Computing Euler factors of genus 2 curves at odd primes of almost good reduction

Andrew V. Sutherland (with Céline Maistret)

Massachusetts Institute of Technology

Sixteenth Algorithmic Number Theory Symposium (ANTS XVI)

Key takeaways from this talk

- Computing *L*-functions of genus $g \ge 2$ is hard (g = 0 is trivial, g = 1 is easy).
- Primes of almost good reduction are everywhere!
- Factoring is easier when the input is not squarefree.

• Center and dig

(to reduce computations in $\mathbb{Z}_p[x]$ to computations in $\mathbb{Z}[x]$ and $\mathbb{F}_p[x]$).

The *L*-function of a nice curve C/\mathbb{Q} of genus $g \ge 1$

The *L*-function of *C* is defined by

$$L(X,s) := \sum_{n \ge 1} a_n n^{-s} := \prod_p L_p(p^{-s})^{-1}.$$

For good primes *p* the zeta function

$$Z(X_p,T) := \exp\left(\sum_{r\geq 1} \#C_p(\mathbb{F}_{p^r})\frac{T^r}{r}\right) = \frac{L_p(T)}{(1-T)(1-pT)},$$

determines the *L*-polynomial $L_p \in \mathbb{Z}[T]$. It satisfies

$$L_p(T) = T^{2g} \chi_p(1/T) = 1 - a_p T + \dots + p^g T^{2g},$$

where $\chi_p(T)$ is the charpoly of the Frobenius endomorphism of $\text{Jac}(C_p)$.

What about the bad primes?

At bad primes for Jac (*C*) (those dividing the conductor *N*) we have $\deg L_p < 2g$. The worse the reduction at *p* is, the higher $v_p(N)$ and the lower the degree of L_p .

Information-theoretically, bad reduction makes it easier to compute $L_p(T)$, since there are fewer candidates; indeed, sufficiently bad reduction forces $L_p(T) = 1$.

Thus the primes where Jac (*C*) has good reduction are arguably the hardest. But if *C* also has good reduction, we can compute $L_p(T)$ very quickly. Average polynomial-time algorithms compute $L_p(T)$ for $p \le B$ of good reduction for *C* using $O(\log^4 p)$ bit operations per prime. For $g \le 3$ there are practical implementations that are very fast (see papers in ANTS XI,XII,XIV,XV).

But if p is a prime of almost good reduction (good for Jac(X) but bad for X) we are stuck; none of Magma, Sage, Pari/GP efficiently and correctly handle this case.

Primes of almost good reduction are plentiful and may be large

Among the roughly five million genus 2 curves we know with conductor $N \le 10^6$, nearly 3.5 million primes of almost good reduction arise. These occur frequently, even for curves with small coefficients, including the modular curve

$$X_0(22): y^2 + (x^3 + x^2 + x + 1)y = -2x^6 + 4x^5 + 2x^4 + 5x^3 + 2x^2 + x$$

which has conductor 11^2 (so 2 is a prime of almost good reduction). But most are not modular curves and do not have any extra endomorphisms, including the curve

$$y^2 = -318x^6 - 450x^5 + 108x^4 + 150x^3 + 432x^2 - 162x + 66$$

with geometric endomorphism ring \mathbb{Z} , conductor $43 \cdot 8599$, and 2, 3, 5 as primes of almost good reduction. There are examples with conductor $N \leq 10^6$ that have primes of almost good reduction much larger than N, as large as $43\,858\,540\,753$.

Setup

Recall that every nice genus 2 curve C/\mathbb{Q} has a model of the form $y^2 = f(x)$, where $f \in \mathbb{Z}[x]$ is a squarefree sextic. Henceforth

- $f = \sum_{i} f_{i} x^{i} \in \mathbb{Z}[x]$ is a squarefree sextic;
- the cluster picture of *f* means the cluster picture of $C: y^2 = f(x)$;
- *p* is an odd prime of almost good reduction, so $\log p \le \log |\Delta(f)|| = O(||f||)$, where $||f|| := \max_i ||\log f_i||$ is the size of the input to our algorithms

We say that f is p-normalized if its outer cluster has depth 0 and

$$v_p(f_6) = \min_i \{v_p(f_i)\} \le 1.$$

Given f we can efficiently compute a p-normalized g defining an isomorphic curve.

