Open image computations for elliptic curves over number fields ANTS XVI, July 15th 2024

David Zywina

Cornell University

Elliptic curves

Fix a number field K and an algebraic closure \overline{K} .

Let E be an elliptic curve defined over K.

For each integer $n \ge 1$, let E[n] be the *n*-torsion subgroup of $E(\overline{K})$. We have a group isomorphism

 $E[n] \cong (\mathbb{Z}/n\mathbb{Z})^2$

Since E is defined over K, the absolute Galois group

 $\operatorname{Gal}_{K} := \operatorname{Gal}(\overline{K}/K)$

acts on $E[n] \cong (\mathbb{Z}/n\mathbb{Z})^2$ and respects the group structure. We can express this action as a Galois representation

$$\rho_{E,n}\colon \operatorname{Gal}_{K} \to \operatorname{Aut}(E[n]) \cong \operatorname{GL}_{2}(\mathbb{Z}/n\mathbb{Z}).$$

For each $n \ge 1$, we have a Galois representation

$$\rho_{E,n}\colon \operatorname{Gal}_{K} \to \operatorname{Aut}(E[n]) \cong \operatorname{GL}_{2}(\mathbb{Z}/n\mathbb{Z}).$$

that encodes the Galois action on E[n].

Combining these together, we obtain a single Galois representation

$$\rho_E \colon \operatorname{Gal}_K \to \operatorname{GL}_2(\widehat{\mathbb{Z}}),$$

where $\widehat{\mathbb{Z}}$ is the profinite completion of \mathbb{Z} , that encodes the Galois action on all the torsion points of *E*.

The representation ρ_E is continuous with respect to the profinite topology.

Serre's open image theorem

An elliptic curve E over a number field K gives rise to a representation

 $\rho_E \colon \operatorname{Gal}_K \to \operatorname{GL}_2(\widehat{\mathbb{Z}});$

define its image $G_E := \rho_E(\operatorname{Gal}_K) \subseteq \operatorname{GL}_2(\widehat{\mathbb{Z}}).$

Theorem (Serre, 1972)

Let E/K be a non-CM elliptic curve. Then G_E is an open subgroup of $GL_2(\widehat{\mathbb{Z}})$. Equivalently, $[GL_2(\widehat{\mathbb{Z}}) : G_E]$ is finite. Unfortunately, Serre's proof is usually non-effective.

Problem:

Given a non-CM elliptic curve E over a number field K, compute the open group G_E up to conjugacy in $GL_2(\widehat{\mathbb{Z}})$.

For some $N \ge 1$, G_E contains the kernel of the reduction modulo N map

$$\operatorname{GL}_2(\widehat{\mathbb{Z}}) \to \operatorname{GL}_2(\mathbb{Z}/N\mathbb{Z}).$$

The minimal N is the level of G_E .

So G_E can be explicitly described, once known, via its level N and its image in $GL_2(\mathbb{Z}/N\mathbb{Z})$.

When $K = \mathbb{Q}$, the problem has already been solved.

Theorem (Z.)

There is an algorithm to compute G_E , up to conjugacy in $GL_2(\widehat{\mathbb{Z}})$, for any non-CM elliptic curve E/\mathbb{Q} .

The algorithm has been implemented in Magma and is efficient! For the non-CM E/\mathbb{Q} of conductor at most 500000, I can compute the groups G_E in around 8 hours. (On average, ≈ 0.01 seconds per curve.)

The original aim of the paper being discussed was to study the computation of G_E when $K \neq \mathbb{Q}$ and to determine whether an algorithm is feasible.

We will focus on computing the index $[GL_2(\widehat{\mathbb{Z}}) : G_E]$ in the talk.

LMFDB example

For non-CM E/\mathbb{Q} of conductor at most 500000, the images are available via the LMFDB (Imfdb.org). Consider the elliptic curve E/\mathbb{Q} given by

$$y^2 + y = x^3 - x^2 - 7820x - 263580.$$

This curve has conductor 11 and has LMFDB label 11.a1.

