
A Heuristic Subexponential
Algorithm to Find Paths in

Markoff Graphs over
Finite Fields

Joseph H. Silverman

Brown University

Algorithmic Number Theory Symposium
(ANTS XVI), MIT

Friday July 19, 2024, 12:15-12:45pm



Hash Functions and Expander Graphs 1

Cryptographic Hash Functions

• A cryptograph hash function is a function

Hash :

(
arbitray length
bit strings

)
−→

(
bit strings of a
specified length

)
.

• They are crucial for modern encrypted communica-
tions.

• Required properties:

– Hash() is easy to compute.

– Given a specified output γ, it’s hard to find an in-
put β satisfying

Hash(β) = γ.

– It is hard to find distinct inputs β1 6= β2 satisfying

Hash(β1) = Hash(β2).



Hash Functions and Expander Graphs 2

Turning an Expander Graph into a Hash Function

• Charles, Goren, and Lauter [J. Cryptology 22 (2009)]
explained how to use expander graphs to construct
hash functions, assuming that it is hard to find paths
between specified initial and final vertices.

Graph to Hash Function
Rule: Start at (A)

1 = Up
0 = Down

(A)

(B)

(C)

(D)

(E)

(F)

(G)

(H)

(I)

(J)

(K)

(L)

(M)

(N)

(O)



Hash Functions and Expander Graphs 3

Turning an Expander Graph into a Hash Function

• Charles, Goren, and Lauter [J. Cryptology 22 (2009)]
explained how to use expander graphs to construct
hash functions, assuming that it is hard to find paths
between specified initial and final vertices.

Graph to Hash Function
Rule: Start at (A)

1 = Up
0 = Down

(A)

(B)

(C)

(D)

(E)

(F)

(G)

(H)

(I)

(J)

(K)

(L)

(M)

(N)

(O)

101
Hash−−−→ (J)



Hash Functions and Expander Graphs 4

Turning an Expander Graph into a Hash Function

• Charles, Goren, and Lauter [J. Cryptology 22 (2009)]
explained how to use expander graphs to construct
hash functions, assuming that it is hard to find paths
between specified initial and final vertices.

Graph to Hash Function
Rule: Start at (A)

1 = Up
0 = Down

(A)

(B)

(C)

(D)

(E)

(F)

(G)

(H)

(I)

(J)

(K)

(L)

(M)

(N)

(O)

011
Hash−−−→ (L)



Hash Functions and Expander Graphs 5

Turning an Expander Graph into a Hash Function

In practice one uses a large finite graph with a marked
initial point.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•



The Markoff Equation and the Markoff Graph 6

The Markoff Equation

The Markoff equation is

M : x2 + y2 + z2 = 3xyz.

The equation is quadratic in each variable, so if we’re
given any solution (x0, y0, z0), we can create a new solu-
tion by fixing two of the coordinates and switching the
third coordinate to the other root of the quadratic equation.

This gives three non-commuting involutions

σ :M−→M,

and composing them with a coordinate permutation gives
three non-commuting rotations given by the easily com-
puted formulas

ρ1(x, y, z) = (x, z, 3xz − y),

ρ2(x, y, z) = (3xy − z, y, x),

ρ3(x, y, z) = (y, 3yz − x, z).



The Markoff Equation and the Markoff Graph 7

The Markoff Graph

We use the set of non-zero points

M(Fp) =

{
solutions to x2 + y2 + z2 = 3xyz
with x, y, z in the finite field Fp

}
to create a graph with

Vertices =M(Fp), Initial Point = [1, 1, 1],

Edges =
{[
P, ρi(P )

]
: i = 1, 2, 3

}
.

M(F5)

[0, 1, 2]

[0, 1, 3]

[0, 2, 1]

[0, 2, 4]

[0, 3, 1]

[0, 3, 4]

[0, 4, 2]

[0, 4, 3]

[1, 0, 2]

[1, 0, 3]

[1, 1, 1]

[1, 1, 2]

[1, 2, 0]

[1, 2, 1]

[1, 3, 0]

[1, 3, 4]

[1, 4, 3]

[1, 4, 4]

[2, 0, 1]

[2, 0, 4]

[2, 1, 0]

[2, 1, 1]

[2, 4, 0]

[2, 4, 4]

[3, 0, 1]

[3, 0, 4]

[3, 1, 0]

[3, 1, 4]

[3, 4, 0]

[3, 4, 1]

[4, 0, 2]

[4, 0, 3]

[4, 1, 3]

[4, 1, 4]

[4, 2, 0]

[4, 2, 4]

[4, 3, 0]

[4, 3, 1]

[4, 4, 1]

[4, 4, 2]



The Markoff Equation and the Markoff Graph 8

Properties of the Markoff Graph

• M(Fp) has roughly p2 vertices. [Elementary]

• M(Fp) is a connected graph for all sufficiently large p.
[Bourgain–Gamburd–Sarnak, W. Chen]

• M(Fp) is a family of expander graphs [Conjecture]

• Fuchs, Lauter, Litman, and Tran (2022) suggested
that the Markoff graphs “may be good candidates”
for the CGL hash function construction.

• In the remainder of this talk, I will sketch a heuristic
path-finding algorithm for M(Fp) that is subexpo-
nential time on a classical computer and polynomial
time on a quantum computer.

• More precisely, to connect points inM(Fp), it suffices
to factor p − 1 and to solve three discrete logarithm
in F∗p.



