Computing Euler factors of genus 2 curves at odd primes of almost good reduction

Andrew V. Sutherland (with Céline Maistret)

Massachusetts Institute of Technology

Sixteenth Algorithmic Number Theory Symposium (ANTS XVI)

Key takeaways from this talk

- Computing *L*-functions of genus $g > 2$ is hard $(g = 0$ is trivial, $g = 1$ is easy).
- Primes of almost good reduction are everywhere!
- Factoring is easier when the input is not squarefree.

Center and **dig**

(to reduce computations in $\mathbb{Z}_p[x]$ to computations in $\mathbb{Z}[x]$ and $\mathbb{F}_p[x]$).

The *L***-function of a nice curve** C/\mathbb{O} of genus $g \geq 1$

The *L*-function of *C* is defined by

$$
L(X,s) := \sum_{n\geq 1} a_n n^{-s} := \prod_p L_p(p^{-s})^{-1}.
$$

For good primes *p* the zeta function

$$
Z(X_p, T) := \exp \left(\sum_{r \geq 1} \#C_p(\mathbb{F}_{p^r}) \frac{T^r}{r} \right) = \frac{L_p(T)}{(1 - T)(1 - pT)},
$$

determines the *L*-polynomial $L_p \in \mathbb{Z}[T]$. It satisfies

$$
L_p(T) = T^{2g} \chi_p(1/T) = 1 - a_p T + \cdots + p^g T^{2g},
$$

where $\chi_p(T)$ is the charpoly of the Frobenius endomorphism of Jac (C_p) .

What about the bad primes?

At bad primes for Jac (C) (those dividing the conductor N) we have $\deg L_p < 2g$. The worse the reduction at *p* is, the higher $v_p(N)$ and the lower the degree of L_p .

Information-theoretically, bad reduction makes it easier to compute $L_p(T)$, since there are fewer candidates; indeed, sufficiently bad reduction forces $L_p(T) = 1$.

Thus the primes where Jac (*C*) has good reduction are arguably the hardest. But if *C* also has good reduction, we can compute *Lp*(*T*) very quickly. Average polynomial-time algorithms compute $L_p(T)$ for $p \leq B$ of good reduction for *C* using $O(\log^4 p)$ bit operations per prime. For $g\leq 3$ there are practical implementations that are very fast (see papers in ANTS XI,XII,XIV,XV).

But if *p* is a prime of almost good reduction (good for Jac (*X*) but bad for *X*) we are stuck; none of Magma, Sage, Pari/GP efficiently and correctly handle this case.

Primes of almost good reduction are plentiful and may be large

Among the roughly five million genus 2 curves we know with conductor $N\leq 10^6,$ nearly 3.5 million primes of almost good reduction arise. These occur frequently, even for curves with small coefficients, including the modular curve

$$
X_0(22): y^2 + (x^3 + x^2 + x + 1)y = -2x^6 + 4x^5 + 2x^4 + 5x^3 + 2x^2 + x
$$

which has conductor 11² (so 2 is a prime of almost good reduction). But most are not modular curves and do not have any extra endomorphisms, including the curve

$$
y^2 = -318x^6 - 450x^5 + 108x^4 + 150x^3 + 432x^2 - 162x + 66
$$

with geometric endomorphism ring \mathbb{Z} , conductor 43 \cdot 8599, and 2, 3, 5 as primes of almost good reduction. There are examples with conductor $N\leq 10^6$ that have primes of almost good reduction much larger than *N*, as large as 43 858 540 753.

