Open image computations for elliptic curves over number fields ANTS XVI, July 15th 2024

David Zywina

Cornell University

Elliptic curves

Fix a number field K and an algebraic closure \overline{K} .

Let E be an elliptic curve defined over K .

For each integer $n \geq 1$, let $E[n]$ be the *n*-torsion subgroup of $E(\overline{K})$. We have a group isomorphism

 $E[n] \cong (\mathbb{Z}/n\mathbb{Z})^2$

Since E is defined over K , the absolute Galois group

$$
\mathsf{Gal}_K := \mathsf{Gal}(\overline{K}/K)
$$

acts on $E[n] \cong (\mathbb{Z}/n\mathbb{Z})^2$ and respects the group structure. We can express this action as a Galois representation

$$
\rho_{E,n}\colon \operatorname{Gal}_K\to \operatorname{Aut}(E[n])\cong \operatorname{GL}_2(\mathbb{Z}/n\mathbb{Z}).
$$

For each $n > 1$, we have a Galois representation

$$
\rho_{E,n}\colon \operatorname{\mathsf{Gal}}\nolimits_K \rightarrow \operatorname{\mathsf{Aut}}\nolimits(E[n]) \cong \operatorname{\mathsf{GL}}\nolimits_2({\mathbb Z}/n{\mathbb Z}).
$$

that encodes the Galois action on $E[n]$.

Combining these together, we obtain a single Galois representation

$$
\rho_E\colon \operatorname{\mathsf{Gal}}_K\rightarrow \operatorname{\mathsf{GL}}_2(\widehat{\mathbb{Z}}),
$$

where $\widehat{\mathbb{Z}}$ is the profinite completion of \mathbb{Z} , that encodes the Galois action on all the torsion points of E.

The representation ρ_E is continuous with respect to the profinite topology.

Serre's open image theorem

An elliptic curve E over a number field K gives rise to a representation

 ρ_E : Gal_K \rightarrow GL₂($\widehat{\mathbb{Z}}$);

define its image $G_F := \rho_F(\text{Gal}_K) \subseteq \text{GL}_2(\widehat{\mathbb{Z}})$.

Theorem (Serre, 1972),

Let E/K be a non-CM elliptic curve. Then G_F is an open subgroup of $GL_2(\widehat{\mathbb{Z}})$. Equivalently, $\lbrack GL_2(\widehat{\mathbb{Z}}) : G_E \rbrack$ is finite.

Unfortunately, Serre's proof is usually non-effective.

Problem:

Given a non-CM elliptic curve E over a number field K, compute the open group G_F up to conjugacy in $GL_2(\widehat{\mathbb{Z}})$.

For some $N \geq 1$, G_F contains the kernel of the reduction modulo N map

$$
GL_2(\widehat{\mathbb{Z}})\rightarrow GL_2(\mathbb{Z}/N\mathbb{Z}).
$$

The minimal N is the level of G_F .

So G_F can be explictly described, once known, via its level N and its image in $GL_2(\mathbb{Z}/N\mathbb{Z})$.

When $K = \mathbb{Q}$, the problem has already been solved.

Theorem (Z.)

There is an algorithm to compute G_E , up to conjugacy in $GL_2(\widehat{\mathbb{Z}})$, for any non-CM elliptic curve E/\mathbb{Q} .

The algorithm has been implemented in Magma and is efficient! For the non-CM E/\mathbb{O} of conductor at most 500000, I can compute the groups G_F in around 8 hours. (On average, ≈ 0.01 seconds per curve.)

The original aim of the paper being discussed was to study the computation of G_F when $K \neq \mathbb{Q}$ and to determine whether an algorithm is feasible.

We will focus on computing the index $[GL_2(\widehat{\mathbb{Z}}) : G_F]$ in the talk.

LMFDB example

For non-CM E/\mathbb{O} of conductor at most 500000, the images are available via the LMFDB (lmfdb.org). Consider the elliptic curve E/\mathbb{Q} given by

$$
y^2 + y = x^3 - x^2 - 7820x - 263580.
$$

This curve has conductor 11 and has LMFDB label 11.a1.