The image $H := \rho_E(\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}))$ of the <u>adelic Galois representation</u> has <u>level</u> $550 = 2 \cdot 5^2 \cdot 11$, <u>index</u> 1200, <u>genus</u> 37, and generators

 $\left(\begin{array}{ccc} 336 & 145 \\ 515 & 216 \end{array}\right), \left(\begin{array}{ccc} 38 & 41 \\ 191 & 539 \end{array}\right), \left(\begin{array}{ccc} 1 & 50 \\ 0 & 1 \end{array}\right), \left(\begin{array}{ccc} 1 & 0 \\ 50 & 1 \end{array}\right), \left(\begin{array}{ccc} 440 & 9 \\ 127 & 213 \end{array}\right), \left(\begin{array}{ccc} 501 & 50 \\ 500 & 51 \end{array}\right).$

Input positive integer m to see the generators of the reduction of H to $\operatorname{GL}_2(\mathbb{Z}/m\mathbb{Z})$: 100

submit

The reduction of H has index 120 in $GL_2(\mathbb{Z}/100\mathbb{Z})$ and is generated by

$$\left(\begin{array}{ccc} 36 & 45 \\ 15 & 16 \end{array}\right), \left(\begin{array}{ccc} 38 & 41 \\ 41 & 39 \end{array}\right), \left(\begin{array}{ccc} 40 & 9 \\ 27 & 13 \end{array}\right), \left(\begin{array}{ccc} 1 & 50 \\ 0 & 1 \end{array}\right), \left(\begin{array}{ccc} 1 & 0 \\ 50 & 1 \end{array}\right), \left(\begin{array}{ccc} 51 & 50 \\ 50 & 51 \end{array}\right), \left(\begin{array}{ccc} 51 & 0 \\ 0 & 1 \end{array}\right).$$

Constraint on $det(G_E)$

By considering Weil pairings, we always have

$$\det \circ \rho_E = \chi_{\mathsf{cyc}}|_{\mathsf{Gal}_K},$$

where χ_{cyc} : $Gal_{\mathbb{Q}} \to \widehat{\mathbb{Z}}^{\times}$ is the cyclotomic character. In particular,

$$\det(G_E) = \det(\rho_E(\operatorname{Gal}_K)) = \chi_{\operatorname{cyc}}(\operatorname{Gal}_K).$$

Therefore,

$$[\mathsf{GL}_2(\widehat{\mathbb{Z}}): \mathsf{G}_{\mathsf{E}}] = [\widehat{\mathbb{Z}}^{\times} : \chi_{\mathsf{cyc}}(\mathsf{Gal}_{\mathsf{K}})] \cdot [\mathsf{SL}_2(\widehat{\mathbb{Z}}) : \mathsf{G}_{\mathsf{E}} \cap \mathsf{SL}_2(\widehat{\mathbb{Z}})].$$

So we should focus our attention on the index $[SL_2(\widehat{\mathbb{Z}}) : G_E \cap SL_2(\widehat{\mathbb{Z}})]$ and the group $G_E \cap SL_2(\widehat{\mathbb{Z}})$.

A single slide on modular curves

Let \mathcal{G} be an open subgroup of $GL_2(\widehat{\mathbb{Z}})$ that contains -I. Let $L \subseteq \overline{\mathbb{Q}}$ be the minimal number field for which $\chi_{cyc}(Gal_L) = det(\mathcal{G})$. Associated to \mathcal{G} is a modular curve $X_{\mathcal{G}}$:

There is a nice curve $X_{\mathcal{G}}$ defined over L with a morphism

 $\pi_{\mathcal{G}}\colon X_{\mathcal{G}}\to \mathbb{P}^1_L=\mathbb{A}^1_L\cup\{\infty\}$

such that the following are equivalent for any non-CM E/K:

- G_E is conjugate in $GL_2(\widehat{\mathbb{Z}})$ to a subgroup of \mathcal{G} ,
- $L \subseteq K$ and the *j*-invariant j_E of *E* lies in $\pi_{\mathcal{G}}(X_{\mathcal{G}}(K)) \subseteq K \cup \{\infty\}$.

I have implemented an algorithm in Magma for computing explicit models of $X_{\mathcal{G}}$ when det $(\mathcal{G}) = \widehat{\mathbb{Z}}^{\times}$ $(L = \mathbb{Q})$. I am beginning to extend it to arbitrary \mathcal{G} . For later: we define the genus of \mathcal{G} to be the genus of $X_{\mathcal{G}}$.

Main result

Theorem (Z.)