Setup

Recall that every nice genus 2 curve C/\mathbb{Q} has a model of the form $y^2 = f(x)$, where $f \in \mathbb{Z}[x]$ is a squarefree sextic. Henceforth

- $f = \sum_i f_i x^i \in \mathbb{Z}[x]$ is a squarefree sextic;
- the cluster picture of f means the cluster picture of $C\colon y^2=f(x);$
- **•** *p* is an odd prime of almost good reduction, so $\log p \le \log |\Delta(f)|| = O(||f||)$, where $||f|| := \max_i ||\log f_i||$ is the size of the input to our algorithms

We say that *f* is *p*-normalized if its outer cluster has depth 0 and

$$
\nu_p(f_6)=\min_i\{\nu_p(f_i)\}\leq 1.
$$

Given *f* we can efficiently compute a *p*-normalized *g* defining an isomorphic curve.

Using GCDs to quickly find repeated roots/factors

Definition

For each positive integer *k* and polynomial $f \in \mathbb{F}_p[x]$ we define

$$
\gcd_k(f) := \prod_{g \mid f} g^{\max(v_g(f) - k + 1,0)} \in \mathbb{F}_p[x],
$$

where g ranges over monic irreducibles in $\mathbb{F}_p[x]$ and $v_g(f) = \max\{e \in \mathbb{Z} : g^e | f\}.$

For $p > \deg(f)$ we have

$$
\gcd_k(f) = \gcd\left(f, f^{(1)}, \ldots, f^{(k-1)}\right),
$$

and for $p \le \deg(f)$ we compute $\gcd_k(f)$ by brute force (note $\deg f = 6 = O(1)$).

If $\deg(f) = O(1)$ this takes quasi-linear time (versus quasi-quadratic for factoring).

*p***-normalization**

Let $v = v_p(f_6)$. If $v > 1$ or $v \neq \min_i \{f_p(f_i)\}\)$ then let

$$
e := \max \left\{ \left\lceil \frac{v - v_p(f_i)}{6 - i} \right\rceil : 0 \le i \le 5 \right\}
$$

and replace *f* by $p^{6e-w}f(x/p^e) \in \mathbb{Z}[x]$ where $w = 2\lfloor \nu/2 \rfloor$.

Now $v := v_p(f_6) = \min_i \{v_p(f_i)\} \leq 1$. Let $h = p^{-\nu}f \in \mathbb{Z}[x]$. Then $v_p(h_6) = 0$ and the outer cluster has depth zero iff $\gcd_6(h)=1$ (no root of multiplicity 6 mod p).

While $\bar{u} = \gcd_6(\bar{h}) \neq 1$ replace *h* by $p^{-6}h(px + a) \in \mathbb{Z}[x]$, where $\bar{u} = x - \bar{a} \in \mathbb{F}_p[x]$ and $a \in \mathbb{Z}$ is any lift of $\bar{a} \in \mathbb{F}_p$.

Then $g = p^v h$ is *p*-normalized and $y^2 = g(x)$ is isomorphic to $y^2 = f(x)$.

We henceforth further assume that *f* is *p*-normalized.

Center and dig

Let $u \in [0, p - 1]$ be distinct from $a_1, \ldots, a_j \in \mathbb{Z}$ be modulo p .

• given:
\n
$$
f(x) = (x - a_1) \cdots (x - a_j)(x - pr_1 - u) \cdots (x - pr_k - u)
$$
\n
$$
\bar{f}(x) = (x - a_1) \cdots (x - a_j)(x - u)^k
$$

• center:
\n
$$
f(x+u) = (x-a_1+u)\cdots(x-a_j+u)(x-pr_1)\cdots(x-pr_k)
$$
\n
$$
\overline{f}(x+u) = (x-a_1+u)\cdots(x-a_j+u)x^k
$$

• dig:
\n
$$
\frac{p^{-k}f(px+u)}{p^{-k}f(px+u)} = (px-a_1+u)\cdots(px-a_j+u)(x-r_1)\cdots(x-r_k)
$$
\n
$$
\frac{p^{-k}f(px+u)}{p^{-k}f(px+u)} = c(x-r_1)\cdots(x-r_k)
$$

Reduction types

 $\mathsf{Let}\, f\in \mathbb{Z}[x]$ by p -normalized, let $\bar{c}\coloneqq f_6p^{-\nu_p(f_6)}\in \mathbb{F}_p^\times,$ and let $\bar{f}=p^{-\nu_p(f_6)}f\in \mathbb{F}_p[x].$ Then exactly one of the following holds, with $m \ge n$ of the same parity as $v_p(f_6)$.

with $\bar{r}, \bar{s} \in \mathbb{F}_p$ distinct, $\bar{u} \in \mathbb{F}_p[x]$ a squarefree monic cubic with $\bar{u}(\bar{r}) \neq 0$, and $\bar{q} \in \mathbb{F}_p[x]$ an irreducible monic quadratic.

