Advances in tabulating Carmichael numbers

Andrew Shallue and Jonathan Webster

Illinois Wesleyan University and Butler University, USA ashallue@iwu.edu, jewebste@butler.edu

July 18, MIT, ANTS 2024

Fermat's Little Theorem

Theorem (Fermat)

If p is prime, then $a^p \equiv a \pmod{p}$.

Theorem (Contrapositive of FLT)

If $a^n \not\equiv a \pmod{n}$, then n is composite.

Definition (Carmichael number)

A Carmichael number is a composite integer n satisfying $a^n \equiv a \pmod{n}$ for any a.

Named after Robert Carmichael (1910) by Nicolaas Beeger in 1950.

Why not Šimerka numbers?

In 1885, Vàolav Šimerka found the first 7 Carmichael numbers.

Poučka tato dle vynálezce řečená Fermatovou jest jednou z nejdůležitějších v neurčité analytice; neudává však charakteristickou známku kmenných čísel, (jíž by se tato ode všech ostatních lišila), ježto podobně i při některých dělitelných číslech bývá. Tak na př. při $561 \equiv 3.11.17$, $b \equiv 2$ nalezneme $2_{10} = -98$, $2_{20} = 67$, $2_{40} = 1$, $(2_{40})^{14} = 2_{560} = 1$. Tolikéž u čísel $1105 = 5.13.17, 1729 = 7.13.19, 2465 = 5.17.29,$ $2821 = 7.13.31, 6601 = 7.23.41, 8911 = 7.19.67aj.v.,$ kdykoli b s modulem nesoudělné jest.

Korselt's Criterion

Theorem (Korselt - 1899)

A composite number n is a Carmichael number if and only if n is squarefree and $(p-1)|(n-1)$ for all prime divisors p of n.

Definition

Let $\lambda(n)$ be the Carmichael function or the reduced totient function. For n an odd square-free integer

$$
\lambda(n)=\operatorname{lcm}\{p_1-1,p_2-1,\ldots,p_k-1\}
$$

where p_i are distinct prime divisors of n.

Theorem

A composite number n is a Carmichael number if and only if n is squarefree and $\lambda(n)|(n-1)$.

Motivation

- \bullet Empirical versus Theoretical. Count of Carmichael numbers less than B :
	- ▶ Erdős conjectured:

$$
B \exp \left(\frac{-k \log B \log \log \log B}{\log \log B} \right)
$$

- Best lower bound due to Harmon is $B^{1/3}$.
- ▶ Empirically, Harmon's result seems more accurate.

- Other similar but harder problems:
	- **►** Lehmer's conjecture: $\phi(n)|(n-1)$
	- ▶ PSW number: base 2 Fermat pseudoprime, Fibonnacci pseudoprime, and $n \equiv 2.3 \pmod{5}$.
	- ▶ Williams' number: Carmichael number, an absolute Lucas pseudoprime, and $(d|n) = -1$

OEIS A055553

Count of Carmichael numbers by order of magnitude.

OEIS A055553 (cont'd)

Problem

Given bound B, tabulate all Carmichael numbers up to B.

Problem

Given an integer P (called a pre-product), determine the finite list of prime-pairs (q, r) such that Pqr is a Carmichael number.

Problem

Determine the computational complexity of either tabulation problem.

How do you tabulate?

We construct $n = p_1p_2...p_d$ in factored form with $d > 2$ prime factors.

We let

$$
P = \prod_{i=1}^{d-2} p_i, q = p_{d-1}, \text{ and } r = p_d
$$

so that $n = Pqr$ is a Carmichael number and $gcd(P, \phi(P)) = 1$.

There are two cases to consider:

- \bullet P is small find q and r at the same time.
- \bullet P is large exhaustive search for q, compute r.

P is small

Theorem (Proposition 2 of Pinch)

There are integers $2 \leq D < P < C$ such that, putting $\Delta = CD - P^2$, we have

$$
q = \frac{(P-1)(P+D)}{\Delta} + 1,
$$
\n
$$
r = \frac{(P-1)(P+C)}{\Delta} + 1,
$$
\n
$$
P^{2} < CD < P^{2} \left(\frac{p_{d-2}+3}{p_{d-2}+1}\right).
$$
\n(3)

O CD pairs - Pinch (Math. Comp. 1993)

 \bullet D Δ pairs - S.W. (ANTS 2022)

Asymptotic costs: CD and D∆ methods

Let p be the largest prime dividing a fixed a pre-product P .

Theorem

The number of CD pairs is
$$
O((P^2 \log P)/p) = O(P^{2-\frac{1}{d-2}} \log P)
$$
.

Theorem

The number of D Δ pairs is $O(\tau(P-1)P \log P)$.

- Outer loop is the same for both.
- Hybrid method: enter inner loop of cheaper method.
- Choose based on $P^2/(pD)$ and $\tau((P-1)(P+D))).$

Hybrid: D∆ - CD

We generated Carmichael numbers exceeding the intended bound.

For $P < 7 \cdot 10^7$, the largest Carmichael number found was

 $69999133 \cdot 4899878690750821 \cdot 171493630078866294519097 =$ 58 82013 03152 54068 53935 58087 37155 82013 87008 71721.