The image $H := \rho_F(\text{Gal}(\overline{0}/\mathbb{O}))$ of the adelic Galois representation has level 550 = 2 · 5² · 11. index 1200, genus 37, and generators

 $\begin{pmatrix} 336 & 145 \\ 515 & 216 \end{pmatrix}, \begin{pmatrix} 38 & 41 \\ 191 & 539 \end{pmatrix}, \begin{pmatrix} 1 & 50 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 50 & 1 \end{pmatrix}, \begin{pmatrix} 440 & 9 \\ 127 & 213 \end{pmatrix}, \begin{pmatrix} 501 & 50 \\ 500 & 51 \end{pmatrix}.$

Input positive integer m to see the generators of the reduction of H to $GL_2(\mathbb{Z}/m\mathbb{Z})$: 100

submit

The reduction of H has index 120 in $GL_2(\mathbb{Z}/100\mathbb{Z})$ and is generated by

$$
\left(\begin{array}{rrr} 36 & 45 \\ 15 & 16 \end{array}\right), \left(\begin{array}{rrr} 38 & 41 \\ 41 & 39 \end{array}\right), \left(\begin{array}{rrr} 40 & 9 \\ 27 & 13 \end{array}\right), \left(\begin{array}{rrr} 1 & 50 \\ 0 & 1 \end{array}\right), \left(\begin{array}{rrr} 1 & 0 \\ 50 & 1 \end{array}\right), \left(\begin{array}{rrr} 51 & 50 \\ 50 & 51 \end{array}\right), \left(\begin{array}{rrr} 51 & 0 \\ 0 & 1 \end{array}\right).
$$

Constraint on det(G_F)

By considering Weil pairings, we always have

$$
\det \circ \rho_E = \chi_{\mathsf{cyc}}|_{\mathsf{Gal}_K},
$$

where χ_{cyc} : Gal_{$\textcircled{D} \to \hat{\mathbb{Z}}^{\times}$ is the cyclotomic character. In particular,}

$$
\det(G_E) = \det(\rho_E(\mathsf{Gal}_K)) = \chi_{\mathsf{cyc}}(\mathsf{Gal}_K).
$$

Therefore,

$$
[GL_2(\widehat{\mathbb{Z}}):G_E]=[\widehat{\mathbb{Z}}^\times:\chi_{\mathsf{cyc}}(\mathsf{Gal}_K)]\cdot[\mathsf{SL}_2(\widehat{\mathbb{Z}}):G_E\cap\mathsf{SL}_2(\widehat{\mathbb{Z}})].
$$

So we should focus our attention on the index $[SL_2(\widehat{\mathbb{Z}}) : G_E \cap SL_2(\widehat{\mathbb{Z}})]$ and the group $G_F \cap SL_2(\widehat{\mathbb{Z}})$.

A single slide on modular curves

Let G be an open subgroup of $GL_2(\widehat{\mathbb{Z}})$ that contains $-I$. Let $L \subset \overline{\mathbb{Q}}$ be the minimal number field for which $\chi_{\text{cyc}}(\text{Gal}_L) = \det(\mathcal{G})$. Associated to $\mathcal G$ is a modular curve X_G :

There is a nice curve X_G defined over L with a morphism

 $\pi_{\mathcal{G}}\colon X_{\mathcal{G}}\to\mathbb{P}^1_L=\mathbb{A}^1_L\cup\{\infty\}$

such that the following are equivalent for any non-CM E/K :

- G_E is conjugate in $GL_2(\widehat{\mathbb{Z}})$ to a subgroup of \mathcal{G} ,
- $L \subseteq K$ and the *j*-invariant j_E of E lies in $\pi_G(X_G(K)) \subseteq K \cup \{\infty\}.$

I have implemented an algorithm in Magma for computing explicit models of X_G when det(G) = $\widehat{\mathbb{Z}}^\times$ ($L = \mathbb{Q}$). I am beginning to extend it to arbitrary G . For later: we define the genus of G to be the genus of X_G .