Let K be a number field. There is a finite set $J_K \subseteq K$ such that for any non-CM elliptic curve E over K with

- *j*-invariant $j_E \notin J_K$,
- $\rho_{E,\ell}(\mathsf{Gal}_{\mathcal{K}}) \supseteq \mathsf{SL}_2(\mathbb{Z}/\ell\mathbb{Z})$ for all primes $\ell > 19$,

we can compute the group G_E , up to conjugacy in $GL_2(\widehat{\mathbb{Z}})$, and $[GL_2(\widehat{\mathbb{Z}}) : G_E]$.

- Conjecturally we can remove the assumption that ρ_{E,ℓ}(Gal_K) ⊇ SL₂(ℤ/ℓℤ) holds for all ℓ > 19 by extending the finite set J_K (Serre uniformity problem).
- What underlies the algorithm is the precomputation of *finitely many* modular curves (that do not depend on *K*).
- The set J_K will be very difficult to work out (its finiteness uses Faltings' theorem). However given a j ∈ K, one can determine whether or not j ∉ J_K.

Key idea

- The group G_E is hard to study and there are too many possibilities!
- The idea is to instead find a slightly larger group G_E ⊆ G ⊆ GL₂(Z
) so that we have an equality

$$[G_E, G_E] = [\mathcal{G}, \mathcal{G}]$$

of commutator subgroups.

We then have inclusions

 $[\mathcal{G},\mathcal{G}] = [\mathcal{G}_E,\mathcal{G}_E] \subseteq \mathcal{G}_E \cap \mathsf{SL}_2(\widehat{\mathbb{Z}}) \subseteq \mathcal{G} \cap \mathsf{SL}_2(\widehat{\mathbb{Z}}).$

So the group \mathcal{G} will limit the possibilities for $G_E \cap SL_2(\widehat{\mathbb{Z}})$.

• When $K = \mathbb{Q}$, a miracle happens and we have

$$[\mathcal{G},\mathcal{G}] = \mathcal{G}_{\mathcal{E}} \cap \mathsf{SL}_2(\widehat{\mathbb{Z}})$$

(miracle = Kronecker–Weber theorem); this is why this case is much easier!

Agreeable closure

Consider a non-CM elliptic curve E/K with $\rho_{E,\ell}(\operatorname{Gal}_K) \supseteq \operatorname{SL}_2(\mathbb{Z}/\ell\mathbb{Z})$ for all $\ell > 19$.

We say that a subgroup \mathcal{G} of $GL_2(\widehat{\mathbb{Z}})$ is agreeable if:

- \mathcal{G} is open in $GL_2(\widehat{\mathbb{Z}})$,
- \mathcal{G} contains the scalars $\widehat{\mathbb{Z}}^{\times}I$,
- any prime dividing the level of \mathcal{G} also divides the level of the commutator subgroup $[\mathcal{G},\mathcal{G}] \subseteq SL_2(\widehat{\mathbb{Z}}).$

We have $G_E \subseteq \mathcal{G}_E$ for a unique minimal agreeable subgroup $\mathcal{G}_E \subseteq GL_2(\widehat{\mathbb{Z}})$. We call \mathcal{G}_E the agreeable closure of G_E . We indeed have $[G_E, G_E] = [\mathcal{G}_E, \mathcal{G}_E]$.

Moreover, the level of \mathcal{G}_E is not divisible by $\ell > 19$; this is very restrictive! (The level of \mathcal{G}_E can be divisible by primes $\ell > 19$.) Now consider only agreeable subgroups \mathcal{G} of $GL_2(\widehat{\mathbb{Z}})$ whose level is not divisible by a prime $\ell > 19$.

- For each G, there are only finitely many maximal agreeable subgroups. The paper gives a classification and an effective way to compute them!
- Starting with $GL_2(\widehat{\mathbb{Z}})$, taking maximal agreeable subgroups, and repeating..., we will eventually obtain only groups \mathcal{G} of genus at least 2.
- So there is a finite set A₁ consisting of all agreeable subgroups, up to conjugacy in GL₂(2), of genus 0 and 1. A large portion of the paper is dedicated to their explicit computation: there are 11960 groups in A₁; 3682 of genus 0 and 8278 of genus 1.
- There is another finite set A_2 of all minimal agreeable subgroups with genus at least 2 up to conjugacy. This set has also been explicitly described.

