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Bilinear pairings

Let A, B, R be abelian groups. Let
():AxB—R
be linear in each factor.

Our interest: A and B groups of points on an elliptic curve.



Weil and Tate pairings

Weil pairing:
T e+ EGR) ] x E(K)m] > 1

m

Tate pairing:
g 5 t, E(K)m]xEK)/mE(K)—K"/(K*)"

m

Implies fun cryptography. Example:

t,,([a]P,[6]Q) = 1,,(P, Q"""



Weil pairing over C

Weil pairing over C (Galbraith has nice notes):

Let 1 and 7 form a basis for A giving £ = C/A:

a+br c+dr i 2d=be
€ , =e M m .
m m

Paths for homology of torus: y;:0—1landy_:0— 7.

(a)/l + b}/’r) : (C}/l + d}/’r) =ad—bc.



Extensions

An extension

0— 3G, —3X — S E—
is given by a factor set
fEXE—G,,
determining the group law on X via
(x,P)(y, Q)= (xy P+ Q).



Extensions

An extension

e

is given by a factor set
f: X

determining the group law on X via

(%, P)(y, Q) = (xy

P+ Q).



Monodromy

A group fact in E,

a monodromy » € K*:

2 xaP)=(([ [x)=0).



A biextension X ‘glues together’ many extensions:

X has action of K* with quotient

m: X > X

where fibres X{;, ;) are homogeneous spaces for K™.

There are two compatible operations:
1. +, defined onX{ VxS
2. +; defined on X (). ®. ,

Each X{ }x | i
is an extension of /- by K* determined by /°, and similarly.



The Poincaré biextension

In our case X is given by a biextension factor set
fEXEXE—-K"

so that f restricts to a factor set on 2 x 1 x {()} and {’} x © x

Let f be the rational function with divisor

C = mip(0)—=mp(0) = my(0)—my3(0) +mi(0) + my(0) + m;(0).

Has an expression in terms of elliptic nets:

W(P+Q+R)W(P)W(Q)W(R)
WP+ QW(Q+R)W(P+R) '




Monodromy

Fixing () in /, we have an extension X, (.

If 7 € £[m], then the group fact m/” = ¢ gives a monodromy on X, , ().
This is the Tate pairing ¢,,(7, Q).

The Weil pairing is the quotient

monodromy of m/” =0 on X, .

el ):monodromyofm = 0 on X,



Weil and Tate pairings from monodromy

The extension X, ., has factor set

XL =K (P R) = fr p((Q)=(9)

where

div(f ) = (7 + 8) = ()= (R)+(O).

Gives rise to Tate pairing formula:



Tate pairing computation (Miller’s Algorithm)

£, (1, Q)= fr(Dg),  div(fp)=m(P)=m(0), Dy ~(Q)—=(0).

1. Create double-and-add chain of operations &k, + &, for m. \

. This

gives a double-and-add chain of divisors D, := k(1) —([k]/’)— (k—1)(©)
satistying D, + Dy, ~ Dy, . . Note that div(f,) = D,,,.

. Each step

Dy 4, — Dy — Dy, = ([*]7) + ([k,]7") — ([k; + k,]7) — (@) is an instance
of the group law, i.e. a rational function f, , . Thus fp =1/ .-

. Compute the double-and-add chain to
compute fp(D)) =T/, . ,(Do)) (always evaluated, i.e. elements of K*).



Sesquilinear pairings

Let @, B € 0, an order in an imaginary quadratic field. A sesquilinear pairing is a bilinear
pairing with:

(@P, BQ) = (P,Q)"".

(We can also do everything today with @ a quaternion order, at the cost of lots of extra
notation.)



Calculus of 0-divisors

Extend scalars:
Divy(E) := 0 @, Div(E).

We also extend scalars on K(E)* and K*, writing multiplicatively, e.g. g'**.
Principal divisors:
div <1_[f;’> = Z 7, div(f)).
1 1

Then
Picoﬁ(E) := 0 ®, Pic°(E).



Evaluating an O-function at an 0-divisor

If f and D are usual function and divisor, then

f%(B8-D):= f(D)*”.

This gives 0-Weil reciprocity:

f(div(g)) = g(div(f)),

where conjugation acts on the scalars.



Weil and Tate pairings

Recall: E=Pic%(E), P+~ (P)—(0).

e,, : Pic®(E)[m] x Pic(E)[m]— G,,[m],
t,, : Pic’(E)[m] x Pic®(E)/[m]Pi®(E) - G,, /(G )™,

given by

_fP(DQ)
em(DP’DQ) - fQ(Dp)

Galois invariant, sesquilinear, compatible, etc.




Sesquilinear pairings

:Pic® (E)[2] x Pic® (E)[2] =G, "[7],
:Pic® (E)[2] x Pic® (E)/[+]Pic°> (E) - G, " /(G,, "),

given by
(Dp,DQ) :fp(DQ) where  div(fp)~ - Dp,

_ /p(Dg)
(Pr-P)= 75,y

Galois invariant, sesquilinear, compatible, etc.




Moving from formal to CM by 0 =Z[ 7]

0—— E —">Pic)(E) —~ E —0

€: Dy+7-D, — D12+[T:|D22-



A Weil-like pairing

—~

W, : E[@] x E[a] —» G®*[a].

a

. Well-defined, bilinear, Galois invariant, non-degenerate.

