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Bilinear pairings

Let A, B , R be abelian groups. Let

〈·, ·〉 : A×B→ R

be linear in each factor.

Our interest: A and B groups of points on an elliptic curve.



Weil and Tate pairings

Weil pairing:
em : E(K)[m]× E(K)[m]→µm

Tate pairing:
tm : E(K)[m]× E(K)/mE(K)→K∗/(K∗)m

Implies fun cryptography. Example:

tm([a]P, [b ]Q)c = tm(P,Q)ab c .



Weil pairing over C

Weil pairing over C (Galbraith has nice notes):

Let 1 and τ form a basis for Λ giving E ∼=C/Λ:

em

�a+ bτ
m

,
c + dτ

m

�

= e2πi ad−b c
m .

Paths for homology of torus: γ1 : 0→ 1 and γτ : 0→ τ.

(aγ1+ bγτ) · (cγ1+ dγτ) = ad − b c .



Extensions

An extension

0 Gm X E 0

is given by a factor set
f : E × E →Gm

determining the group law on X via

(x, P )(y,Q) = (xy f (P,Q), P +Q).



Extensions

An extension

0 K∗ X E(K) 0

is given by a factor set
f : E(K)× E(K)→K∗

determining the group law on X via

(x, P )(y,Q) = (xy f (P,Q), P +Q).



Monodromy

A group fact in E ,
∑

Pi = O ,

⇓

a monodromy α ∈K∗:
∑

(xi , Pi ) =
��
∏

xi
�

α,O
�

.



A biextension X ‘glues together’ many extensions:

X has action of K∗ with quotient

π : X → E × E

where fibres X(P ,Q) are homogeneous spaces for K∗.

There are two compatible operations:
1. +1 defined on X{P}×E ;

2. +2 defined on XE×{Q}.

Each X{P}×E
is an extension of E by K∗ determined by P , and similarly.



The Poincaré biextension

In our case X is given by a biextension factor set

f : E × E × E →K∗

so that f restricts to a factor set on E × E ×{Q} and {P}× E × E .

Let f be the rational function with divisor

C := m∗123(O )−m∗12(O )−m∗23(O )−m∗13(O )+m∗1(O )+m∗2(O )+m∗3(O ).

Has an expression in terms of elliptic nets:

W (P +Q +R)W (P )W (Q)W (R)
W (P +Q)W (Q +R)W (P +R)

.



Monodromy

Fixing Q in E , we have an extension XE×{Q}.

If P ∈ E[m], then the group fact mP = O gives a monodromy on XE×{Q}.

This is the Tate pairing tm(P ,Q).

The Weil pairing is the quotient

em(P ,Q) =
monodromy of mP = O on XE×{Q}

monodromy of mQ = O on X{P}×E



Weil and Tate pairings from monodromy

The extension XE×{Q} has factor set

E × E →K∗, (P , R) 7→ fP ,R((Q)− (O ))

where
div( fP ,R) = (P +R)− (P )− (R)+ (O ).

Gives rise to Tate pairing formula:

tm : E(K)[m]× E(K)/mE(K)→K∗/(K∗)m

tm(P ,Q) = fP (DQ ), div( fP ) = m(P )−m(O ), DQ ∼ (Q)− (O ).



Tate pairing computation (Miller’s Algorithm)

tm(P ,Q) = fP (DQ ), div( fP ) = m(P )−m(O ), DQ ∼ (Q)− (O ).

1. Create double-and-add chain of operations k1+ k2 for m.
2. This

gives a double-and-add chain of divisors Dk := k(P )− ([k]P )− (k − 1)(O )
satisfying Dk1

+Dk2
∼Dk1+k2

. Note that div( fP ) =Dm .

3. Each step
Dk1+k2

−Dk1
−Dk2

= ([k1]P )+ ([k2]P )− ([k1+ k2]P )− (O ) is an instance
of the group law, i.e. a rational function fk1,k2

. Thus fP =
∏

fki ,1,ki ,2
.

4. Compute the double-and-add chain to
compute fP (DQ ) =

∏

fki ,1,ki ,2
(DQ ) (always evaluated, i.e. elements of K∗).



Sesquilinear pairings

Let α,β ∈ O , an order in an imaginary quadratic field. A sesquilinear pairing is a bilinear
pairing with:

〈αP,βQ〉= 〈P,Q〉αβ.

(We can also do everything today with O a quaternion order, at the cost of lots of extra
notation.)



Calculus of O -divisors

Extend scalars:
DivO (E) := O ⊗ZDiv(E).

We also extend scalars on K(E)∗ and K∗, writing multiplicatively, e.g. g 1+i .
Principal divisors:

div

�

∏

i

f τi
i

�

=
∑

i

τi div( fi ).

Then
Pic0
O (E) := O ⊗Z Pic0(E).



Evaluating an O -function at an O -divisor

If f and D are usual function and divisor, then

f α(β ·D) := f (D)αβ.

This gives O -Weil reciprocity:

f (div(g )) = g (div( f )),

where conjugation acts on the scalars.



Weil and Tate pairings

Recall: E ∼= Pic0(E), P 7→ (P )− (O ).

em : Pic0(E)[m]×Pic0(E)[m]→Gm[m],

tm : Pic0(E)[m]×Pic0(E)/[m]Pic0(E)→Gm/(Gm)
m ,

given by

tm(DP , DQ ) = fP (DQ ) where div( fP )∼ m ·DP ,

em(DP , DQ ) =
fP (DQ )

fQ (DP )
.

Galois invariant, sesquilinear, compatible, etc.



Sesquilinear pairings

Wα : Pic0
O (E)[α]×Pic0

O (E)[α]→G
⊗ZO
m [α],

Tα : Pic0
O (E)[α]×Pic0

O (E)/[α]Pic0
O (E)→G

⊗ZO
m /(G⊗ZOm )α,

given by

Tα(DP , DQ ) = fP (DQ ) where div( fP )∼ α ·DP ,

Wα(DP , DQ ) =
fP (DQ )

fQ (DP )
.

Galois invariant, sesquilinear, compatible, etc.



Moving from formal to CM by O =Z[τ]

0 // E
η // Pic0

O (E)
ε // E // 0

ε : D1+τ ·D2 7→ DΣ1 +[τ]D
Σ
2 .

η : P 7→ ([−τ]P )− (O )+τ((P )− (O )).

where (
∑

αi (Pi ))
Σ =
∑

i [αi ]Pi .



A Weil-like pairing

cWα : E[α]× E[α]→G⊗ZOm [α].

1. Well-defined, bilinear, Galois invariant, non-degenerate.
2. Sesquilinearity:

cWα([γ ]P, [δ]Q) = cWα(P,Q)δγ .

3. Conjugate skew-Hermitian:

cWα(P,Q) = cWα(Q, P )
−1

.

4. Compatibility: Let φ : E → E ′ respect CM by O .

cWα(φP,φQ) = cWα(P,Q)degφ.

5. Coherence:

cWαβ(P,Q) = cWα([β]P,Q), cWαβ(P,Q) = cWβ(P, [α]Q).



A Tate-like pairing

ÒTα : E[α]× E/[α]E →G⊗ZOm /(G⊗ZOm )α.

1. Well-defined, bilinear, Galois invariant, non-degenerate.
2. Sesquilinearity:

ÒTα([γ ]P, [δ]Q) = ÒTα(P,Q)γδ .

3. Compatibility: Let φ : E → E ′ respect CM by O .

ÒTα(φP,φQ) = ÒTα(P,Q)degφ.

4. Coherence:
ÒTαβ(P,Q)mod (G⊗ZR

m )α = ÒTα([β]P,Q mod [α]E).

ÒTαβ(P,Q)mod (G⊗ZR
m )β = ÒTβ(P, [α]Q mod [β]E).



In terms of usual Weil and Tate pairings
Let O =Z[τ].

ÒTn(P,Q) =
�

tn(P,Q)2N (τ) tn([−τ]P,Q)T r (τ)
�

(tn([τ−τ]P,Q))τ .

Furthermore, provided both of the following quantities are defined,

ÒTN (α)(P,Q) = ÒTα(P,Q)α (mod (G⊗ZR
m )α)

Remark: Let 〈x, y〉 be a bilinear pairing on Z[τ]. Then

〈x1+τx2, y1+τy2〉 := 〈x1, y1〉+N (τ)〈x2, y2〉+T r (τ)〈x1, y2〉+τ (〈x2, y1〉− 〈x1, y2〉)

defines a sesquilinear pairing.

Generalized pairings: Bruin, Garefalakis, Robert, Castryck-Houben-Merz-Mula-van
Buuren-Vercauteren



Computation of ÒTα(P,Q)

Suppose
α= d − cτ, ατ =−b + aτ.

For P ∈ E[α], fP = fP,1 f τP,2 with

div( fP,1) = a([−τ]P )+ b (P )− (a+ b )(O ), div( fP,2) = c([−τ]P )+ d (P )− (c + d )(O ).

Auxiliary point S; take DQ =DQ,1+τ ·DQ,2 with

DQ,1 = ([−τ]Q +[−τ]S)− ([−τ]S), DQ,2 = (Q + S)− (S).

Then
ÒTα(P,Q) := fP (DQ ) =

�

fP,1(DQ,1) fP,1(DQ,2)
T r (τ) fP,2(DQ,2)

N (τ)
��

fP,2(DQ,1) fP,1(DQ,2)
−1
�τ

.



Applications to Isogenies (joint with Joseph Macula)

Finite F. There is a faithful action of Cl(O ) on

Ell(O ) = {E/F : E has CM by O }.

When a · E1 = E2, this gives an isogeny φa : E1→ E2 respecting O .

Hard Problem 1: Given E1 and E2 ∈ Ell(O ), find φ : E1→ E2 respecting O .

Hard Problem 2: Given E1 and E2 ∈ Ell(O ), and degφ, find φ : E1→ E2 respecting O .



Isogeny interpolation
(Castryck-Decru-Maino-Martindale-Panny-Pope-Robert-Wesolowski)

Hard Problem 2: Given E1 and E2 ∈ Ell(O ), and degφ, find φ : E1→ E2 respecting O .

Wouter’s talk [CDM+24]: to efficiently determine φ : E1→ E2, it suffices to find φ(G)
(actually φ of generators) for some subgroup G of size at least 4degφ+ 1.

Hard Problem 3: Given E1 and E2 ∈ Ell(O ), and degφ, find φ(G), #G > 4degφ for
φ : E1→ E2 respecting O .



Recovering an isogeny

An idea of Castryck-Houben-Merz-Mula-van Buuren-Vercauteren: Let m > 4degφ.
Suppose P ∈ E1[m], and suppose φ(P ) = kP ′ ⊆ E2[m]. Use a pairing:

〈P, P 〉degφ = 〈φP,φP 〉= 〈kP ′, kP ′〉= 〈P ′, P ′〉k
2
.

So

P, P ′, degφ
discrete log
=====⇒ k2 (mod m) =⇒ φP = kP ′

isog. interp.
=====⇒ φ.

Challenges:
1. Make sure φP ∈ZP ′.
2. Make sure 〈P, P 〉 is non-trivial.

CHMMvBV: Non-degenerate self-pairings when m |∆O .



O -sesquilinear pairings
Let m2 > 4degφ. Suppose P ∈ E1[m], suppose O P ′ = E2[m]. Use a pairing:

〈P, P 〉degφ = 〈φP,φP 〉= 〈λP ′,λP ′〉= 〈P ′, P ′〉N (λ).

So

P, P ′, degφ
discrete log
=====⇒ N (λ) (mod m) ̸⇒ φP = [λ]P ′

isog. interp.
=====⇒ φ.

Pros/Cons:
1. Easier to guarantee O P ′ = E2[m].
2. Easier to obtain non-degenerate pairings (m coprime to∆O ).
3. For m coprimes to∆O , knowing N (λ) (mod m) only cuts down λ (mod m) from
∼ m2 options to ∼ m options.

4. For m |∆O it works! And is sometimes more efficient.



When is ÒTm non-degenerate?

Let η : O → End(E) extend to η : K→Q⊗Z End(E).

Proposition (Macula-S.)
E[m] is O -cyclic as an O -module if and only if m is coprime to [η(K)∩End(E) : η(O )].
Based on results of Lenstra.

Theorem (Macula-S.)
Suppose µm ⊆ F, m is coprime to∆O , and E[m]⊆ E(F). Then ÒTn(P, P ) has full order
whenever O P = E[m].



Computation of O -pairings

Theorem (Macula-S.)
Suppose computations in F and E[m], and discrete logarithms in µm are all efficient.
Let m be coprime to∆O and let O ⊆ End(E).
Then

computation of the O -pairing ÒTm(P,Q) on E[m]

is equivalent to

computation of O acting on E[m].



A trade-off (Supersingular case)

Suppose m2 > 4degφ, coprime to∆O and degφ.

Situations where we can obtain φ:

Know full
φ(E1[m])

Known φ(〈P 〉),
P ∈ E1[m] and
O ⊆ End(Ei )
(S.-Macula)

Know full
End(Ei )



Thank you!
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