Fix a number field K and an elliptic curves E/K with $\rho_{E,\ell}(\operatorname{Gal}_K) \supseteq \operatorname{SL}_2(\mathbb{Z}/\ell\mathbb{Z})$ for all $\ell > 19$. We have $G_E \subseteq \mathcal{G}_E$. There are two possibilities:

- \mathcal{G}_E is conjugate to a unique $\mathcal{G} \in \mathcal{A}_1$,
- \mathcal{G}_E is conjugate to a subgroup of some $\mathcal{G} \in \mathcal{A}_2$, and hence j_E lies in the set

$$J_{\mathcal{K}} := \bigcup_{\mathcal{G} \in \mathcal{A}_2^*} \pi_{\mathcal{G}}(X_{\mathcal{G}}(\mathcal{K})) \subseteq \mathcal{K} \cup \{\infty\}$$

which is finite by Faltings' theorem.

So after the computation of a *finite number* of modular curves (not depending on K or E), we can check if $j_E \in J_K$, and if $j_E \notin J_K$ we can compute \mathcal{G}_E .

Aside: there are tens of thousands of modular curves to deal with; this is a large but reasonable task.

Now suppose we have E/K and we known the group $\mathcal{G} := \mathcal{G}_E$. As already observed, we have inclusions

$$[\mathcal{G},\mathcal{G}]\subseteq \mathcal{G}_E\cap\mathsf{SL}_2(\widehat{\mathbb{Z}})\subseteq \mathcal{G}\cap\mathsf{SL}_2(\widehat{\mathbb{Z}}).$$

In particular, we have

$$[\mathsf{SL}_2(\widehat{\mathbb{Z}}): G_E \cap \mathsf{SL}_2(\widehat{\mathbb{Z}})] \leq [\mathsf{SL}_2(\widehat{\mathbb{Z}}): [\mathcal{G}, \mathcal{G}]].$$

We can compute $[SL_2(\widehat{\mathbb{Z}}) : [\mathcal{G}, \mathcal{G}]]$ for all $\mathcal{G} \in \mathcal{A}_1$ to get new bounds...

Theorem (Z.)

Let K be a number field. There is a finite set $J_K \subseteq K$ such that for any non-CM elliptic curve E over K with

j_E ∉ *J_K*, and

•
$$\rho_{E,\ell}(\mathsf{Gal}_K) \supseteq \mathsf{SL}_2(\mathbb{Z}/\ell\mathbb{Z})$$
 for all primes $\ell > 19$,

we have

$$[\mathsf{SL}_{2}(\widehat{\mathbb{Z}}): G_{E} \cap \mathsf{SL}_{2}(\widehat{\mathbb{Z}})] \leq \begin{cases} 1382400, \\ 172800 & \text{if } K \cap \mathbb{Q}(\sqrt{-1}) = \mathbb{Q}, \\ 30000 & \text{if } K \cap \mathbb{Q}(\sqrt{-1}, \sqrt{2}, \sqrt{3}) = \mathbb{Q}, \\ 7200 & \text{if } K \cap \mathbb{Q}(\sqrt{-1}, \sqrt{2}, \sqrt{3}, \sqrt{5}, \sqrt{7}, \sqrt{11}) = \mathbb{Q}, \\ 1536 & \text{if } K = \mathbb{Q}. \end{cases}$$

For a non-CM E/K, suppose $\mathcal{G}_E = \mathcal{G} \in \mathcal{A}_1$. Consider an open subgroup B of \mathcal{G} with $B \cap SL_2(\widehat{\mathbb{Z}}) \supseteq [\mathcal{G}, \mathcal{G}]$. The group B is normal in \mathcal{G} and \mathcal{G}/B is finite abelian. Define the character

 $\alpha\colon \operatorname{Gal}_{K} \xrightarrow{\rho_{E}} G_{E} \subseteq \mathcal{G} \to \mathcal{G}/B.$

We take B with $B \cap SL_2(\widehat{\mathbb{Z}})$ minimal so that $\alpha(Gal(\overline{K}/K^{cyc})) = 1$. (These can be worked out using a finite number of precomputed modular curves.)