Main result

Theorem (Z.)

Let K be a number field. There is a finite set $J_K \subseteq K$ such that for any non-CM elliptic curve E over K with

- *j*-invariant $j_F \notin J_K$,
- $\rho_{F,\ell}(\text{Gal}_K) \supseteq \text{SL}_2(\mathbb{Z}/\ell \mathbb{Z})$ for all primes $\ell > 19$,

we can compute the group G_E , up to conjugacy in $GL_2(\widehat{\mathbb{Z}})$, and $[GL_2(\widehat{\mathbb{Z}}) : G_F]$.

- Conjecturally we can remove the assumption that $\rho_{E,\ell}(\text{Gal}_K) \supseteq SL_2(\mathbb{Z}/\ell\mathbb{Z})$ holds for all $\ell > 19$ by extending the finite set J_K (Serre uniformity problem).
- What underlies the algorithm is the precomputation of finitely many modular curves (that do not depend on K).
- The set J_K will be very difficult to work out (its finiteness uses Faltings' theorem). However given a $j \in K$, one can determine whether or not $j \notin J_K$.

Key idea

- The group G_F is hard to study and there are too many possibilities!
- The idea is to instead find a slightly larger group $G_E \subseteq \mathcal{G} \subseteq GL_2(\widehat{\mathbb{Z}})$ so that we have an equality

$$
[\mathit{G}_E,\mathit{G}_E]=[\mathcal{G},\mathcal{G}]
$$

of commutator subgroups.

We then have inclusions

 $[G, \mathcal{G}] = [G_F, G_F] \subseteq G_F \cap SL_2(\widehat{\mathbb{Z}}) \subseteq \mathcal{G} \cap SL_2(\widehat{\mathbb{Z}}).$

So the group G will limit the possibilities for $G_F \cap SL_2(\widehat{\mathbb{Z}})$.

• When $K = \mathbb{Q}$, a miracle happens and we have

$$
[\mathcal{G},\mathcal{G}]=G_E\cap SL_2(\widehat{\mathbb{Z}})
$$

 $(miracle = Kronecker-Weber theorem);$ this is why this case is much easier!

Agreeable closure

Consider a non-CM elliptic curve E/K with $\rho_{E,\ell}(\text{Gal}_K) \supset \text{SL}_2(\mathbb{Z}/\ell\mathbb{Z})$ for all $\ell > 19$.

We say that a subgroup G of $GL_2(\widehat{\mathbb{Z}})$ is agreeable if:

- G is open in $GL_2(\widehat{\mathbb{Z}})$,
- G contains the scalars $\widehat{\mathbb{Z}}^\times I$.
- any prime dividing the level of G also divides the level of the commutator subgroup $[G, G] \subset SL_2(\widehat{\mathbb{Z}})$.

We have $G_F \subseteq \mathcal{G}_F$ for a unique minimal agreeable subgroup $\mathcal{G}_F \subseteq GL_2(\hat{\mathbb{Z}})$. We call G_E the agreeable closure of G_E . We indeed have $[G_E, G_E] = [G_F, G_F]$.

Moreover, the level of \mathcal{G}_F is not divisible by $\ell > 19$; this is very restrictive! (The level of G_F can be divisible by primes $\ell > 19$.)

Now consider only agreeable subgroups G of $GL_2(\widehat{\mathbb{Z}})$ whose level is not divisible by a prime $\ell > 19$.

- For each G , there are only finitely many maximal agreeable subgroups. The paper gives a classification and an effective way to compute them!
- Starting with $GL_2(\widehat{\mathbb{Z}})$, taking maximal agreeable subgroups, and repeating..., we will eventually obtain only groups G of genus at least 2.
- So there is a finite set \mathcal{A}_1 consisting of all agreeable subgroups, up to conjugacy in $GL_2(\widehat{\mathbb{Z}})$, of genus 0 and 1. A large portion of the paper is dedicated to their explicit computation: there are 11960 groups in A_1 ; 3682 of genus 0 and 8278 of genus 1.
- There is another finite set A_2 of all minimal agreeable subgroups with genus at least 2 up to conjugacy. This set has also been explicitly described.