. Sesquilinearity:

—~~

. Conjugate skew-Hermitian:

—~ e
W,(P, Q)= WQ,P)

. Compatibility: Let ¢ : E — E’ respect CM by 0.
W,($P,$Q) = W,(P,Q)*s.

. Coherence:

W,5(P.Q) = W,((BIP,Q), W,5(P,Q)=

Wa([y]P’ [8]Q) = \/W\Q(P, Q)87

Wp(P

,[2]Q).



N =

A Tate-like pairing

T,:E[@] x E/[2]E — G®7 (G229,

a

. Well-defined, bilinear, Galois invariant, non-degenerate.

. Sesquilinearity:
T(yIP[81Q) =T, (P.Q)"°
. Compatibility: Let ¢ : E — E’ respect CM by 0.

T,($P,$Q) = T,(P,Q)**7.

. Coherence:

—~

T, 5(P,Q) mod (G5**)* = T ([ B1P,Q mod [« ]E).
T,4(P,Q) mod (G5 = T(P,[«]Q mod [ BIE).



In terms of usual Weil and Tate pairings
Let 0 =7Z[7].

T,(P,Q) = (£,(P, Q™" )e, (=71, Q)" ) (1,([(F— 1P, Q)"

Furthermore, provided both of the following quantities are defined,

Ty(P.Q)=T,(P,Q) (mod (GE)?)

Remark: Let (x,y) be a bilinear pairing on Z[ 7 ]. Then
(%1 + 70,91 4 792) 1= (21, 01) + N(T)(x272) + T7(2)(x1,2) + 7 ({x3, 1) — (x1,52))
defines a sesquilinear pairing.

Generalized pairings: Bruin, Garefalakis, Robert, Castryck-Houben-Merz-Mula-van
Buuren-Vercauteren



Computation of i{(P, Q)

Suppose
a=d—ct, ar=—b+ar.

For P € E[a], fp = fp1/p, With
div(fp1) =a([=7]P)+ b(P)—(a+£)(0), div(fp,) = c([—7]P)+d(P)—(c +d)(O).
Auxiliary point §; take Dy =D, + 7+ Dy , with
Dq,; =([=7]Q+[=71)=([=715), Dq,=(Q+S5)—(9).

Then =
T,(P,Q):= fp(Dq) =

(fo1(D)fp1 (D)™ foa(Do M) (fo 2D )fea(D2) ™)



Applications to Isogenies (joint with Joseph Macula)

Finite F. There is a faithful action of CI(€') on
Ell(0)={E/F:E hasCM by O }.

When a- E, = E,, this gives an isogeny ¢, : E; — E, respecting 0.
Given E; and E, € Ell(0), find ¢ : E; — E, respecting 0.

Given E, and E, € Ell(0), find ¢ : E; — E, respecting 0.



[sogeny interpolation
(Castryck-Decru-Maino-Martindale-Panny-Pope-Robert-Wesolowski)

Given E, and E, € Ell(0), and deg ¢, find ¢ : E; — E, respecting 0.

Wouter’s talk [CDM+24]: to efficiently determine ¢ : E; — E,, it suffices to find ¢(G)
(actually ¢ of generators) for some subgroup G of size at least 4deg > + 1.

Given E; and E, € Ell(0), and deg ¢, for
¢ : E; — E, respecting 0.



Recovering an 1sogeny

Let m > 4deg .
Suppose P € E,[m], and . Use a pairing:

= (pP,$P) = (kP kP’ =

So

discrete log isog. interp.

P,P',degp ——= k* (modm) = PP=kP ——= .

Challenges:
1. Make sure ¢pP € ZP'.
2. Make sure (P, P) is non-trivial.
CHMMyvBV: Non-degenerate self-pairings when 7 | A ;.



O-sesquilinear pairings
Let 72° > 4deg . Suppose P € E|[m], . Use a pairing:
= (P, ¢pP) = (AP',AP") =

So

isog. interp.

= .

discrete log

P,P',degp ——= N(A) (modm) dP=[AIP" =

Pros/Cons:
1. Easier to guarantee OP' = E,[m].
2. Easier to obtain non-degenerate pairings (7 coprime to Ay).

3. For m coprimes to A ;, knowing N(A) (mod m) only cuts down A (mod m) from

~ m? options to ~ m options.

4. For m | A, it works! And is sometimes more efficient.



When is T,, non-degenerate?

Let n: 0 — End(E) extend to 7 : K — Q ®; End(E).

Proposition (Macula-S.)
E[m] is O-cyclic as an O-module if and only if m is coprime to [n(K)NEnd(E) : n(0)].

Based on results of Lenstra.

Theorem (Macula-S.)

Suppose u,, C T, m is coprime to A 4, and E[m] C E(FF). Then il(P,P) has full order
whenever OP = E[m].



Computation of O-pairings

Theorem (Macula-S.)

Suppose computations in F and E[m], and discrete logarithms in u,, are all efficient.
Let m be coprime to A, and let 0 C End(E).

Then

computation of the O-pairing ?m (P,Q) on E[m]
is equivalent to

computation of O acting on E[m].



A trade-off (Supersingular case)

Suppose m? > 4deg ¢, coprime to A, and deg .

Situations where we can obtain ¢:

Know full Know full
¢(E1[m]) End(Ei)

(S.-Macula)




Thank you!
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