We will have

$$G_E \cap \mathrm{SL}_2(\widehat{\mathbb{Z}}) = B \cap \mathrm{SL}_2(\widehat{\mathbb{Z}}).$$

Idea for computing G_E

In the previous slide, there was a character α : $\operatorname{Gal}_{K} \to \mathcal{G}/B$ with $\alpha(\operatorname{Gal}(\overline{K}/K^{\operatorname{cyc}})) = 1$. There is a unique homomorphism

$$\gamma \colon \chi_{\mathsf{cyc}}(\mathsf{Gal}_{\mathcal{K}}) \to \mathcal{G}/B$$

satisfying $\alpha(\sigma) = \gamma(\chi_{cyc}(\sigma)^{-1})$ for all $\sigma \in Gal_{\mathcal{K}}$. We have

$$G_E = \{g \in \mathcal{G} : \det g \in \chi_{\mathsf{cyc}}(\mathsf{Gal}_{\mathcal{K}}), \, g \cdot B = \gamma(\det g)\}.$$

Concluding remark: Our approach to computing the groups G_E , for non-CM E/K excluding a finite number of *j*-invariants, is to show that they are of a very special form (moreover, we are putting them in "families"). This is progress towards "Mazur's Program B" which asks for a classification of the possible groups $G_E = \rho_E(\text{Gal}_K)$ for each K.

Extra slides on modular curves

Let \mathcal{G} be an open subgroup of $\operatorname{GL}_2(\widehat{\mathbb{Z}})$ that contains -I. The group gives rise to a modular curve $X_{\mathcal{G}}$ defined over a number field L. We will now give some ideas on how to compute a model of $X_{\mathcal{G}}$.

Our approach to compute models is via modular forms. Fix an integer $N \ge 1$. For an integer $k \ge 0$, consider

 $M_k(\Gamma(N), \mathbb{Q}(\zeta_N));$

the space of weight k modular forms on $\Gamma(N)$ with q-expansion having coefficients in $\mathbb{Q}(\zeta_N)$.

There is a right action * of $GL_2(\mathbb{Z}/N\mathbb{Z})$ on $M_k(\Gamma(N), \mathbb{Q}(\zeta_N))$ such that

- $SL_2(\mathbb{Z}/N\mathbb{Z})$ acts via the natural $SL_2(\mathbb{Z})$ -action,
- $\begin{pmatrix} 1 & 0 \\ 0 & d \end{pmatrix}$ acts by acting on Fourier coefficients via $\sigma_d \in \text{Gal}(\mathbb{Q}(\zeta_N)/\mathbb{Q})$, where $\sigma_d(\zeta_N) = \zeta_N^d$.

For our group \mathcal{G} , let N be the level of \mathcal{G} and let $G \subseteq GL_2(\mathbb{Z}/N\mathbb{Z})$ be the image of \mathcal{G} modulo N. For each $k \geq 0$, we define the *L*-vector space

$$M_{k,\mathcal{G}} := M_k(\Gamma(N), \mathbb{Q}(\zeta_N))^G$$

We have $L = \mathbb{Q}(\zeta_N)^{\det G}$ and

$$M_{k,\mathcal{G}}\otimes_L \mathbb{C} = M_k(\Gamma_{\mathcal{G}}),$$

where $\Gamma_{\mathcal{G}}$ is the congruence subgroup of $SL_2(\mathbb{Z})$ consisting of matrices whose image modulo N lies in G. Here is an ad hoc definition of X_G/L :

$$X_{\mathcal{G}} = \operatorname{Proj}\left(\bigoplus_{k \geq 0} M_{k,\mathcal{G}}
ight).$$

(We have $X_{\mathcal{G}}(\mathbb{C}) \cong \Gamma_{\mathcal{G}} \setminus \mathbb{H}^*$, and $\pi_{\mathcal{G}}$ corresponds to the quotient map $\Gamma_{\mathcal{G}} \setminus \mathbb{H}^* \to SL_2(\mathbb{Z}) \setminus \mathbb{H}^*$.)

$$X_{\mathcal{G}} = \operatorname{Proj}\left(igoplus_{k\geq 0} M_{k,\mathcal{G}}
ight).$$

- Take k ∈ {2,4,6} minimal so that M_{k,G} gives an embedding of X_G into projective space.
- We can compute explicit generators of the *L*-vector space $M_{k,\mathcal{G}}$ by using sums and products of weight 1 Eisenstein series on $\Gamma(N)$.
- By consider vanishing conditions at cusps, find a relatively small subspace V of M_{k,G} so that Riemann–Roch ensures an embedding

$$X_{\mathcal{G}} \hookrightarrow \mathbb{P}(V)$$

defined over L.

• Look for enough relations to cut out the image using q-expansions.