Fix a number field K and an elliptic curves E/K with $\rho_{E,\ell}(\text{Gal}_K) \supseteq \text{SL}_2(\mathbb{Z}/\ell\mathbb{Z})$ for all $\ell > 19$. We have $G_F \subset \mathcal{G}_F$. There are two possibilities:

- G_F is conjugate to a unique $G \in \mathcal{A}_1$,
- \mathcal{G}_F is conjugate to a subgroup of some $\mathcal{G} \in \mathcal{A}_2$, and hence i_F lies in the set

$$
J_K:=\bigcup_{\mathcal{G}\in\mathcal{A}_2^*}\pi_{\mathcal{G}}(X_{\mathcal{G}}(K))\subseteq K\cup\{\infty\}
$$

which is finite by Faltings' theorem.

So after the computation of a *finite number* of modular curves (not depending on K or E), we can check if $j_E \in J_K$, and if $j_E \notin J_K$ we can compute \mathcal{G}_E .

Aside: there are tens of thousands of modular curves to deal with; this is a large but reasonable task.

Now suppose we have E/K and we known the group $G := G_F$. As already observed, we have inclusions

$$
[\mathcal{G},\mathcal{G}] \subseteq G_E \cap SL_2(\widehat{\mathbb{Z}}) \subseteq \mathcal{G} \cap SL_2(\widehat{\mathbb{Z}}).
$$

In particular, we have

$$
[SL_2(\widehat{\mathbb{Z}}):G_E\cap SL_2(\widehat{\mathbb{Z}})]\leq [SL_2(\widehat{\mathbb{Z}}):[\mathcal{G},\mathcal{G}]].
$$

We can compute $[SL_2(\widehat{\mathbb{Z}}) : [\mathcal{G}, \mathcal{G}]$ for all $\mathcal{G} \in \mathcal{A}_1$ to get new bounds...

Theorem (Z.)

Let K be a number field. There is a finite set $J_K \subseteq K$ such that for any non-CM elliptic curve E over K with

• $j_E \notin J_K$, and

•
$$
\rho_{E,\ell}(\text{Gal}_K) \supseteq \text{SL}_2(\mathbb{Z}/\ell\mathbb{Z})
$$
 for all primes $\ell > 19$,

we have

$$
[SL_2(\widehat{\mathbb{Z}}): G_E \cap SL_2(\widehat{\mathbb{Z}})] \leq \begin{cases} 1382400, \\ 172800 & \text{if } K \cap \mathbb{Q}(\sqrt{-1}) = \mathbb{Q}, \\ 30000 & \text{if } K \cap \mathbb{Q}(\sqrt{-1}, \sqrt{2}, \sqrt{3}) = \mathbb{Q}, \\ 7200 & \text{if } K \cap \mathbb{Q}(\sqrt{-1}, \sqrt{2}, \sqrt{3}, \sqrt{5}, \sqrt{7}, \sqrt{11}) = \mathbb{Q}, \\ 1536 & \text{if } K = \mathbb{Q}. \end{cases}
$$

For a non-CM E/K , suppose $\mathcal{G}_F = \mathcal{G} \in \mathcal{A}_1$.

Consider an open subgroup B of G with $B \cap SL_2(\widehat{\mathbb{Z}}) \supseteq [G, G]$. The group B is normal in G and G/B is finite abelian. Define the character

 α : Gal_K $\stackrel{\rho_E}{\longrightarrow}$ G_E \subseteq G \rightarrow G/B.

