Advances in tabulating Carmichael numbers

Andrew Shallue and Jonathan Webster

Illinois Wesleyan University and Butler University, USA ashallue@iwu.edu, jewebste@butler.edu

July 18, MIT, ANTS 2024

Fermat's Little Theorem

Theorem (Fermat)

If p is prime, then $a^p \equiv a \pmod{p}$.

Theorem (Contrapositive of FLT)

If $a^n \not\equiv a \pmod{n}$, then n is composite.

Definition (Carmichael number)

A Carmichael number is a composite integer n satisfying $a^n \equiv a \pmod{n}$ for any a.

Named after Robert Carmichael (1910) by Nicolaas Beeger in 1950.

Why not Šimerka numbers?

In 1885, Vàolav Šimerka found the first 7 Carmichael numbers.

Poučka tato dle vynálezce řečená Fermatovou jest jednou z nejdůležitějších v neurčité analytice; neudává však charakteristickou známku kmenných čísel, (jíž by se tato ode všech ostatních lišila), ježto podobně i při některých dělitelných číslech bývá. Tak na př. při 561 = 3.11.17, b = 2 nalezneme $2_{10} = -98, 2_{20} = 67, 2_{40} = 1, (2_{40})^{14} = 2_{560} = 1.$ Tolikéž u čísel 1105 = 5.13.17, 1729 = 7.13.19, 2465 = 5.17.29,2821 = 7.13.31, 6601 = 7.23.41, 8911 = 7.19.67 a j.v., kdykoli b s modulem nesoudělné jest.

Korselt's Criterion

Theorem (Korselt - 1899)

A composite number n is a Carmichael number if and only if n is squarefree and (p-1)|(n-1) for all prime divisors p of n.

Definition

Let $\lambda(n)$ be the Carmichael function or the reduced totient function. For *n* an odd square-free integer

$$\lambda(n) = \operatorname{lcm}\{p_1 - 1, p_2 - 1, \dots, p_k - 1\}$$

where p_i are distinct prime divisors of n.

Theorem

A composite number n is a Carmichael number if and only if n is squarefree and $\lambda(n)|(n-1)$.

Motivation

- Empirical versus Theoretical. Count of Carmichael numbers less than B:
 - Erdős conjectured:

$$B \exp\left(\frac{-k \log B \log \log \log B}{\log \log B}\right)$$

- Best lower bound due to Harmon is $B^{1/3}$.
- Empirically, Harmon's result seems more accurate.

- Other similar but harder problems:
 - Lehmer's conjecture: $\phi(n)|(n-1)$
 - ▶ PSW number: base 2 Fermat pseudoprime, Fibonnacci pseudoprime, and $n \equiv 2,3 \pmod{5}$.
 - Williams' number: Carmichael number, an absolute Lucas pseudoprime, and (d|n) = -1

OEIS A055553

Count of Carmichael numbers by order of magnitude.

10 ³	1	Šimerka (1885)
104	7	Šimerka (1885)
10 ⁵	16	???
10 ⁶	43	???
107	105	???
108	255	???
10 ⁹	646	Swift (1975), Math. Comp.
10 ¹⁰	1547	PSW (1980), Math. Comp.
10 ¹¹	3605	Guthmann (1992)
10 ¹²	8241	Jaesechke (1990), Math. Comp

OEIS A055553 (cont'd)

10 ¹³	19279	Keller (1988)
10^{14}	44706	
10^{15}	105212	Pinch (1993), Math. Comp.
10^{16}	246683	Pinch (1998)
10^{17}	585355	Pinch (2005)
10^{18}	1401644	Pinch (2006)
10^{19}	3381806	
10 ²⁰	8220777	Pinch (2006), ANTS 7 poster
10^{21}	20138200	Pinch (2007)
10 ²²	49679870	Goutier (2022), S.W. (2024)

Problem

Given bound B, tabulate all Carmichael numbers up to B.

Problem

Given an integer P (called a pre-product), determine the finite list of prime-pairs (q, r) such that Pqr is a Carmichael number.

Problem

Determine the computational complexity of either tabulation problem.

How do you tabulate?

We construct $n = p_1 p_2 \dots p_d$ in factored form with d > 2 prime factors.

We let

$$P = \prod_{i=1}^{d-2} p_i, q = p_{d-1}, \text{ and } r = p_d$$

so that n = Pqr is a Carmichael number and $gcd(P, \phi(P)) = 1$.

There are two cases to consider:

- *P* is small find *q* and *r* at the same time.
- *P* is large exhaustive search for *q*, compute *r*.

P is small

Theorem (Proposition 2 of Pinch)

There are integers $2 \leq D < P < C$ such that, putting $\Delta = CD - P^2$, we have

$$q = \frac{(P-1)(P+D)}{\Delta} + 1,$$
(1)

$$r = \frac{(P-1)(P+C)}{\Delta} + 1,$$
(2)

$$r^{2} < CD < P^{2} \left(\frac{p_{d-2}+3}{p_{d-2}+1}\right).$$
(3)

- CD pairs Pinch (Math. Comp. 1993)
- *D*△ pairs S.W. (ANTS 2022)

Asymptotic costs: CD and $D\Delta$ methods

Let p be the largest prime dividing a fixed a pre-product P.

Theorem

The number of CD pairs is
$$O((P^2 \log P)/p) = O(P^{2-\frac{1}{d-2}} \log P)$$
.

Theorem

The number of $D\Delta$ pairs is $O(\tau(P-1)P \log P)$.

