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Elliptic curves

Fix a number field K and an algebraic closure K.
Let E be an elliptic curve defined over K.
For each integer n > 1, let E[n] be the n-torsion subgroup of E(K). We have a
group isomorphism
E[n] = (Z/nZ)?

Since E is defined over K, the absolute Galois group
Galk := Gal(K/K)

acts on E[n] = (Z/nZ)? and respects the group structure. We can express this
action as a Galois representation

pE.n: Galk — Aut(E[n]) = GLa(Z/nZ).



For each n > 1, we have a Galois representation
pEn: Galk — Aut(E[n]) = GLo(Z/nZ).

that encodes the Galois action on E[n].
Combining these together, we obtain a single Galois representation

pe: Galk = GLo(Z),

where 7 is the profinite completion of Z, that encodes the Galois action on all the

torsion points of E.

The representation pg is continuous with respect to the profinite topology.



Serre's open image theorem

An elliptic curve E over a number field K
gives rise to a representation

pe: Galk — GLo(Z);

define its image G := pe(Galk) C GLo(Z).

Source: Wikimedia Commons

Theorem (Serre, 1972)

Let E/K be a non-CM elliptic curve. Then Gg is an open subgroup of GLg(z).
Equivalently, [GLo(Z) : Gg] is finite.



Unfortunately, Serre's proof is usually non-effective.

Problem:

Given a non-CM elliptic curve E over a number field K, compute the open group Gg
up to conjugacy in GLy(Z).

For some N > 1, Gg contains the kernel of the reduction modulo N map

~

GLo(Z) — GLy(Z/NZ).

The minimal N is the level of Gg.
So Gg can be explictly described, once known, via its level N and its image in
GLx(Z/NZ).



When K = Q, the problem has already been solved.
Theorem (Z.)

~

There is an algorithm to compute Gg, up to conjugacy in GLo(Z), for any non-CM
elliptic curve E/Q.

The algorithm has been implemented in Magma and is efficient! For the non-CM
E/Q of conductor at most 500000, | can compute the groups Gg in around 8 hours.
(On average, =~ 0.01 seconds per curve.)

The original aim of the paper being discussed was to study the computation of Gg
when K # Q and to determine whether an algorithm is feasible.

We will focus on computing the index [GLy(Z) : Gg] in the talk.



LMFDB example

For non-CM E/Q of conductor at most 500000, the images are available via the
LMFDB (Imfdb.org). Consider the elliptic curve E/Q given by

y* +y = x> — x> — 7820x — 263580.

This curve has conductor 11 and has LMFDB label 11.a1.

The image H := pp(Gal(Q/Q)) of the adelic Galois representation has level 550 = 2 - 52 - 11, index 1200, genus 37, and
generators

336 145 38 41 1 50 10 440 9 501 50
515 216 J°\ 191 539 J’\ 0 1 J°\ 50 1 )° ? ’

127 213 500 51

Input positive integer m to see the generators of the reduction of H to GL,(Z/mZ): [1 00

The reduction of H has index 120 in GL3(Z/100Z) and is generated by

36 45 38 41 40 9 1 50 10 51 50 51 0
15 16 /’\ 41 39 /J°\ 27 13 J'\ 0 1 )’ 50 1 /)’\ 50 51 )’ ’

01



Constraint on det(Gg)

By considering Weil pairings, we always have
det OpE = chc‘GalKa
where ¢y Galg — 7" is the cyclotomic character. In particular,
det(GE) = det(pE(GaIK)) = chc(Ga|K).
Therefore,

[GL(Z) : Ge] = [Z* : Xeye(Galk)] - [SL2(Z) : Ge N SLy(Z)].

So we should focus our attention on the index [SLy(Z) : Gg N SLy(Z)] and the group
Ge N SLy(Z).



A single slide on modular curves
Let G be an open subgroup of GLz(Z) that contains —/. Let L C Q be the minimal
number field for which xcyc(Galy) = det(G). Associated to G is a modular curve Xg:

There is a nice curve Xg defined over L with a morphism
mg: Xg — P} = A} U {0}

such that the following are equivalent for any non-CM E/K:
e Gg is conjugate in GLg(z) to a subgroup of G,
e L C K and the j-invariant jg of E lies in mg(Xg(K)) C K U {oc0}.
| have implemented an algorithm in Magma for computing explicit models of Xg

when det(G) = Z* (L = Q). | am beginning to extend it to arbitrary G.
For later: we define the genus of G to be the genus of Xg.



