Factoring polynomials over function fields

Felipe Voloch

ANTS XVI

July 2024

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Abstract

If K/k is a function field in one variable, we describe a general algorithm to factor one-variable polynomials with coefficients in K. The algorithm is flexible enough to find factors subject to additional restrictions, e.g., to find all roots that belong to a given finite dimensional k-subspace of K more efficiently. It also gives a deterministic polynomial time irreducibility test.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Generic Factorization Algorithm

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Old algorithms follow the following pattern:

 \mathcal{O} int domain with quotient field K. Factor $G(T) \in K[T]$.

- Choose an appropriate maximal ideal $m \subset \mathcal{O}$.
- Factor G(T) in $\mathcal{O}/m[T]$.
- Lift factorization to $\mathcal{O}/m^k[T]$ for large k.
- Recover a factorization in *K*[*T*] from it.

Our algorithm - setup

- Function field K/k of characteristic p
- $G(T) \in K[T]$ monic, squarefree, of degree s.
- Finite dimensional k-vector spaces V_i ⊂ K, i = 0,...r − 1, together with a k-basis {α_{ij}} for each V_i, where r < s.

Let $\phi_0, \ldots, \phi_m \in R$ be the $\alpha_{ij}\phi^i$ in some order, $G(\phi) = 0$.

The output is either a monic factor of G(T) of the form

 $H(T) = \sum_{i=0}^{r} b_i T^i, b_i \in V_i$ or proof it doesn't exist.

Special cases

 $K = k(x), G(x, T) = \sum_{i+j \le s} a_{ij}x^iT^j, a_{ij} \in k$. If V_i is the span of $x^j, j \le r - i$, then H(x, T) will be a factor of G(x, T) of degree r in x, T.

K arbitrary, r = 1 is the same as finding roots of G(T) in V_0 . Application: Guruswami-Sudan list decoding of algebraic geometry codes.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Hasse derivatives

 $D^{(i)}, i = 0, 1, \dots$, are k-linear operators on K satisfying:

$$D^{(i)} \circ D^{(j)} = {i+j \choose j} D^{(i+j)},$$
$$D^{(i)}(uv) = \sum_{j=0}^{i} D^{(j)}(u) D^{(i-j)}(v).$$

 $D^{(i)}(\phi)$ can be computed as polynomials in ϕ if $G(\phi) = 0$. Also $\phi_0, \ldots, \phi_m \in K$ linearly independent over k if and only if there exist integers $0 = \varepsilon_0 < \cdots < \varepsilon_m$ with $(D^{(\varepsilon_i)}(\phi_j))$ of maximal rank m + 1.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Our algorithm

 $R = K[T]/(G(T)), \mathfrak{m}$ maximal ideal. Work in R/\mathfrak{m}^q . Find bound Δ for ε_i .

Attempt Gaussian elimination on $M = (D^{(i)}(\phi_j))_{\substack{i=0,...,D\\j=0,...,m}}$

if Some pivot P(T) is not invertible then Replace G(T) by D(T) = gcd(G(T), P(T)) and G(T)/D(T)end if

if M has full rank then

return G(T) has no factor of required form

else

return a_j s.t. $\sum_{j=0}^{m} a_j D^{(i)}(\phi_j) = 0, i = 0, 1, ..., \Delta, a_0 = 1.$ end if

・ロト・西・・田・・田・・日・

Example

Linear factor of $F(x, t) \in k[x, t]$. Exists only if $D^{(2)}(\phi) = 0$ (and $D^{(p^{j})}(\phi) = 0$ for $p^{j} \leq \deg F$ if p > 0) for root $F(x, \phi) = 0$. Note $D^{(2)}(\phi) = -(F_{xx}F_{t}^{2} - 2F_{xt}F_{x}F_{t} + F_{tt}F_{x}^{2})/F_{t}^{3}$ evaluated at ϕ . If that holds, linear factor is

$$t-\phi=t-D(\phi)x-(\phi-D(\phi)x)=t-ax-b$$

and both $a = D(\phi), b = \phi - D(\phi)x$ are locally constant.

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで