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Introduction Motivation

Motivation: Michael Penn
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Introduction Previous Work

List of Conjectures

Legendre: n2 < p < (n + 1)2.

Andrica: pn+1 − pn < 2√pn + 1 or √pn+1 − √pn < 1.

Oppermann: n2 < p < n(n + 1) < q < (n + 1)2.

Cramér: pn+1 − pn ≪ (log pn)2.
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Introduction Previous Work

What Has Been Proven

Baker, Harman, Pintz (2000) x − x0.525 < p < x

Cully-Hugill (2023) n3 < p < (n + 1)3 for n > ee32.892

Cully-Hugill, Johnston (2024) n90 < p < (n + 1)90

Oliviera e Silva, Herzog, pn+1 − pn ≪ (log pn)2 for pn+1 ≤ 4 × 1018

Pardi (2014)
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Introduction New Results

Going Bigger – Our Work

An algorithm to verify Oppermann’s conjecture:
O(N log N log log N) heuristic running time
NO(1/ log log N) space

Correctness is unconditional, including all prime tests
Oppermann’s conjecture holds for all n ≤ N = 7.05 × 1013 ≈ 246.
(We found 27-digit primes.)
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Prime Gaps Two Useful Lemmas

Two Useful Lemmas

Cramér’s Model: An integer n ≤ x is prime with probability 1/ log x .

Lemma (2.1)
Assuming Cramér’s model, the probability log n log v integers near n are all
composite is O(1/v), for large n.

We obtain Cramér’s conjecture by setting v = n.

Lemma (2.2)
Assuming Cramér’s model, let M be a multiple of

∏
p≤b p, then the

probability (log n log v)/ log b integers near n relatively prime to M are all
composite is O(1/v), for large n, b.
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Prime Gaps Two Useful Llammas

Two Useful Llammas
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New Algorithm Three Algorithm Ideas

Ideas: Algorithm A

Basic Idea: Test n2 + 1, n2 + 2, · · · for primality. Etc.
Filter with trial division and base-2 strong pseudoprime tests.
Which prime test? Unconditional proof of primality required.
This parallelizes nicely.
We can get O(N(log N)3) time with the pseudosquares prime test of
Lukes, Patterson, Williams (1996).

Faster would be better.
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New Algorithm Three Algorithm Ideas

Ideas: Algorithm B

Finding all primes up to N2 using a seive would take O(N2/ log log N)
time. Extending the work of Oliviera e Silva, Herzog, Pardi (2014) is not
feasible.
Basic Idea: Sieve an arithmetic progression!

Set a modulus M so there are about (2 log N)2 integers that are
1 mod M between n2 and n(n + 1) for n ≤ N, so
N/M ≈ 2N(2 log N)2.
M should be divisible by 2 · 3 · 5 · · · .
Sieving 1 mod M up to N2 will take O(N(log N)2/ log log N) time
using the Atkin-Bernstein (2004) sieve.
Faster, but this needs

√
N2 space.

Heuristic lower bound: (log n)/ log log n per prime, or
Ω(N(log N)/ log log N) total time.
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New Algorithm Three Algorithm Ideas

Ideas: Algorithm C

Basic Idea: Use Algorithm A on an arithmetic progression.
Choose a prime R with with R > (N2)1/3 = N2/3.
Set M, the sieve modulus, to M := R · 2 · 3 · 5 · · · .
Use the Brillhart-Lehmer-Selfridge (BLS) prime test.

This matches the running time of Algorithm B, but with very little space.
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New Algorithm Three Algorithm Ideas

BLS Code
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New Algorithm Algorithm Description

Our Algorithm

Assorted Parameters
B := Nc/ log log N , c > 0, the prime bound for sieving;
b := 0.2 log N, the small prime bound for the modulus M;
s := log n spots in an interval;
t := B/(2s), the batch or segment size

Setup
For each i , 0 ≤ i < t:

There are at least s integers between (n + i)2 and (n + i)(n + i + 1)
that are 1 mod M
There are at least s integers between (n + i)(n + i + 1) and
(n + i + 1)2 that are 1 mod M
The probability all s integers are composite is O(1/ log n) by Lemma
2.2
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New Algorithm Algorithm Description

Our Algorithm

Basic Outline
Repeat N/t times (sequentially or in parallel):

1 Set a prime R ≥ (n + t)2/3 and M = R · 2 · 3 · · · .
2 Sieve the segment [n2, (n + t)2] on the arithmetic progression

1 mod M by primes up to B. The segment size is

(n + t)2 − n2

M ≥ 2ts = 2t log n ≈ B.

3 On each interval, test numbers in the arithmetic progression that
passed the sieve for primality using BLS until a prime is found.
Probability of failure is O(1/ log n).

4 Apply Algorithm C using up to 4 different Rs if previous step failed. If
all that fails, use Algorithm A.

Running time: O(N(log N) log log N).
Sorenson & Webster (Butler University) Legendre’s Conjecture ANTS XVI at MIT 13 / 17



Computational Results

The Computation
We verified Oppermann’s conjecture up to N = 7.05 × 1013 > 246.
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Computational Results

The Computation

We used the following parameter choices in practice:
s = 128 (note log(1027) ≈ 62)
B = 217 = 13172, so segments easily fit in cache
t varied with M but was around 450
A list of about 50 primes R of different sizes was precomputed
M was always divisible by 30 = 2 · 3 · 5
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Computational Results

Details

Our code ran on two platforms (both Linux):
1 A server with 4 Intel Phi Co-processors with 64 cores each
2 A cluster of 192 cores (Butler’s Big Dawg)

The code is in C++, using MPI and GMP in places.

Some stats:
BLS prime tests returned true about 33% of the time.
The failure rate was only 0.004%.
The first alternate prime R with BLS was always successful at finding
a prime.
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Computational Results

The End

Thank you!

Questions?
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