- Outer loop is the same for both.
- Hybrid method: enter inner loop of cheaper method.
- Choose based on $P^2/(pD)$ and $\tau((P-1)(P+D)))$.

Hybrid: $D\Delta - CD$

We generated Carmichael numbers exceeding the intended bound.

For $P < 7 \cdot 10^7$, the largest Carmichael number found was

 $69999133 \cdot 4899878690750821 \cdot 171493630078866294519097 =$ 58 82013 03152 54068 53935 58087 37155 82013 87008 71721.

Found with D = 2 and $\Delta = 1$.

Hybrid method would choose the lesser amount of work:

- Iterate through 768 candidates for Δ .
- Iterate through approximately $7 \cdot 10^7$ values of *C*.

Aside: Chernick-like families

Theorem (Chernick (1939))

If p = 6m + 1, q = 12m + 1, and r = 18m + 1 are prime, then pqr is a Carmichael number.

Theorem

If p,
$$q = p^2 + p - 1$$
, and $r = \frac{(p^3 + p^2 - p + 1)}{2}$ are prime, then pqr is a Carmichael number.

Example

99999437 · 9999887500316407 · 499991560047488910931993 = 499 99518 00193 60158 52677 14742 32654 10341 56276 99201

P is large

Given a large P, exhaustively consider all primes $q \in (p, \sqrt{B/P})$.

Given P and q, use two conditions on r - 1:

•
$$r - 1 | Pq - 1$$
, and

 r - 1 ≡ r^{*} - 1 (mod λ(Pq)) where 0 < r^{*} < λ(Pq) is the modular inverse of Pq (mod λ(Pq)).

Pinch's two approaches

Let

$$k = \min\left\{\frac{Pq-1}{\lambda(Pq)}, \frac{B}{Pq\lambda(Pq)}\right\}.$$

If k is small enough, consider $r = r^* + j\lambda(Pq)$ for $0 \le j \le k$.

Otherwise balance:

• small r:
$$r = r^* + j\lambda(Pq)$$
 for small j
• large r: $r = (Pq - 1)/f + 1$ for small f
Complexity: $O\left(\sqrt{\frac{Pq}{\lambda(Pq)}}\right)$

New observation: Divisors in Residue Class

Consider $g = \gcd(r^* - 1, \lambda(Pq))$.

Let
$$\mathcal{R}_1=(r^\star-1)/g$$
, $\mathcal{L}=\lambda(Pq)/g$, and $\mathcal{P}=(Pq-1)/g.$

New problem: Find factors of \mathcal{P} that are $\mathcal{R}_1 \pmod{\mathcal{L}}$.

So, $(\mathcal{R}_1 + k_1\mathcal{L})(\mathcal{R}_2 + k_2\mathcal{L}) = \mathcal{P}$ implies $\mathcal{R}_2 \equiv \mathcal{P}\mathcal{R}_1^{-1} \pmod{\mathcal{L}}$.

- Search for small r candidates in $r^* + j\lambda(Pq)$
- Search for large r candidates in $(Pq-1)/(\mathcal{R}_2+j\mathcal{L})+1$

Complexity: $O\left(\frac{\sqrt{gPq}}{\lambda(Pq)}\right)$

Complexity: If $\mathcal{L}^2 > \mathcal{P}$, the divisors are \mathcal{R}_1 and $\mathcal{P}/\mathcal{R}_2$ and are found in polynomial time.

New observation: Divisors in Residue Class

Due to stronger results, we can factor in polynomial time if:

- $\mathcal{L}^3 > \mathcal{P}$, due to Lenstra.
- $\mathcal{L}^4 > \mathcal{P}$, due to Coppersmith, et al.

Question: Are there even faster algorithms for this problem?

- Find divisors bounded in size.
- Find divisors in a residue class.
- Asymptotic versus practical.

New observation: Worst case inputs

What are the worst-case inputs to this algorithm?

- If $\lambda(Pq)|(Pq-1)$, then Pq is a Carmichael number.
- This is a general factoring problem (there is no residue class information).

How small can $\lambda(Pq)$ be?

• Arbitrarily small as a power of Pq.

How often do these inputs occur?

- Can use prior tabulations to gauge this count.
- The asymptotic count of Carmichael numbers is an open question.

New observation: Timing Results

How much better is this?

В	Method 1 (SW)	Method 2 (Pinch)
10^{14}	25	25
10^{15}	192	189
10^{16}	1324	1306
10^{17}	8752	8865
10^{18}	55631	56072
10 ¹⁹	361983	364816

Many cases have $Pq\lambda(Pq) > B$ and the improved method is not invoked very often.

Heuristic Cost

Assume that, on average the cost to find r given Pq is polynomial time. We count the number of valid Preproducts Pq.

We say a number is *B-admissible* if

- \bigcirc *P* is cyclic, and
- **2** $Pp_{d-1}^2 < B$.

Theorem (with Sungjin Kim)

The count of B-admissible preproducts P is at most

$$B \exp\left(\left(-\frac{1}{2} + o(1)\right)\sqrt{\log B \log \log B}\right)$$

Continuing Work

- For the small case:
 - Completed small case for preproduct $P < 7.0 \cdot 10^7$.
 - * 35985331 were found
 - ★ 1202914 were less than 10^{22}
 - New goal for small case: $P < 10^8$.
 - Asymptotically faster small case?
- New goals for the large case:
 - Faster preproduct generation.
 - Better parallelization scheme.
 - (Asymptotically) fewer preproducts.
 - Better analysis.
 - New tabulation up to 10^{23} (or 10^{24}).

Thank you!