Found with $D = 2$ and $\Delta = 1$.

Hybrid method would choose the lesser amount of work:

- Iterate through 768 candidates for Δ .
- Iterate through approximately $7 \cdot 10^7$ values of C.

Aside: Chernick-like families

Theorem (Chernick (1939))

If $p = 6m + 1$, $q = 12m + 1$, and $r = 18m + 1$ are prime, then pqr is a Carmichael number.

Theorem

If p,
$$
q = p^2 + p - 1
$$
, and $r = \frac{(p^3 + p^2 - p + 1)}{2}$ are prime, then pqr is a Carmichael number.

Example

99999437 · 9999887500316407 · 499991560047488910931993 $=$ 499 99518 00193 60158 52677 14742 32654 10341 56276 99201

P is large

Given a large P , exhaustively consider all primes $q\in (p,\sqrt{B/P}).$

Given P and q, use two conditions on $r - 1$:

$$
\bullet \ r-1 \mid Pq-1, \text{ and}
$$

 $r-1\equiv r^{\star}-1 \pmod{\lambda(Pq)}$ where $0 < r^{\star} < \lambda(Pq)$ is the modular inverse of Pq (mod $\lambda(Pq)$).

Pinch's two approaches

Let

$$
k=\min\left\{\frac{Pq-1}{\lambda(Pq)},\frac{B}{Pq\lambda(Pq)}\right\}.
$$

If k is small enough, consider $r = r^* + j\lambda(Pq)$ for $0 \le j \le k$.

Otherwise balance:

• small r:
$$
r = r^* + j\lambda(Pq)
$$
 for small j
\n• large r: $r = (Pq - 1)/f + 1$ for small t
\nComplexity: $O\left(\sqrt{\frac{Pq}{\lambda(Pq)}}\right)$

New observation: Divisors in Residue Class

Consider $g = \gcd(r^* - 1, \lambda(Pq)).$

Let
$$
\mathcal{R}_1 = (r^* - 1)/g
$$
, $\mathcal{L} = \lambda(Pq)/g$, and $\mathcal{P} = (Pq - 1)/g$.

New problem: Find factors of P that are \mathcal{R}_1 (mod \mathcal{L}).

So, $(\mathcal{R}_1 + k_1 \mathcal{L})(\mathcal{R}_2 + k_2 \mathcal{L}) = \mathcal{P}$ implies $\mathcal{R}_2 \equiv \mathcal{P} \mathcal{R}_1^{-1}$ (mod \mathcal{L}).

Search for small r candidates in $r^* + j\lambda(Pq)$

 \setminus

• Search for large r candidates in $(Pq - 1)/(R₂ + i\mathcal{L}) + 1$

Complexity: $O\left(\frac{\sqrt{gPq}}{\sqrt{gQ}}\right)$ $\lambda(Pq)$

Complexity: If $\mathcal{L}^2 > \mathcal{P}$, the divisors are \mathcal{R}_1 and $\mathcal{P}/\mathcal{R}_2$ and are found in polynomial time.

New observation: Divisors in Residue Class

Due to stronger results, we can factor in polynomial time if:

- $\mathcal{L}^3 > \mathcal{P}$, due to Lenstra.
- $\mathcal{L}^4 > \mathcal{P}$, due to Coppersmith, et al.

Question: Are there even faster algorithms for this problem?

- Find divisors bounded in size.
- **•** Find divisors in a residue class.
- Asymptotic versus practical.

New observation: Worst case inputs

What are the worst-case inputs to this algorithm?

- If $\lambda(Pq)|(Pq-1)$, then Pq is a Carmichael number.
- This is a general factoring problem (there is no residue class information).

How small can $\lambda(Pq)$ be?

• Arbitrarily small as a power of Pq .

How often do these inputs occur?

- Can use prior tabulations to gauge this count.
- The asymptotic count of Carmichael numbers is an open question.

New observation: Timing Results

How much better is this?

Many cases have $Pq\lambda(Pq) > B$ and the improved method is not invoked very often.

Heuristic Cost

Assume that, on average the cost to find r given Pq is polynomial time. We count the number of valid Preproducts Pq.

We say a number is *B-admissible* if

- \bullet P is cyclic, and
- ∂ $Pp_{d-1}^2 < B$.

Theorem (with Sungjin Kim)

The count of B-admissible preproducts P is at most

$$
B\exp\left(\left(-\frac{1}{2}+o(1)\right)\sqrt{\log B\log\log B}\right).
$$

Continuing Work

- **•** For the small case:
	- ▶ Completed small case for preproduct $P < 7.0 \cdot 10^7$.
		- \star 35985331 were found
		- \star 1202914 were less than 10²²
	- New goal for small case: $P < 10^8$.
	- ▶ Asymptotically faster small case?
- New goals for the large case:
	- ▶ Faster preproduct generation.
	- \blacktriangleright Better parallelization scheme.
	- ▶ (Asymptotically) fewer preproducts.
	- ▶ Better analysis.
	- \blacktriangleright New tabulation up to 10^{23} (or 10^{24}).

Thank you!