An algorithm and computation to verify Legendre's Conjecture up to $7\cdot 10^{13}$

Jon Sorenson and Jonathan Webster

Computer Science & Software Engineering || Mathematical Sciences Butler University, Indiana USA jsorenso@butler.edu jewebste@butler.edu,

16th Algorithmic Number Theory Symposium, MIT, July 2024

Thanks to Frank Levinson for supporting Butler computing facilities and thanks to the Holcomb Awards Committee for financial support

Motivation

Motivation: Michael Penn

Legendre's Conjecture is PROBABLY TRUE, and here's why

Sorenson & Webster (Butler University)

2/17

List of Conjectures

Legendre:	n^2
Andrica:	$p_{n+1}-p_n<2\sqrt{p_n}+1 \ { m or} \ \sqrt{p_{n+1}}-\sqrt{p_n}<1.$
Oppermann :	n^2
Cramér:	$p_{n+1}-p_n\ll (\log p_n)^2.$

3

イロン イ理 とく ヨン イ ヨン

What Has Been Proven

Baker, Harman, Pintz (2000)x -Cully-Hugill (2023) $n^3 <$ Cully-Hugill, Johnston (2024) n^{90} Oliviera e Silva, Herzog,
Pardi (2014) p_{n+}

$$(x - x^{0.525} $p^3 for $n > e^{e^{32.892}}$
 $p^{90} $p_{n+1} - p_n \ll (\log p_n)^2$ for $p_{n+1} \le 4 \times 10^{18}$$$$$

Going Bigger – Our Work

- An algorithm to verify Oppermann's conjecture:
 - $O(N \log N \log \log N)$ heuristic running time
 - $N^{O(1/\log \log N)}$ space

Correctness is unconditional, including all prime tests

• Oppermann's conjecture holds for all $n \le N = 7.05 \times 10^{13} \approx 2^{46}$.

(We found 27-digit primes.)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Two Useful Lemmas

Cramér's Model: An integer $n \le x$ is prime with probability $1/\log x$.

Lemma (2.1)

Assuming Cramér's model, the probability $\log n \log v$ integers near n are all composite is O(1/v), for large n.

We obtain Cramér's conjecture by setting v = n.

Lemma (2.2)

Assuming Cramér's model, let M be a multiple of $\prod_{p \le b} p$, then the probability $(\log n \log v) / \log b$ integers near n relatively prime to M are all composite is O(1/v), for large n, b.

Two Useful Llammas

Two Useful Llammas

Sorenson & Webster (Butler University)

Ideas: Algorithm A

Basic Idea: Test $n^2 + 1, n^2 + 2, \cdots$ for primality. Etc.

- Filter with trial division and base-2 strong pseudoprime tests.
- Which prime test? Unconditional proof of primality required.
- This parallelizes nicely.
- We can get O(N(log N)³) time with the pseudosquares prime test of Lukes, Patterson, Williams (1996).

Faster would be better.

8/17

Ideas: Algorithm B

Finding all primes up to N^2 using a seive would take $O(N^2/\log \log N)$ time. Extending the work of Oliviera e Silva, Herzog, Pardi (2014) is not feasible.

Basic Idea: Sieve an arithmetic progression!

- Set a modulus M so there are about $(2 \log N)^2$ integers that are 1 mod M between n^2 and n(n+1) for $n \le N$, so $N/M \approx 2N(2 \log N)^2$.
- *M* should be divisible by $2 \cdot 3 \cdot 5 \cdots$.
- Sieving 1 mod M up to N^2 will take $O(N(\log N)^2 / \log \log N)$ time using the Atkin-Bernstein (2004) sieve.
- Faster, but this needs $\sqrt{N^2}$ space.

Heuristic lower bound: $(\log n)/\log \log n$ per prime, or $\Omega(N(\log N)/\log \log N)$ total time.

9/17

イロト イヨト イヨト 一日

Ideas: Algorithm C

Basic Idea: Use Algorithm A on an arithmetic progression.

- Choose a prime R with with $R > (N^2)^{1/3} = N^{2/3}$.
- Set *M*, the sieve modulus, to $M := R \cdot 2 \cdot 3 \cdot 5 \cdots$.
- Use the Brillhart-Lehmer-Selfridge (BLS) prime test.