We take B with $B \cap \mathsf{SL}_2(\widehat{\mathbb{Z}})$ minimal so that $\alpha(\mathsf{Gal}(\overline{K}/K^{\operatorname{cyc}})) = 1.$

(These can be worked out using a finite number of precomputed modular curves.) We will have

$$
G_E \cap SL_2(\widehat{\mathbb{Z}}) = B \cap SL_2(\widehat{\mathbb{Z}}).
$$

Idea for computing G_F

In the previous slide, there was a character α : Gal $K \rightarrow G/B$ with $\alpha(\mathsf{Gal}(\overline{K}/K^{\mathsf{cyc}}))=1.$ There is a unique homomorphism

$$
\gamma\colon \chi_{\mathsf{cyc}}(\mathsf{Gal}_\mathcal{K}) \rightarrow \mathcal{G}/B
$$

satisfying $\alpha(\sigma)=\gamma(\chi_{\mathsf{cyc}}(\sigma)^{-1})$ for all $\sigma\in \mathsf{Gal}_\mathcal{K}$. We have

$$
G_E = \{ g \in \mathcal{G} : \det g \in \chi_{\text{cyc}}(\text{Gal}_K), g \cdot B = \gamma(\det g) \}.
$$

Concluding remark: Our approach to computing the groups G_F , for non-CM E/K excluding a finite number of j -invariants, is to show that they are of a very special form (moreover, we are putting them in "families"). This is progress towards "Mazur's Program B" which asks for a classification of the possible groups $G_F = \rho_F(\text{Gal}_K)$ for each K.

Extra slides on modular curves

Let G be an open subgroup of $GL_2(\widehat{\mathbb{Z}})$ that contains $-I$. The group gives rise to a modular curve X_G defined over a number field L. We will now give some ideas on how to compute a model of X_G .

Our approach to compute models is via modular forms. Fix an integer $N > 1$. For an integer $k > 0$, consider

 $M_k(\Gamma(N),\mathbb{O}(\zeta_N))$;

the space of weight k modular forms on $\Gamma(N)$ with q-expansion having coefficients in $\mathbb{O}(\zeta_N)$.

There is a right action $*$ of $GL_2(\mathbb{Z}/N\mathbb{Z})$ on $M_k(\Gamma(N),\mathbb{Q}(\zeta_N))$ such that

- $SL_2(\mathbb{Z}/N\mathbb{Z})$ acts via the natural $SL_2(\mathbb{Z})$ -action,
- \bullet $\left(\begin{smallmatrix} 1 & 0 \ 0 & d \end{smallmatrix}\right)$ acts by acting on Fourier coefficients via $\sigma_d \in \mathsf{Gal}(\mathbb{Q}(\zeta_N)/\mathbb{Q})$, where $\sigma_d(\zeta_N) = \zeta_N^d$.

For our group G, let N be the level of G and let $G \subseteq GL_2(\mathbb{Z}/N\mathbb{Z})$ be the image of G modulo N. For each $k > 0$, we define the L-vector space

$$
M_{k,\mathcal{G}} := M_k(\Gamma(N),\mathbb{Q}(\zeta_N))^G.
$$

We have $\mathit{L}=\mathbb{Q}(\zeta_N)^{\det\mathit{G}}$ and

$$
M_{k,\mathcal{G}}\otimes_L \mathbb{C}=M_k(\Gamma_{\mathcal{G}}),
$$

where Γ_G is the congruence subgroup of $SL_2(\mathbb{Z})$ consisting of matrices whose image modulo N lies in G. Here is an ad hoc definition of X_G/L :

$$
X_{\mathcal{G}} = \text{Proj}\left(\bigoplus_{k\geq 0} M_{k,\mathcal{G}}\right).
$$

(We have $X_{\mathcal{G}}(\mathbb{C}) \cong \Gamma_{\mathcal{G}}\backslash\mathbb{H}^*$, and $\pi_{\mathcal{G}}$ corresponds to the quotient map $\Gamma_{\mathcal{G}}\backslash \mathbb{H}^*\to \mathsf{SL}_2(\mathbb{Z})\backslash \mathbb{H}^*.$

$$
X_{\mathcal{G}} = \text{Proj}\left(\bigoplus_{k\geq 0} M_{k,\mathcal{G}}\right).
$$