Main result

Theorem (Z.)
Let K be a number field. There is a finite set Jx C K such that for any non-CM
elliptic curve E over K with
e j-invariant jg ¢ Jk,
o pe(Galk) D SLo(Z/VZ) for all primes £ > 19,
we can compute the group Gg, up to conjugacy in GLQ(Z), and [GLg(z) . Gg|.

e Conjecturally we can remove the assumption that pg ¢(Galx) O SLo(Z/(Z)
holds for all £ > 19 by extending the finite set Jx (Serre uniformity problem).

e What underlies the algorithm is the precomputation of finitely many modular
curves (that do not depend on K).

e The set Jx will be very difficult to work out (its finiteness uses Faltings’
theorem). However given a j € K, one can determine whether or not j ¢ Jk.



Key idea

e The group Gg is hard to study and there are too many possibilities!
e The idea is to instead find a slightly larger group Gg C G C GLy(Z) so that we
have an equality

[Ge, GE] =[G, G]

of commutator subgroups.
We then have inclusions

[G,6] = [GE, Ge] € Ge NSLa(Z) € G N SLa(Z).

So the group G will limit the possibilities for Gg N SLg(z).
e When K = Q, a miracle happens and we have

[G,G] = Ge NSLy(Z)

(miracle = Kronecker—Weber theorem); this is why this case is much easier!



Agreeable closure

Consider a non-CM elliptic curve E/K with pg ¢(Galk) D SLo(Z/4Z) for all £ > 19.

We say that a subgroup G of GLg(i) is agreeable if:
e G is open in GLy(Z),
e ( contains the scalars ZXI,
e any prime dividing the level of G also divides the level of the commutator

subgroup [G, G] C SLy(Z).

We have Gg C Gg for a unique minimal agreeable subgroup Gg C GLQ(Z).
We call Gg the agreeable closure of Gg. We indeed have [Gg, Gg] = [GE, GE].

Moreover, the level of Gg is not divisible by ¢ > 19; this is very restrictive!
(The level of Gg can be divisible by primes ¢ > 19.)



~

Now consider only agreeable subgroups G of GL2(Z) whose level is not divisible by a
prime £ > 19.

e For each G, there are only finitely many maximal agreeable subgroups. The
paper gives a classification and an effective way to compute them!

e Starting with GL2(2), taking maximal agreeable subgroups, and repeating...,
we will eventually obtain only groups G of genus at least 2.

e So there is a finite set A; consisting of all agreeable subgroups, up to
conjugacy in GLy(Z), of genus 0 and 1. A large portion of the paper is
dedicated to their explicit computation: there are 11960 groups in A1; 3682 of

genus 0 and 8278 of genus 1.

e There is another finite set A, of all minimal agreeable subgroups with genus at

least 2 up to conjugacy. This set has also been explicitly described.



Fix a number field K and an elliptic curves E/K with pg ¢(Galk) 2 SLo(Z/LZ) for
all £ > 19. We have Gg C Gg. There are two possibilities:

e Gf is conjugate to a unique G € Aj,

e Gr is conjugate to a subgroup of some G € A, and hence jg lies in the set

= | me(X(K)) C KU {oc}
GeAs

which is finite by Faltings' theorem.

So after the computation of a finite number of modular curves (not depending on K
or E), we can check if jg € Jk, and if jg ¢ Jx we can compute Gg.

Aside: there are tens of thousands of modular curves to deal with; this is a large but
reasonable task.



Now suppose we have E/K and we known the group G := GE.
As already observed, we have inclusions

[G,G] € Ge NSLa(Z) C G NSLa(Z).

In particular, we have

[SL2(Z) : Ge N SL2(2)] < [SL2(Z) < [G. 91]-

We can compute [SLo(Z) : [G, G]] for all G € A; to get new bounds...



Theorem (Z.)

Let K be a number field. There is a finite set Jx C K such that for any non-CM
elliptic curve E over K with

o jE ¢ JK, and
e pe(Galk) D SLo(Z/UZ) for all primes £ > 19,

we have

1382400,

172800  if KN Q(v—1) = Q,

[SLa(Z) : GE NSLa(Z)] < < 30000  if KN Q(v—1,v2,/3) = Q,

7200 if KN Q(v=1,v2,v3,v5,V7,V11) = Q,
1536 if K = Q.