Modular curve example

Let $\mathcal G$ be the open subgroup of ${\rm GL}_2(\widehat{\mathbb Z})$ of level 13 whose image modulo 13 is

 $G := \langle \left(\begin{smallmatrix} 1 & 2 \\ 4 & 1 \end{smallmatrix} \right) \rangle \subseteq \mathrm{GL}_2(\mathbb{Z}/13\mathbb{Z}).$

We have $G \cong \mathbb{F}_{13^2}^{\times}$. Since $\det(\mathcal{G}) = \widehat{\mathbb{Z}}^{\times}$, the modular curve $X_{\mathcal{G}}$ is defined over \mathbb{Q} . The following is code to compute a model of $X_{\mathcal{G}}$:

```
> M:=CreateModularCurveRec(13,[[1,2,4,1]]);
> M`genus;
8
> time X:=FindModelOfXG(M,15);
Time: 2.040[r]
```

The model computed in this case is the canonical model $X_{\mathcal{G}} \hookrightarrow \mathbb{P}^7_{\mathbb{Q}}$. The curve is cut out by several homogeneous polynomials in $\mathbb{Q}[x_1, \ldots, x_8]$ of degree 2.

 $\begin{array}{l} +x[1]^*x[2] + x[1]^*x[3] + x[1]^*x[4] + x[1]^*x[5] + x[2]^*2 + 2^*x[2]^*x[3] + x[2]^*x[6] - x[2]^*x[7] + 2^*x[2]^*x[8] + x[3]^*2 + x[3]^*x[4] - x[3]^*x[5] + x[3]^*x[7] + 2^*x[3]^*x[8] + x[4]^*2 - x[4]^*x[6] + 2^*x[4]^*x[7] + x[5]^*x[7] - 2^*x[5]^*x[8] + x[6]^*x[7] - x[6]^*x[8], \end{array}$

- -x[1]*x[2] x[1]*x[3] + x[1]*x[4] + x[1]*x[5] x[1]*x[6] + x[2]*2 + x[2]*x[3] x[2]*x[4] x[2]*x[5] + x[2]*x[6] + x[2]*x[6] + x[3]*x[6] x[3]*x[6] x[3]*x[7] + 2*x[3]*x[8] + x[4]*x[5] x[4]*x[6] + x[4]*x[7] 2*x[4]*x[8] x[5]*x[8] + x[6]*x[8] + x[6]*x[8] + x[6]*x[8] + x[6]*x[6] + x[6]
- $\begin{array}{l} -x(1)^2 + x(1)^*x(2) + x(1)^*x(3) + x(1)^*x(4) x(1)^*x(6) + 2^*x(1)^*x(8) x(2)^2 x(2)^*x(3) x(2)^*x(7) 2^*x(2)^*x(8) x(3)^*x(4) + x(3)^*x(6) x(3)^*x(7) x(4)^2 + x(4)^*x(5) + x(4)^*x(6) x(5)^*x(6) + x(5)^*x(7) x(5)^*x(8) x(6)^*x(7) + x(6)^*x(8) x(7)^*x(8) x(7)^*x(8) x(8)^*x(7) + x(6)^*x(8) x(7)^*x(8) x(8)^*x(7) + x($

 $\begin{array}{l} +x[1]^{2} - 2^{4}x[1]^{4}x[5] - x[1]^{4}x[7] + x[1]^{4}x[8] + x[2]^{4}x[3] - x[2]^{4}x[4] + 2^{4}x[2]^{4}x[6] - 3^{4}x[2]^{4}x[7] + x[2]^{4}x[8] + x[3]^{2} + 2^{4}x[3]^{4}x[4] + x[3]^{4}x[8] + x[4]^{2}x[4]^{2}x[5] + x[4]^{4}x[6] + x[4]^{4}x[8] - x[5]^{2} - x[5]^{4}x[6] - x[6]^{2} + x[6]^{4}x[7] - x[6]^{4}x[8] - x[7]^{2} - x[5]^{4}x[6] + x[7]^{2} + x[6]^{4}x[7] - x[6]^{4}x[8] - x[7]^{2} - x[5]^{4}x[6] + x[7]^{2} + x[6]^{4}x[8] - x[7]^{2} - x[5]^{4}x[6] + x[6]^{4}x[8] - x[7]^{4} - x[6]^{4}x[8] - x[7]^{4}x[8] + x[7]^{4} - x[6]^{4}x[8] - x[7]^{4}x[8] + x[7]^$