- Take $k \in \{2, 4, 6\}$ minimal so that $M_{k,G}$ gives an embedding of X_G into projective space.
- We can compute explicit generators of the L-vector space $M_{k,G}$ by using sums and products of weight 1 Eisenstein series on $\Gamma(N)$.
- By consider vanishing conditions at cusps, find a relatively small subspace V of M_k g so that Riemann–Roch ensures an embedding

$$
X_{\mathcal{G}} \hookrightarrow \mathbb{P}(V)
$$

defined over L.

• Look for enough relations to cut out the image using q -expansions.

Modular curve example

Let G be the open subgroup of $GL_2(\widehat{\mathbb{Z}})$ of level 13 whose image modulo 13 is

 $G:=\langle \left(\begin{smallmatrix} 1 & 2 \\ 4 & 1 \end{smallmatrix} \right)\rangle \subseteq GL_2(\mathbb{Z}/13\mathbb{Z}).$

We have $G \cong \mathbb{F}_{12}^{\times}$ $_{13^2}^{\times}$. Since det $(\mathcal{G}) = \widehat{\mathbb{Z}}^{\times}$, the modular curve $\mathcal{X}_\mathcal{G}$ is defined over $\mathbb{Q}.$ The following is code to compute a model of X_G :

```
> M:=CreateModularCurveRec(13, [[1,2,4,1]]);
> M`genus;
8
> time X:=FindModelOfXG(M,15);
Time: 2.040[r]
```
The model computed in this case is the canonical model $X_{\mathcal{G}} \hookrightarrow \mathbb{P}^7_{{\mathbb{O}}}$. The curve is cut out by several homogeneous polynomials in $\mathbb{Q}[x_1, \ldots, x_8]$ of degree 2.

.v[11^2] .v[11*v[2] .v[11*v[3] .v[11*v[3] will*v[4] will*v[5] =v[21^2 .2*v[21*v[3] +v[21*v[6] .v[21*v[7] +2*v[21*v[8] +v[31^2 + x [3]*x[4] - x[3]*x[5] + x[3]*x[7] + 2*x[3]*x[8] + x[4]^2 - x[4]*x[6] + 2*x[4]*x[7] + x[5]*x[7] - 2*x[5]*x[8] + x[6]*x[7] $x[6]$ * $x[8]$

- $-x[1]*x[2] x[1]*x[3] + x[1]*x[4] + x[1]*x[5] x[1]*x[6] + x[2]^{-2} + x[2]*x[3] x[2]*x[4] x[2]*x[6] + x[2]*x[6] + x[2]*x[8]$ + x[3]^2 - x[3]*x[4] - x[3]*x[5] + x[3]*x[6] - x[3]*x[7] + 2*x[3]*x[8] + x[4]*x[5] - x[4]*x[6] + x[4]*x[7] - 2*x[4]*x[8] $x[5]$ * $x[8] + x[6]$ * $x[8]$
- -x111^2 + x111*x121 + x111*x131 + x111*x141 x111*x161 + 2*x111*x181 x121^2 x121*x131 x121*x171 2*x121*x181 x131*x141 + x[3]*x[6] - x[3]*x[7] - x[4]^2 + x[4]*x[5] + x[4]*x[6] - x[5]*x[6] + x[5]*x[7] - x[5]*x[8] - x[6]*x[7] + x[6]*x[8] $x[7]*x[8] - x[8]2$

 $-x[1]^2$ - $2*x[1]*x[5]$ - $x[1]*x[7] + x[1]*x[8] + x[2]*x[3] - x[2]*x[4] + 2*x[2]*x[6] - 3*x[2]*x[7] + x[2]*x[8] + x[3]² +$