This matches the running time of Algorithm B, but with very little space.

BLS Code

// Theorem 4.1.5 from Crandall and Pomerance
// Brillhart-Lehmer-Selfridge
// assumes R is prime and n^1/3 < R < n^1/2, R | n-1
bool primetest(int128 n, int64_t R)</pre>

countprimetests++; int128 g=(n-1)/R;

//cout << "In primetest: n="<<n<<endl;</pre>

bigint2mpz(Q,q); bigint2mpz(N,n);

mpz_mul_ui(N,Q,R);
mpz_add_ui(N,N,1);

//cout << "R="<<R<<" Q="<<Q<<" N="<<N<<endl;

//check gcd(a^(n-1)/R -1, n)=1
mpz_pown(save,two,Q,N);
mpz_gcd(answer,save,1);
mpz_gcd(answer,save,1);
nt64_t ans=mpz_get_st(answer);
//cout << "GCD check, ans="c-ans<<endl;
tf(ansi=1) return false;</pre>

//check a^(n-1) mod n ==1 mpz_pown_ut(answer,save,R,N); ans=mpz_get_si(answer); //cout << "Fermat check, ans="<<ans<<endl; tf(ans!=1) return false;

//write n = c2*R^2 + c1*R + a0
//check c1^2-4*c2 not a square

int64_t c1= q % R; int64_t c2= (q-c1)/R; //cout << "c1="<c1cc" c2="<cc2<cendl; bool result=!issquare(((int128)c1)*c1 - 4*c2); //cout << "Square check, ans="<<result<cendl; return result;

= nar

11/17

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

Our Algorithm

Assorted Parameters

 $B := N^{c/\log \log N}$, c > 0, the prime bound for sieving;

- $b := 0.2 \log N$, the small prime bound for the modulus M;
- $s := \log n$ spots in an interval;
- t := B/(2s), the batch or segment size

Setup

For each *i*, $0 \le i \le t$:

- There are at least s integers between $(n + i)^2$ and (n + i)(n + i + 1)that are $1 \mod M$
- There are at least s integers between (n + i)(n + i + 1) and $(n+i+1)^2$ that are 1 mod M
- The probability all s integers are composite is $O(1/\log n)$ by Lemma 2.2

Our Algorithm

Basic Outline

Repeat N/t times (sequentially or in parallel):

- Set a prime $R \ge (n+t)^{2/3}$ and $M = R \cdot 2 \cdot 3 \cdots$.
- Sieve the segment [n², (n + t)²] on the arithmetic progression 1 mod M by primes up to B. The segment size is

$$\frac{(n+t)^2-n^2}{M} \ge 2ts = 2t\log n \approx B.$$

- On each interval, test numbers in the arithmetic progression that passed the sieve for primality using BLS until a prime is found. Probability of failure is O(1/log n).
- Apply Algorithm C using up to 4 different Rs if previous step failed. If all that fails, use Algorithm A.

Running time: $O(N(\log N) \log \log N)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

The Computation

We verified Oppermann's conjecture up to $N = 7.05 \times 10^{13} > 2^{46}$.

Sorenson & Webster (Butler University)

The Computation

We used the following parameter choices in practice:

- s = 128 (note log $(10^{27}) \approx 62$)
- $B = 2^{17} = 13172$, so segments easily fit in cache
- t varied with M but was around 450
- A list of about 50 primes R of different sizes was precomputed
- *M* was always divisible by $30 = 2 \cdot 3 \cdot 5$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Details

Our code ran on two platforms (both Linux):

- A server with 4 Intel Phi Co-processors with 64 cores each
- A cluster of 192 cores (Butler's Big Dawg)

The code is in C++, using MPI and GMP in places.

Some stats:

- BLS prime tests returned **true** about 33% of the time.
- The failure rate was only 0.004%.
- The first alternate prime *R* with BLS was always successful at finding a prime.

The End

Sorenson & Webster (Butler University)

Legendre's Conjecture

< ∃→ 17 / 17 ANTS XVI at MIT