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Key takeaways from this talk

Computing L-functions of genus g ≥ 2 is hard (g = 0 is trivial, g = 1 is easy).

Primes of almost good reduction are everywhere!

Factoring is easier when the input is not squarefree.

Center and dig
(to reduce computations in Zp[x] to computations in Z[x] and Fp[x]).



The L-function of a nice curve C/Q of genus g ≥ 1

The L-function of C is defined by

L(X, s) :=
∑
n≥1

ann−s :=
∏

p

Lp(p−s)−1.

For good primes p the zeta function

Z(Xp,T) := exp

∑
r≥1

#Cp(Fpr)
Tr

r

 =
Lp(T)

(1 − T)(1 − pT)
,

determines the L-polynomial Lp ∈ Z[T]. It satisfies

Lp(T) = T2gχp(1/T) = 1 − apT + · · ·+ pgT2g,

where χp(T) is the charpoly of the Frobenius endomorphism of Jac (Cp).



What about the bad primes?

At bad primes for Jac (C) (those dividing the conductor N) we have deg Lp < 2g.
The worse the reduction at p is, the higher vp(N) and the lower the degree of Lp.

Information-theoretically, bad reduction makes it easier to compute Lp(T), since
there are fewer candidates; indeed, sufficiently bad reduction forces Lp(T) = 1.

Thus the primes where Jac (C) has good reduction are arguably the hardest.
But if C also has good reduction, we can compute Lp(T) very quickly. Average
polynomial-time algorithms compute Lp(T) for p ≤ B of good reduction for C
using O(log4 p) bit operations per prime. For g ≤ 3 there are practical
implementations that are very fast (see papers in ANTS XI,XII,XIV,XV).

But if p is a prime of almost good reduction (good for Jac (X) but bad for X) we are
stuck; none of Magma, Sage, Pari/GP efficiently and correctly handle this case.



Primes of almost good reduction are plentiful and may be large

Among the roughly five million genus 2 curves we know with conductor N ≤ 106,
nearly 3.5 million primes of almost good reduction arise. These occur frequently,
even for curves with small coefficients, including the modular curve

X0(22) : y2 + (x3 + x2 + x + 1)y = −2x6 + 4x5 + 2x4 + 5x3 + 2x2 + x

which has conductor 112 (so 2 is a prime of almost good reduction). But most are
not modular curves and do not have any extra endomorphisms, including the curve

y2 = −318x6 − 450x5 + 108x4 + 150x3 + 432x2 − 162x + 66

with geometric endomorphism ring Z, conductor 43 · 8599, and 2, 3, 5 as primes of
almost good reduction. There are examples with conductor N ≤ 106 that have
primes of almost good reduction much larger than N, as large as 43 858 540 753.



Setup

Recall that every nice genus 2 curve C/Q has a model of the form y2 = f (x),
where f ∈ Z[x] is a squarefree sextic. Henceforth

f =
∑

i fixi ∈ Z[x] is a squarefree sextic;

the cluster picture of f means the cluster picture of C : y2 = f (x);

p is an odd prime of almost good reduction, so log p ≤ log |∆(f )∥ = O(∥f∥),
where ∥f∥ := maxi ∥ log fi∥ is the size of the input to our algorithms

We say that f is p-normalized if its outer cluster has depth 0 and

vp(f6) = min
i
{vp(fi)} ≤ 1.

Given f we can efficiently compute a p-normalized g defining an isomorphic curve.



Using GCDs to quickly find repeated roots/factors

Definition
For each positive integer k and polynomial f ∈ Fp[x] we define

gcdk(f ) :=
∏
g|f

gmax(vg(f )−k+1,0) ∈ Fp[x],

where g ranges over monic irreducibles in Fp[x] and vg(f ) = max{e ∈ Z : ge|f}.

For p > deg(f ) we have

gcdk(f ) = gcd
(

f , f (1), . . . , f (k−1)
)
,

and for p ≤ deg(f ) we compute gcdk(f ) by brute force (note deg f = 6 = O(1)).

If deg(f ) = O(1) this takes quasi-linear time (versus quasi-quadratic for factoring).



p-normalization

Let v = vp(f6). If v > 1 or v ̸= mini{fp(fi)} then let

e := max

{⌈
v − vp(fi)

6 − i

⌉
: 0 ≤ i ≤ 5

}
and replace f by p6e−wf (x/pe) ∈ Z[x] where w = 2⌊v/2⌋.

Now v := vp(f6) = mini{vp(fi)} ≤ 1. Let h = p−vf ∈ Z[x]. Then vp(h6) = 0 and the
outer cluster has depth zero iff gcd6(h) = 1 (no root of multiplicity 6 mod p).

While ū = gcd6(h̄) ̸= 1 replace h by p−6h(px + a) ∈ Z[x],
where ū = x − ā ∈ Fp[x] and a ∈ Z is any lift of ā ∈ Fp.