- $-x[1]^{*}x[3] + x[1]^{*}x[6] x[1]^{*}x[7] + x[1]^{*}x[8] + x[3]^{2} + 2^{*}x[3]^{*}x[4] x[3]^{*}x[5] x[3]^{*}x[7] + 3^{*}x[3]^{*}x[8] + x[4]^{2} x[4]^{*}x[5] x[4]^{*}x[6] + x[4]^{*}x[7] + x[5]^{*}x[7] + x[6]^{2} x[6]^{*}x[7] + x[7]^{*}x[8] + x[8]^{2},$
- $x[1]^*x[2] + 2^*x[1]^*x[4] + x[1]^*x[6] + x[1]^*x[7] + 2^*x[2]^*x[3] + 3^*x[2]^*x[4] 2^*x[2]^*x[5] x[2]^*x[6] + x[3]^*x[4] 2^*x[3]^*x[5] x[3]^*x[6] + x[4]^*x[7] + x[4]^*x[6] + x[4]^*x[7] + x[4]^*x[6] + x[5]^*2 + 2^*x[5]^*x[6] x[5]^*x[6] + x[5]^*2 + 2^*x[5]^*x[6] x[5]^*x[6] + x[6]^*x[7] +$
- $x[1]^{2} + x[1]^{x}[2] + x[1]^{x}[5] + 2^{x}[1]^{x}[7] 3^{x}x[1]^{x}[8] + 2^{x}x[2]^{2} 3^{x}x[2]^{x}[4] x[2]^{x}[5] + 2^{x}x[2]^{x}[7] 2^{x}x[2]^{x}[8] x[3]^{x}[4] x[3]^{x}x[4] x[3]^{x}x[5] + x[3]^{x}x[7] 2^{x}x[3]^{x}x[8] + x[4]^{2} + x[4]^{x}x[5] x[4]^{x}x[8] x[5]^{x}x[8] x[5]^$
- $\begin{aligned} & \times \{1\}^* \times \{2\} + \times \{1\}^* \times \{5\} \times \{1\}^* \times \{7\} + 2^* \times \{1\}^* \times \{8\} + \times \{2\}^* 2^- \cdot \times \{2\}^* \times \{3\} \times \{2\}^* \times \{4\} 2^* \times \{2\}^* \times \{6\} + \times \{2\}^* \times \{7\} + 2^* \times \{3\}^* \times \{6\} \times \{4\}^* \times \{5\} + 2^* \times \{4\}^* \times \{5\} + 2^* \times \{4\}^* \times \{5\} 2^* \times \{6\}^* \times \{7\} 2^* \times \{7\}^* 2^* \times \{7\}^* \times \{7\} 2^* \times \{7\}^* 2^* \times$
- $\begin{array}{l} +x[1]^{2} & x[1]^{*}x[2] & -x[1]^{*}x[3] & -x[1]^{*}x[5] & -x[1]^{*}x[6] & -x[1]^{*}x[7] & +x[2]^{*}x[3] & +x[2]^{*}x[5] & +2^{*}x[2]^{*}x[6] & -x[2]^{*}x[7] & +x[3]^{*}x[5] & +x[3]^{*}x[5] & +x[3]^{*}x[6] & +x[3]^{*}x[7] & +x[3]^{*}x[6] & +x[4]^{*}x[7] & +x[3]^{*}x[6] & +x[4]^{*}x[7] & +x[5]^{*}x[7] & +x[5]^$
- $\begin{array}{l} +x(1)^{2} + 3^{4}x(1)^{4}x(4) + x(1)^{4}x(5) & -3^{4}x(1)^{4}x(6) + x(1)^{4}x(7) + x(1)^{4}x(8) + x(2)^{4}x(4) + x(2)^{4}x(5) x(2)^{4}x(6) + x(2)^{4}x(7) + x(2)^{4}x(6) + x(3)^{2}x(7) + x(7)^{4}x(7) + x(7)^$
- $\begin{array}{l} +x[1]^{-2} + 2^{-x}[1]^{+}x[2] + x[1]^{+}x[3] + x[1]^{+}x[5] + x[1]^{+}x[6] + x[2]^{-2} 2^{+}x[2]^{+}x[4] + x[2]^{+}x[7] x[3]^{+}x[5] + 2^{+}x[3]^{+}x[7] x[4]^{-2} \\ + x[4]^{+}x[5] + 3^{+}x[4]^{+}x[6] 2^{+}x[7]^{-2} + x[4]^{+}x[8] x[5]^{-2} x[5]^{+}x[6] x[5]^{+}x[7] 3^{+}x[5]^{+}x[8] x[6]^{-2} + x[6]^{+}x[7] 2^{+}x[6]^{-2} + x[6]^{-2} +$
- $x[1]^*x[2] x[1]^*x[3] + x[1]^*x[4] + x[1]^*x[5] 2^*x[1]^*x[6] + x[1]^*x[7] 2^*x[1]^*x[8] 2^*x[2]^*x[7] 2^*x[2]^*x[7] x[2]^*x[8] + 2^*x[3]^*x[4] + x[3]^*x[6] + x[3]^*x[6] + x[3]^*x[7] x[3]^*x[8] + x[4]^*x[5] + x[4]^*x[6] x[5]^*x[6] + x[5]^*x[6] + x[7]^*x[6] + x[4]^*x[6] + x[4]^*x[6] + x[4]^*x[6] + x[4]^*x[6] + x[6] + x[6]^*x[6] + x[6] + x[6]^*x[6] + x[6] + x[$