7*x[3]*x[4] + x[3]*x[8] + x[4]*2 + x[4]*x[5] + x[4]*x[6] + x[4]*x[8] - x[5]*2 - x[5]*x[6] - x[6]*2 + x[6]*x[7] - x[6]*x[8] $x[7]$ $\sqrt{7}$ $\sqrt{7}$ $x[7]$ $\sqrt{8}$

- .v111*v131 + v111*v161 . v111*v171 + v111*v181 + v131^2 + 2*v131*v141 . v131*v151 . v131*v171 + 3*v131*v181 + v141^2 . v141*v151 $-$ x[4]*x[6] + x[4]*x[7] + x[5]^2 - x[5]*x[6] + x[5]*x[7] + x[6]^2 - x[6]*x[7] + x[7]*x[8] + x[8]^2.
- -x[1]*x[2] + 2*x[1]*x[4] + x[1]*x[6] + x[1]*x[6] + x[1]*x[7] + 2*x[2]*x[3] + 3*x[2]*x[4] 2*x[2]*x[5] x[2]*x[6] + x[3]*x[4] 2*x[3]*x[5] - x[3]*x[6] - x[3]*x[8] + x[4]^2 - 2*x[4]*x[5] - 2*x[4]*x[6] + x[4]*x[7] + x[4]*x[8] + x[5]^2 + 2*x[5]*x[6] - x[5]*x[7] + $x[6]$ $2 + x[6]$ *x[7].
- v(1)^2 + v(1)*v(2) + v(1)*v(5) + 2*v(1)*v(7) 3*v(1)*v(8) + 2*v(2)^2 3*v(2)*v(4) v(2)*v(5) + 2*v(2)*v(7) 2*v(2)*v(8) -.xl31^2 - xl31*xl41 - xl31*xl51 + xl31*xl71 - 2*xl31*xl81 + xl41^2 + xl41*xl51 - xl41*xl81 - xl51*xl81
- $-x[1]*x[2] + x[1]*x[5] x[1]*x[7] + 2*x[1]*x[8] + x[2]^{2} x[2]*x[3] x[2]*x[4] 2*x[2]*x[6] + x[2]*x[7] + 2*x[2]*x[8] + x[3] x[4]$ x[3]*x[5] - x[3]*x[7] + 2*x[3]*x[8] - x[4]^2 + 2*x[4]*x[5] + 2*x[4]*x[6] - x[4]*x[7] - x[4]*x[8] - x[5]^2 - x[5]*x[6] $x[5]*x[7] - 2*x[6]*x[7]$.
- $-x(11^2) x(11^2x(2) x(11^2x(3) x(11^2x(5) x(11^2x(6) x(11^2x(7) + x(21^2x(3) + x(21^2x(5) + 2^2x(6) x(21^2x(6) x(31^2x(3)))))))$ $x[2]*x[8] + x[3]² + 2*x[3]*x[5] + x[3]*x[6] + x[3]*x[7] + 2*x[3]*x[8] + x[4]² + x[4]*x[5] - 2*x[4]*x[6] + 2*x[4]*x[7] - 2*x[5] + x[6] + 2*x[4]*x[7]$ $x\overline{151}^2 + x\overline{151}^*x\overline{161} - x\overline{151}^*x\overline{171} + 2*x\overline{151}^*x\overline{181} + x\overline{161}^*x\overline{171} + 2*x\overline{161}^*x\overline{181}$
- $-x(11^2) + 3*x(11*x(4) + x(11*x(5) 3*x(11*x(6) + x(11*x(7) + x(11*x(8) + x(21*x(4) + x(21*x(5) x(21*x(6) + x(21*x(7) + x(31*x(3)))))))$ $x[2]*x[8] + x[3]² - x[3]*x[5] - 2*x[4]² + x[4]*x[6] - x[4]*x[8] - x[5]² - x[5]*x[7] - 2*x[5]*x[8] - x[6]*x[7] - x[7]*x[8]$ $- x 181^22$.