Computing *L***-polynomials for the split types**

Let $\tilde{f} = p^{-v_p(f_6)}f \in \mathbb{Z}[x]$ and let L be the splitting field of f over $\mathbb{Q}_p.$

Let $r_1 \in \mathcal{O}_L$ be a root of depth *n* and $r_2 \in \mathcal{O}_L$ a root of relative depth *m* (if any).

Let $s_1, s_2 \in \mathbb{Z}$ satisfy $r_1 \equiv s_1 \bmod p^n \mathcal{O}_L$ and $r_2 \equiv s_2 \bmod p^m \mathcal{O}_L$ and define

Then $L_p(C, T) = L_p(E_1, T) L_p(E_2, T)$ for $E_1: y^2 = \overline{g}_1(x)$ and $E_2: y^2 = \overline{g}_2(x)$.

Computing *L***-polynomials for the non-split type**

Let $\tilde{f} = p^{-v_p(f_6)}f \in \mathbb{Z}[x]$, let L be the splitting field of f over $\mathbb{Q}_p.$

Let $\bar{f}=\tilde{f}\in \mathbb{F}_p[x]$ and $\bar{q}\in \mathbb{F}_p[x]$ the irreducible monic quadratic for which $\bar{f}=\bar{c}\bar{q}^3.$

Let $q \in \mathbb{Z}[x]$ be any lift of \overline{q} , let $F := \mathbb{Q}_p[z]/(q(z)) \subseteq L$ and $\mathcal{O} := \mathbb{Z}[z]/(q(z)) \subseteq \mathcal{O}_L$.

Let $\kappa \coloneqq \mathbb{F}_p[z]/(\bar{q}(z)) \simeq \mathbb{F}_{p^2}$, let $r \in \mathcal{O}_L$ be a root of f , and $s \in \mathcal{O}$ with $r \equiv s \bmod p \mathcal{O}_L$.

Let \hat{f} be the image of f in $\mathcal{O}[x]$ via $\mathbb{Z}[z] \subset \mathcal{O}[z]$ induced by $\mathbb{Z} \subset \mathcal{O}$, and let

$$
\bar{g} = \hat{f}(p^n x + s) / p^{3n} \bmod p\mathcal{O} = \kappa[x] \simeq \mathbb{F}_{p^2}[x].
$$

Then for the elliptic curve $E\colon y^2=\overline{g}(x)$ over \mathbb{F}_{p^2} we have $L_p(C,T)=L_p(E,T^2).$

Main result

Theorem (Maistret-S)

Let C/\mathbb{Q} be a genus 2 $curve$ $y^2 = f(x) = \sum_i f_i x^i \in \mathbb{Z}[x]$ with almost good reduction *at an odd prime p. There is a deterministic algorithm that, given a nonsquare* P *element of* \mathbb{F}_p^{\times} , computes the *L*-polynomial $L_p(C,T)$ in time

$$
O(||f||^2 \log^2 ||f|| / \log p + \log^5 p),
$$

where $||f|| = \max_i \log ||f_i|$. There is a Las Vegas algorithm with the same expected running time that does not require a nonsquare element of \mathbb{F}_p^{\times} .

Timings

Timings for computing 3 454 506 Euler factors of genus 2 curves *C*/Q of small conductor at odd primes of almost good reduction.

<https://github.com/AndrewVSutherland/Genus2Euler>