 $x[1]^{2} + x[1]^{*}x[3] + 2^{*}x[1]^{*}x[4] + x[1]^{*}x[5] + 2^{*}x[1]^{*}x[6] + x[1]^{*}x[7] + x[2]^{*}x[3] + x[2]^{*}x[5] + 3^{*}x[2]^{*}x[6] + 2^{*}x[2]^{*}x[7] - 2^{*}x[2]^{*}x[6] + x[3]^{*}x[7] - 2^{*}x[4]^{*}x[6] + 2^{*}x[4]^{*}x[6] + 2^{*}x[4]^{*}x[6] + x[5]^{*}x[6] + x[5]^{*}x[6]$

- $$\begin{split} & \times[1]^{+2} + \dot{\times}[1]*\times[2] + \dot{\times}[1]*\times[4] + \dot{3}^{+}(1]^{+}x[5] \dot{3}^{+}x[1]^{+}x[6] + 2^{+}x[1]^{+}x[7] \times[2]^{+}2^{+}x[2]^{+}x[3] \times[2]^{+}x[6] \times[2]^{+}x[6] + \times[3]^{+}x[2] \times[4]^{+}x[6] + \times[3]^{+}x[6] \times[4]^{+}x[6] \times[4]^{+}x[6] \times[4]^{+}x[6] \times[5]^{+}x[6] \times[5]^{+}x[6] \times[5]^{+}x[6] \times[6]^{+}x[4] + \times[6]^{+}x[7] \times[6]^{+}x[4] + \times[6]^{+}x[4] +$$
- $2^{+}x[1]^{+}2 + 4^{+}x[1]^{+}x[3] + 3^{+}x[1]^{+}x[4] + 3^{+}x[1]^{+}x[7] x[2]^{+}2 x[2]^{+}x[4] x[2]^{+}x[5] + 3^{+}x[2]^{+}x[6] 2^{+}x[2]^{+}x[7] x[2]^{+}x[6] + 4^{+}x[3]^{+}x[7] x[3]^{+}x[4]^{+}x[7] + x[4]^{+}x[8] + x[5]^{+}2 + x[5]^{+}x[7] x[2]^{+}x[6] + x[5]^{+}x[7] x[2]^{+}x[6] + x[7]^{+}x[6]^{+}x[7] x[6]^{+}x[6] + x[6]^{+}x[7] x[6]^{+}x[6] + x[6]^{+}x[7] x[6]^{+}x[6] + x[6]^{+}x[7] x[6]^{+}x[6] + x[6]^{+}x[6]^{+}x[6] + x[6]^{+}x[6] + x[6]^{+}x[6]$

The model computed in this case is the canonical model $X_{\mathcal{G}} \hookrightarrow \mathbb{P}^7_{\mathbb{Q}}$. The curve is cut out by several homogeneous polynomials in $\mathbb{Q}[x_1, \ldots, x_8]$ of degree 2.

- These equations are very nice! (seriously)
- All of the coefficients are integers with absolute value at most 4.
- We also gave more equations than needed; they actually give a model for X_G as a smooth projective curve over Spec ℤ[1/13].