-~

|dea for computing Gg N SLy(Z)

For a non-CM E /K, suppose Ge = G € A;.
Consider an open subgroup B of G with BN SLg(i) 2 [G,G]. The group B is
normal in G and G/B is finite abelian. Define the character

a: Galk 25 Ge € G — G/B.

We take B with B N SLy(Z) minimal so that a(Gal(K/K%)) = 1.
(These can be worked out using a finite number of precomputed modular curves.)

We will have
GEN SLQ(z) =Bn SL2(2)



ldea for computing Gg

In the previous slide, there was a character «: Galx — G/B with
a(Gal(K/K®¢)) = 1. There is a unique homomorphism

v Xeye(Galk) = G/B

satisfying (o) = Y(Xcyc (o)1) for all o € Galk. We have

Ge ={g € G :detg € xcyc(Galk), g- B =(detg)}.

Concluding remark: Our approach to computing the groups Gg, for non-CM E/K
excluding a finite number of j-invariants, is to show that they are of a very special
form (moreover, we are putting them in “families”).

This is progress towards “Mazur's Program B" which asks for a classification of the
possible groups Gg = pg(Galk) for each K.






Extra slides on modular curves

Let G be an open subgroup of GLg(i) that contains —/. The group gives rise to a
modular curve Xg defined over a number field L.
We will now give some ideas on how to compute a model of Xg.

Our approach to compute models is via modular forms. Fix an integer N > 1. For

an integer k > 0, consider

Mi(T(N), Q(Cn));

the space of weight k modular forms on ['(N) with g-expansion having coefficients
in Q(CN)
There is a right action * of GLo(Z/NZ) on M (T'(N),Q(¢n)) such that

e SLy(Z/NZ) acts via the natural SLy(Z)-action,

° ((1) 2) acts by acting on Fourier coefficients via o4 € Gal(Q((n)/Q), where

oa(Cn) = .



For our group G, let N be the level of G and let G C GL(Z/NZ) be the image of G
modulo N. For each k > 0, we define the L-vector space

Mg = Mi(T(N), Q(¢n))°-
We have L = Q(¢y)%t ¢ and
Mk,g ® C= Mk(rg)7

where Ig is the congruence subgroup of SL>(Z) consisting of matrices whose image
modulo N lies in G. Here is an ad hoc definition of Xg/L:

Xg = Proj <@ Mk7g>.
k>0

(We have Xg(C) = I'g\H*, and 7g corresponds to the quotient map
Fg\H* — SLo(Z)\H*.)



Xg = Proj <@ Mk,g>.

k>0

Take k € {2,4,6} minimal so that M, g gives an embedding of Xg into
projective space.

We can compute explicit generators of the L-vector space My g by using sums
and products of weight 1 Eisenstein series on ['(N).

By consider vanishing conditions at cusps, find a relatively small subspace V' of
My g so that Riemann—Roch ensures an embedding

Xg = P(V)

defined over L.

Look for enough relations to cut out the image using g-expansions.



Modular curve example

Let G be the open subgroup of GLz(z) of level 13 whose image modulo 13 is
G = ((13)) C GLo(2/132).

We have G =T 5,. Since det(G) = 7, the modular curve Xg is defined over Q.

The following is code to compute a model of Xg:
> M:=CreateModularCurveRec(13,[[1,2,4,1]]1);
> M genus;
8
> time X:=FindModelOfXG(M,15);
Time: 2.040[r]
The model computed in this case is the canonical model Xg — }P’é. The curve is cut

out by several homogeneous polynomials in Q[xi, ..., xg] of degree 2.



