

rA3
1A2

A2
2

A1A
2
2

A3
2

A3, A1A3,
rA1A3, etc.
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An algorithm to (almost) determine the stable reduction type

Algorithm

Input: Dixmier-Ohno invariants (I3 : I6 : · · · : I27) ∈ P3,6,...,27(Qp) of a plane quartic C .
Output: A list of possible stable reduction types for the plane quartic.

Step 1. Rescale the invariants so that they are all integers, but not all of them reduce to 0 mod p.
Step 2. Run the previous algorithm to determine the singularity type of Cp.
Step 3. Use the previous table to determine the possible stable reduction types for C .

The computations that we did only verified that this algorithm is correct when 7 < p < 100.

Conjecture

The algorithm is correct for any prime p > 7.

For each characteristic p, we made a program that you could run to actually verify the correctness of
the algorithm. This program runs in a reasonable time.

Question

Why use this algorithm when there are already other algorithms out that can completely determine the
stable reduction type (e.g. resolution of singularities)?
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Computation on a database

Answer

Because it is wicked fast!

We ran the algorithm on a dataset of more than 82 000 plane quartics, by Sutherland, with 137 496
pairs of (C , p) where p > 7 is a prime of bad reduction.

For the vast majority of the curves we could uniquely determine the stable reduction type and on
average this took about 10 milliseconds per pair (C , p).

Singularity type Stable reduction type Number of times
A1 (2n) 131 673
A2

1 (1nn) 3511
A2 (2e) or (2n) 1829

Table: Most common reduction types
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Summary

Plane quartics

��

Dixmier-Ohno invariants

��

Singularity type

��

Stable reduction type
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