Using GCDs to quickly find repeated roots/factors

Definition

For each positive integer k and polynomial $f \in \mathbb{F}_p[x]$ we define

$$\operatorname{gcd}_k(f) \coloneqq \prod_{g \mid f} g^{\max(v_g(f) - k + 1, 0)} \in \mathbb{F}_p[x],$$

where g ranges over monic irreducibles in $\mathbb{F}_p[x]$ and $v_g(f) = \max\{e \in \mathbb{Z} : g^e|f\}$.

For $p > \deg(f)$ we have

$$\operatorname{gcd}_k(f) = \operatorname{gcd}\left(f, f^{(1)}, \dots, f^{(k-1)}\right),$$

and for $p \leq \deg(f)$ we compute $\gcd_k(f)$ by brute force (note $\deg f = 6 = O(1)$).

If deg(f) = O(1) this takes quasi-linear time (versus quasi-quadratic for factoring).

p-normalization

Let $v = v_p(f_6)$. If v > 1 or $v \neq \min_i \{f_p(f_i)\}$ then let

$$e \coloneqq \max\left\{\left\lceil \frac{v - v_p(f_i)}{6 - i} \right\rceil : 0 \le i \le 5\right\}$$

and replace f by $p^{6e-w}f(x/p^e) \in \mathbb{Z}[x]$ where $w = 2\lfloor v/2 \rfloor$.

Now $v := v_p(f_6) = \min_i \{v_p(f_i)\} \le 1$. Let $h = p^{-v}f \in \mathbb{Z}[x]$. Then $v_p(h_6) = 0$ and the outer cluster has depth zero iff $gcd_6(h) = 1$ (no root of multiplicity 6 mod p).

While $\bar{u} = \gcd_6(\bar{h}) \neq 1$ replace h by $p^{-6}h(px + a) \in \mathbb{Z}[x]$, where $\bar{u} = x - \bar{a} \in \mathbb{F}_p[x]$ and $a \in \mathbb{Z}$ is any lift of $\bar{a} \in \mathbb{F}_p$.

Then $g = p^{\nu}h$ is *p*-normalized and $y^2 = g(x)$ is isomorphic to $y^2 = f(x)$.

We henceforth further assume that f is p-normalized.

Center and dig

Let $u \in [0, p-1]$ be distinct from $a_1, \ldots, a_j \in \mathbb{Z}$ be modulo p.

• given:

$$f(x) = (x - a_1) \cdots (x - a_j)(x - pr_1 - u) \cdots (x - pr_k - u)$$

 $\bar{f}(x) = (x - a_1) \cdots (x - a_j)(x - u)^k$

• center:

$$f(x + u) = (x - a_1 + u) \cdots (x - a_j + u)(x - pr_1) \cdots (x - pr_k)$$

 $\overline{f}(x + u) = (x - a_1 + u) \cdots (x - a_j + u)x^k$

• dig:

$$\frac{p^{-k}f(px+u)}{p^{-k}f(px+u)} = (px-a_1+u)\cdots(px-a_j+u)(x-r_1)\cdots(x-r_k)$$

$$\frac{p^{-k}f(px+u)}{p^{-k}f(px+u)} = c(x-r_1)\cdots(x-r_k)$$

Reduction types

Let $f \in \mathbb{Z}[x]$ by *p*-normalized, let $\bar{c} := f_6 p^{-\nu_p(f_6)} \in \mathbb{F}_p^{\times}$, and let $\bar{f} = p^{-\nu_p(f_6)} f \in \mathbb{F}_p[x]$. Then exactly one of the following holds, with $m \ge n$ of the same parity as $\nu_p(f_6)$.

type	picture	$ar{f}$	$L_p(C,T)$
1		$\bar{c}(x-\bar{r})^3\bar{u}$	$L_p(E_1,T)L_p(E_2,T)$ over \mathbb{F}_p
2a		$\bar{c}(c-\bar{r})^3(x-\bar{s})^3$	$L_p(E_1,T)L_p(E_2,T)$ over \mathbb{F}_p
2b		$ar{c}ar{q}^3$	$L_p(E_1,T^2)$ over \mathbb{F}_{p^2}
4		$\bar{c}(x-\bar{r})^5(x-\bar{s})$	$L_p(E_1,T)L_p(E_2,T)$ over \mathbb{F}_p

with $\bar{r}, \bar{s} \in \mathbb{F}_p$ distinct, $\bar{u} \in \mathbb{F}_p[x]$ a squarefree monic cubic with $\bar{u}(\bar{r}) \neq 0$, and $\bar{q} \in \mathbb{F}_p[x]$ an irreducible monic quadratic.