- -x[1]^2 + 2*x[1]*x[2] + x[1]*x[3] + x[1]*x[3] x[1]*x[5] x[1]*x[6] + x[2]^2 2*x[2]*x[4] + x[2]*x[7] x[3]*x[5] + 2*x[3]*x[7] x[4]^2 + x[4]*x[5] + 3*x[4]*x[6] - 2*x[4]*x[7] + 2*x[4]*x[8] - x[5]^2 - x[5]*x[6] - x[5]*x[7] - 3*x[5]*x[8] - x[6]^2 + x[6]*x[7] - $2*x[6]*x[8] - 2*x[7]² + x[7]*x[8] + x[8]².$
- $-x(1)*x[2] x(1)*x[3] + x[1)*x[4] + x[1)*x[5] 2*x[1)*x[6] + x[1]*x[7] 2*x[1]*x[8] 2*x[2]*x[3] 2*x[2]*x[4] + x[2]*x[5] 2*x[3]+x[4]$ $x[2]*x[7] - x[2]*x[8] + 2*x[3]*x[4] + x[3]*x[5] - x[3]*x[6] + x[3]*x[7] - x[3]*x[8] + x[4]^2 + x[4]*x[5] + x[4]*x[6] - x[3]+x[4] + x[5] + x[6]$ $x|5|2 - x|5|$ *x $|6| - x|5|$ *x $|8| - x|6|2 + x|6|$ *x $|7| - x|6|$ *x $|8| - x|7|2 - x|7|$ *x $|8|$.
- $-x[1]$ ^2 + x[1]*x[3] + 2*x[1]*x[4] + x[1]*x[5] + 2*x[1]*x[6] + x[1]*x[7] + x[2]*x[3] + x[2]*x[5] + 3*x[2]*x[6] + 2*x[2]*x[7] - $2*x[2]*x[8] - x[3]^{-2} - 2*x[3]*x[5] + 2*x[3]*x[6] + x[3]*x[7] - 2*x[4]*x[6] + 2*x[4]*x[7] + x[4]*x[8] - x[5]*x[6] - x[5]*x[8]$ $+ x[6]$ 2 - $x[6]$ *x[7] + $x[6]$ *x[8] + $x[7]$ *x[8].
- $x[1]^2 + x[1]^*x[2] + x[1]^*x[4] + 3^*x[1]^*x[5] 3^*x[1]^*x[6] + 2^*x[1]^*x[7] x[2]^2 + 2^*x[2]^*x[3] x[2]^*x[5] x[2]^*x[7] 2^*x[3] x[3]^*x[6]$ $x[2]*x[8] + x[3]'2 - 2*x[3]*x[4] - 2*x[3]*x[6] + x[3]*x[7] - x[4]*x[6] - x[4]*x[7] - x[4]*x[8] - x[5]*x[6] - x[5]*x[6] - x[6]$ $x[6]$ $2 + x[6]$ *x[7].
- $2*x[1]$ $2 + 4*x[1]*x[3] + 3*x[1]*x[4] + 3*x[1]*x[7] x[2] ^2 x[2]*x[4] x[2]*x[5] + 3*x[2]*x[6] 2*x[2]*x[7] x[2]*x[8] +$ $4*x[3]^2 + 3*x[3]*x[4] + 3*x[3]*x[6] + x[3]*x[7] + x[4]^2 + x[4]*x[5] + x[4]*x[7] + x[4]*x[8] + x[5]^2 + x[5]*x[6] +$ $x[6]*x[7] - x[6]*x[8] + x[7]*x[8] + x[8]$

The model computed in this case is the canonical model $\mathcal{X}_{\mathcal{G}}\hookrightarrow \mathbb{P}^7_\mathbb{O}.$ The curve is cut out by several homogeneous polynomials in $\mathbb{Q}[x_1, \ldots, x_8]$ of degree 2.

- These equations are very nice! (seriously)
- All of the coefficients are integers with absolute value at most 4.
- We also gave more equations than needed; they actually give a model for X_G as a smooth projective curve over Spec $\mathbb{Z}[1/13]$.