x[1172 - x[11%x[2] - x[1]*x[3] + x[11*x[4] + x[1]*x[5] + x[2]°2 + 2*x[2]*x[3] + x[2]*x[6] - X[2]*x[7] + 2*x[2]*x[8] + x[3]"2 +
X[3]*x[4] - x[3]*x[5] + x[3]1*x[7] + 2*x[3]*x[8] + x[4]"2 - x[4]*x[6] + 2*x[4]*x[7] + x[5]*x[7] - 2*x[5]*x[8] + x[6]*x[7] -
x[6]*x[8],

x[11%x[2] - x[11*x[3] + x[1]*x[4] + x[1]*x[5] - x[1]1*x[6] + x[2]"2 + x[2]*x[3] - x[2]*x[4] - x[2]*x[5] + x[2]*x[6] + x[2]*x[8]
+ x[3172 - x[3]*x[4] - x[31*x[5] + x[31*x[6] - X[31*x[7] + 2*x[31*x[8] + x[41*x[5] - x[41*x[6] + x[41*x[7] - 2*x[4]*x[8] -
x[5]*x[8] + x[6]*x[8],

x[1172 + x[11*x[2] + x[1]*x[3] + x[1]1*x[4] - x[1]*x[6] + 2*x[1]*x[8] - x[2]"2 - x[2]*x[3] - x[2]*x[7] - 2*x[2]*x[8] - x[3]*x[4]
+ x[31%x[6] - x[3]*x[7] - x[41°2 + x[4]*x[5] + x[41*x[6] - x[5]*x[6] + x[51*x[7] - x[51*x[8] - x[6]*x[7] + x[6]*x[8] -
x[71*x[8] - x[8]"2,

X[117°2 - 2#x[11*x[5] - x[11*x[7] + x[11*x[8] + x[2]*x[3] - x[2]*x[4] + 2*x[2]*x[6] - 3*x[2]*x[7] + x[2]*x[8] + x[3]"2 +
2+x[3]*x[4] + x[3]*x[8] + x[41°2 + x[4]*x[5] + x[4]*x[6] + x[4]*x[8] - x[5]"2 - x[51*x[6] - x[6]°2 + x[6]*x[7] - x[6]*x[8] -
x[71"2 - x[7]*x[8],

x[11%x[3] + x[1]*x[6] - x[11*x[7] + x[1]*x[8] + x[3]"2 + 2*x[3]*x[4] - x[3]*x[5] - x[3]*x[7] + 3*x[3]*x[8] + x[4]°2 - x[4]*x[5]

- XI41XI6] + x[41%X(7] + X[51°2 - x[S]*x[6] + X[SI*X[7] + x(61"2 - x[6]*X[7] + x(71*x(8] + x[8]2,
—x[l]*x[2] + 2#5x[1]%x[4] + x[11*x[6] + x[1]*x[7] + 2*x[2]*x[3] + 3*x[2]*x[4] - 2*x[2]*x[5] - x[2]*x[6] + x[3]*x[4] - 2*x[3]*x[5]
[31%x[6] - x[3]*x[8] + x[4]°2 - 2*x[41*x[5] - 2*x[4]*x[6] + x[41*x[7] + x[4]*x[8] + x[5]"2 + 2*x[5]*x[6] - x[5]*x[7] +
X[61°2 + x(6]*x(7],
X[1172 + X[11*X(2] + X[1*X[S] + 2X[11X(7] - 3%[U*X[8] + 24x[2172 - 3x([21*x(4] - x[2]*x[5) + 2*x[2]*x[7] - 2#x[2]*x(8] -
x[3]72 - x[3]*x[4] - x[3]*x[5] + x[3]*x[7] - 2*x[3]*x[8] + x[4]"2 + x[4]*x[5] - x[4]*x[8] - x[5]*x[8]

2] 1 X151 - U1 + 25x(11718] = X212 - x[21%x(3] - X(21%14] - 2*x[21%(6] + X[21*x[7] + 2+x(21%(8] +
XB3I™(5] - X[31x[7] + 2x(31x(8] - x[41°2 + 2[41%x(5] + 2*x[41%(6] - x[4]*x[7] - x[4]*x(8] - x[5]°2 - x(5]*x[6] -
x[51*x[7] - 2*x[6]*x[7],

x[11°2 - x[11*x[2] - x[1]*x[3] - x[11*x[5] - x[11*x[6] - x[11*x[7] + x[2]1*x[3] + x[21*x[5] + 2*x[2]*x[6] - x[2]*x[7] +
X[2]*x[8] + X[3]°2 + 2*x[3]*x[5] + x[3]*x[6] + x[3]*x[7] + 2*x[3]*x[8] + x[41"2 + x[41*x[5] - 2*x[4]*x[6] + 2*x[4]*x[7] -
x[5172 + x[51*x[6] - x[5]*x[7] + 2*x[5]*x[8] + x[6]*x[7] + 2*x[6]*x[8],