Then g = pvh is p-normalized and y2 = g(x) is isomorphic to y2 = f (x).

We henceforth further assume that f is p-normalized.



Center and dig

Let u ∈ [0, p − 1] be distinct from a1, . . . , aj ∈ Z be modulo p.

given:
f (x) = (x − a1) · · · (x − aj)(x − pr1 − u) · · · (x − prk − u)
f̄ (x) = (x − a1) · · · (x − aj)(x − u)k

center:
f (x + u) = (x − a1 + u) · · · (x − aj + u)(x − pr1) · · · (x − prk)
f̄ (x + u) = (x − a1 + u) · · · (x − aj + u)xk

dig:
p−kf (px + u) = (px − a1 + u) · · · (px − aj + u)(x − r1) · · · (x − rk)

p−kf (px + u) = c(x − r1) · · · (x − rk)



Reduction types

Let f ∈ Z[x] by p-normalized, let c̄ := f6p−vp(f6) ∈ F×
p , and let f̄ = p−vp(f6)f ∈ Fp[x].

Then exactly one of the following holds, with m ≥ n of the same parity as vp(f6).

type picture f̄ Lp(C,T)

1 n 0
c̄(x − r̄)3ū Lp(E1,T)Lp(E2,T) over Fp

2a m n 0
c̄(c − r̄)3(x − s̄)3 Lp(E1,T)Lp(E2,T) over Fp

2b n n 0
c̄q̄3 Lp(E1,T2) over Fp2

4 m n 0
c̄(x − r̄)5(x − s̄) Lp(E1,T)Lp(E2,T) over Fp

with r̄, s̄ ∈ Fp distinct, ū ∈ Fp[x] a squarefree monic cubic with ū(r̄) ̸= 0,
and q̄ ∈ Fp[x] an irreducible monic quadratic.



Computing L-polynomials for the split types

Let f̃ = p−vp(f6)f ∈ Z[x] and let L be the splitting field of f over Qp.

Let r1 ∈ OL be a root of depth n and r2 ∈ OL a root of relative depth m (if any).

Let s1, s2 ∈ Z satisfy r1 ≡ s1 mod pnOL and r2 ≡ s2 mod pmOL and define

picture ḡ1 ∈ Fp[x] ḡ2 ∈ Fp[x]

n 0
sqf(f̄ ) f̃ (pnx + s1)/p3n

m n 0
f̃ (pnx + s1)/p3n f̃ (pmx + s2)/p3m

m n 0
sqf(f̃ (pnx + x1)/p5n mod p) f̃ (pmx + s2)/p3m+2n

Then Lp(C,T) = Lp(E1,T)Lp(E2,T) for E1 : y2 = ḡ1(x) and E2 : y2 = ḡ2(x).



Computing L-polynomials for the non-split type

Let f̃ = p−vp(f6)f ∈ Z[x], let L be the splitting field of f over Qp.

Let f̄ = f̃ ∈ Fp[x] and q̄ ∈ Fp[x] the irreducible monic quadratic for which f̄ = c̄q̄3.

Let q ∈ Z[x] be any lift of q̄, let F := Qp[z]/(q(z)) ⊆ L and O := Z[z]/(q(z)) ⊆ OL.

Let κ := Fp[z]/(q̄(z)) ≃ Fp2 , let r ∈ OL be a root of f , and s ∈ O with r ≡ s mod pOL.

Let f̂ be the image of f in O[x] via Z[z] ⊆ O[z] induced by Z ⊆ O, and let

ḡ = f̂ (pnx + s)/p3n mod pO = κ[x] ≃ Fp2 [x].

Then for the elliptic curve E : y2 = ḡ(x) over Fp2 we have Lp(C,T) = Lp(E,T2).



Main result

Theorem (Maistret-S)

Let C/Q be a genus 2 curve y2 = f (x) =
∑

i fixi ∈ Z[x] with almost good reduction
at an odd prime p. There is a deterministic algorithm that, given a nonsquare
element of F×

p , computes the L-polynomial Lp(C,T) in time

O(∥f∥2 log2∥f∥/ log p + log5p),

where ∥f∥ = maxi log ∥fi|. There is a Las Vegas algorithm with the same expected
running time that does not require a nonsquare element of F×

p .



Timings

Timings for computing 3 454 506 Euler factors of genus 2 curves C/Q of small
conductor at odd primes of almost good reduction.

method total time average time median time maximum time

EULERFACTOR 242 days 6.1 s 0.9 s over 8 hours
New alg (Magma) 1.23 hours 1.3 ms 1.2 ms 24 ms
New alg (C) 27.1 s 7.8 µs 3.4 µs 21 ms

https://github.com/AndrewVSutherland/Genus2Euler

https://github.com/AndrewVSutherland/Genus2Euler