Computing *L*-polynomials for the split types

Let $\tilde{f} = p^{-\nu_p(f_6)} f \in \mathbb{Z}[x]$ and let *L* be the splitting field of *f* over \mathbb{Q}_p .

Let $r_1 \in \mathcal{O}_L$ be a root of depth n and $r_2 \in \mathcal{O}_L$ a root of relative depth m (if any).

Let $s_1, s_2 \in \mathbb{Z}$ satisfy $r_1 \equiv s_1 \mod p^n \mathcal{O}_L$ and $r_2 \equiv s_2 \mod p^m \mathcal{O}_L$ and define

picture	$ar{g}_1 \in \mathbb{F}_p[x]$	$\bar{g}_2 \in \mathbb{F}_p[x]$	
	$\operatorname{sqf}(ar{f})$	$\tilde{f}(p^nx+s_1)/p^{3n}$	
	$\tilde{f}(p^n x + s_1)/p^{3n}$	$\tilde{f}(p^m x + s_2)/p^{3m}$	
	$\operatorname{sqf}(\tilde{f}(p^nx+x_1)/p^{5n} \mod p)$	$\tilde{f}(p^m x + s_2)/p^{3m+2n}$	

Then $L_p(C,T) = L_p(E_1,T)L_p(E_2,T)$ for $E_1: y^2 = \bar{g}_1(x)$ and $E_2: y^2 = \bar{g}_2(x)$.

Computing *L*-polynomials for the non-split type

Let $\tilde{f} = p^{-\nu_p(f_6)} f \in \mathbb{Z}[x]$, let *L* be the splitting field of *f* over \mathbb{Q}_p .

Let $\bar{f} = \tilde{f} \in \mathbb{F}_p[x]$ and $\bar{q} \in \mathbb{F}_p[x]$ the irreducible monic quadratic for which $\bar{f} = \bar{c}\bar{q}^3$.

Let $q \in \mathbb{Z}[x]$ be any lift of \bar{q} , let $F := \mathbb{Q}_p[z]/(q(z)) \subseteq L$ and $\mathcal{O} := \mathbb{Z}[z]/(q(z)) \subseteq \mathcal{O}_L$.

Let $\kappa \coloneqq \mathbb{F}_p[z]/(\bar{q}(z)) \simeq \mathbb{F}_{p^2}$, let $r \in \mathcal{O}_L$ be a root of f, and $s \in \mathcal{O}$ with $r \equiv s \mod p\mathcal{O}_L$.

Let \hat{f} be the image of f in $\mathcal{O}[x]$ via $\mathbb{Z}[z] \subseteq \mathcal{O}[z]$ induced by $\mathbb{Z} \subseteq \mathcal{O}$, and let

$$\bar{g} = \hat{f}(p^n x + s)/p^{3n} \mod p\mathcal{O} = \kappa[x] \simeq \mathbb{F}_{p^2}[x].$$

Then for the elliptic curve $E: y^2 = \overline{g}(x)$ over \mathbb{F}_{p^2} we have $L_p(C,T) = L_p(E,T^2)$.

Main result

Theorem (Maistret-S)

Let C/\mathbb{Q} be a genus 2 curve $y^2 = f(x) = \sum_i f_i x^i \in \mathbb{Z}[x]$ with almost good reduction at an odd prime p. There is a deterministic algorithm that, given a nonsquare element of \mathbb{F}_p^{\times} , computes the *L*-polynomial $L_p(C, T)$ in time

$$O(||f||^2 \log^2 ||f|| / \log p + \log^5 p),$$

where $||f|| = \max_i \log ||f_i|$. There is a Las Vegas algorithm with the same expected running time that does not require a nonsquare element of \mathbb{F}_p^{\times} .

Timings

Timings for computing 3454506 Euler factors of genus 2 curves C/\mathbb{Q} of small conductor at odd primes of almost good reduction.

method	total time	average time	median time	maximum time
EulerFactor	242 days	6.1 s	0.9 s	over 8 hours
New alg (Magma)	1.23 hours	1.3 ms	1.2 ms	24 ms
New alg (C)	27.1 s	7.8 μ s	3.4 μ s	21 ms

https://github.com/AndrewVSutherland/Genus2Euler