x[1172 + 3%[11%x[4] + x[1]*x[5] - 3*x[11*x[6] + x[11*x[7] + x[1]1*x[8] + x[2]*x[4] + x[2]*x[5] - x[2]*x[6] + x[2]*x[7] +
x[Z]*x[B] + x[3172 - x[31*x[5] - 2*x[4]°2 + x[4]*x[6] - x[4]*x[8] - x[5]°2 - x[SI*x[7] - 2*x[5]*x[8] - x[6]*x[7] - x[7]*x[8]

—x[l]"Z + 2*x[1]*x[2] + X[UX(3] + X[11*X[5] - X[11%x(6] + x[2]°2 - 2+x(21*x[4] + X[21°X(7] - X[31°X([5] + 2X(3]*X(7] - x[4]°2
+ x[4]%x[5] + 3*x[4]*x[6] - 2*x[4]*x[7] + 2*x[4]*x[8] - x[5]°2 - x[5]*x[6] - x[SI*x[7] - 3*x[5]*x[8] - x[6]"2 + x[6]*x[7] -
25x(6]*x(8] - 2x[71°2 + x[7)*x[8] + x[81"2,

x[11%x[2] - x[11*x[3] + x[1]*x[4] + x[1]*x[5] - 2*x[1]*x[6] + x[1]*x[7] - 2*x[1]*x[8] - 2*x[2]*x[3] - 2*x[2]*x[4] + x[2]*x[5] -

x[2]*x[7] - x[2]*x[8] + 2*x[3]*x[4] + x[3]*x[5] - x[3]1*x[6] + x[3]*x[7] - x[3]1*x[8] + x[4]"2 + x[4]*x[5] + x[4]*x[6] -
x[51"2 - x[5]*x[6] - x[5]*x[8] - x[6]°2 + x[6]*x[7] - x[6]*x[8] - x[7]°2 - x[7]*x[8],

x[1]72 + x[1]*x[3] + 2*x[1]*x[4] + x[1]1*x[5] + 2*x[1]*x[6] + x[11*x[7] + x[2]*x[3] + x[2]*x[5] + 3*x[2]*x[6] + 2*x[2]*x[7] -
2+x[2]*x[8] - x[3]72 - 2*x[3]*x[5] + 2*x[3]*x[6] + x[3]1*x[7] - 2*x[4]*x[6] + 2*x[4]*x[7] + x[41*x[8] - x[5]*x[6] - x[5]*x[8]
+ X[6]°2 - x[6]*x[7] + x[6]*x[8] + x[7]*x[8],

X[1172 + x[1]*x[2] + x[11*x[4] + 3*x[11*x[5] - 3*x[11*x[6] + 2*x[1]*x[7] - x[2]"2 + 2*x[2]*x[3] - x[21*x[5] - x[2]*x[7] -
X[21*x[8] + x[3]°2 - 2*x[3]*x[4] - 2*x[3]*x[6] + X[31*x[7] - x[41*x[6] - x[4]*x[7] - x[41*x[8] - x[5]*x[6] - x[5]*x[8] -
x[6]"2 + x[6]*x[7],

2x[11°2 + 45x[1]*%x[3] + 3*x[1]*x[4] + 3x[1]*x[7] - x[2]°2 - x[2]*x[4] - x[2]*x[5] + 3*x[2]*x[6] - 2*x[2]*x[7] - x[2]*x[8] +
4*x[3]°2 + 3*x[3]*x[4] + 3*x[3]*x[6] + x[31*x[7] + x[4]°2 + x[41*x[5] + x[4]*x[7] + x[4]*x[8] + x[5]"2 + x[5]*x[6] +
X[61%x[7] - x[61*x[8] + x[71*x[8] + x[8]~2



Modular example continued

The model computed in this case is the canonical model Xg — I%. The curve is cut
out by several homogeneous polynomials in Q[xi, ..., xg] of degree 2.

e These equations are very nice! (seriously)
o All of the coefficients are integers with absolute value at most 4.

e We also gave more equations than needed; they actually give a model for Xg as
a smooth projective curve over Spec Z[1/13].