Efficient Path-finding in the Markoff Graph 9

Proof Sketch (as time permits)
We exploit ideas used by Bourgain–Gamburd–Sarnak.
They note that for fixed x0,

ρ1(x0, y, z) =

[
x0,

(
3x0 −1
1 0

)(
y
z

)]
.

Thus ρ1 acts on the x = x0 fiber via the matrix

Lx0 :=

(
3x0 −1
1 0

)
∈ SL2(Fp).

Lx0 has order p− 1 =⇒
(
ρ1 acts transitively
on the x = x0 fiber

)
.

If this occurs, we say that x0 is maximally hyper-
bolic. And similarly for ρ2 and ρ3.

For randomly chosen points inM(Fp), we have

Prob

(
P ∈M(Fp) is x(P )-
maximally hyperbolic

)
≈ φ(p− 1)

2(p− 1)
≥ 1

4 log log p
.



Efficient Path-finding in the Markoff Graph 10

Finding a path from P ∈M(Fp) to Q ∈M(Fp)
(1) Randomly apply ρ1 and ρ3 to P until reaching a

point P ′ that is y-maximally hyperbolic.

(2) Randomly apply ρ−1
1 and ρ−1

2 to Q until reaching
a point Q′ that is z-maximally hyperbolic.

(3) Let F (X, Y, Z) = X2 + Y 2 + Z2 − 3XY Z. Ran-
domly select maximally hyperbolic x0 ∈ Fp until
the pair of quadratic equations

F
(
x0, y(P ′), Z

)
= F

(
x0, Y, z(Q′)

)
= 0

has a solution (y0, z0) ∈ F2
q. Set

P ′′←
(
x0, y(P ′), z0

)
and Q′′←

(
x0, y0, z(Q′)

)
.

• P ′′ and Q′′ are on the maximally hyperbolic x0-fiber.

• P ′ and P ′′ are on the maximally hyperbolic y(P ′)-fiber.

• Q′ and Q′′ are on the maximally hyperbolic z(Q′)-fiber.



Efficient Path-finding in the Markoff Graph 11

Finding a path from P ∈M(Fp) to Q ∈M(Fp)

(4) Solve three DLPs in F∗p to find k,m, n satisfying

P ′′ = ρk2(P ′), Q′ = ρm3 (Q′′), Q′′ = ρn1 (P ′′).

These are DLPs because maximal hyperbolicity means
that the associated matrices diagonalize over Fp, so we
end up needing to solve equations of the form(

λ 0

0 λ−1

)n(
α

α−1

)
=

(
β

β−1

)
for known λ, α, β.



Efficient Path-finding in the Markoff Graph 12

Finding a path from P ∈M(Fp) to Q ∈M(Fp)

(5) This gives the path

P
〈ρ1,ρ3〉−−−−→ P ′

ρk2−→ P ′′
ρn1−→ Q′′

ρm3−−→ Q′
〈ρ1,ρ2〉−−−−→ Q.

Illustrating the Markoff
Path-Finding Algorithm

P ′′

Q′′

P ′

Q′

x0-fiber

y(P ′)-fiber z(Q′)-fiber

P
Q

Short random walks from P to P ′

and Q to Q′, together with three
DLP computations to find paths
P ′ → P ′′, P ′′ → Q′′, and Q′′ → Q′



Efficient Path-finding in the Markoff Graph 13

Please join me in thanking the ANTS XVI
organizing committee:

Jennifer Balakrishnan, Kiran Kedlaya,
Drew Sutherland, John Voight,

and the ANTS XVI program committee for
putting together and running this fantastic
conference.

ANTS XVI Program Committee

Eran Assaf
Edgar Costa

Alyson Deines
Andreas Enge

Steven Galbraith
Tommy Hofmann

Everett Howe
Fredrik Johansson

Valentijn Karemaker
Wanlin Li

Elisa Lorenzo Garćıa
Jonathan Love
Pascal Molin

Travis Morrison
Steffen Müller
Alina Ostafe
Ekin Ozman
Jen Paulhus

Christophe Ritzenthaler
David Roe

Renate Scheidler
Jeroen Sijsling

Benjamin Smith
Padma Srinivasan

Michael Stoll
Marco Streng

Lola Thompson
Anthony Várilly-Alvarado

Christelle Vincent
Bianca Viray
Isabel Vogt

Jonathan Webster
Benjamin Wesolowski

Yifan Yang

[0, 1, 2]

[0, 1, 3]

[0, 2, 1]

[0, 2, 4]

[0, 3, 1]

[0, 3, 4]

[0, 4, 2]

[0, 4, 3]

[1, 0, 2]

[1, 0, 3]

[1, 1, 1]

[1, 1, 2]

[1, 2, 0]

[1, 2, 1]

[1, 3, 0]

[1, 3, 4]

[1, 4, 3]

[1, 4, 4]

[2, 0, 1]

[2, 0, 4]

[2, 1, 0]

[2, 1, 1]

[2, 4, 0]

[2, 4, 4]

[3, 0, 1]

[3, 0, 4]

[3, 1, 0]

[3, 1, 4]

[3, 4, 0]

[3, 4, 1]

[4, 0, 2]

[4, 0, 3]

[4, 1, 3]

[4, 1, 4]

[4, 2, 0]

[4, 2, 4]

[4, 3, 0]

[4, 3, 1]

[4, 4, 1]

[4, 4, 2]



A Heuristic Subexponential
Algorithm to Find Paths in

Markoff Graphs over
Finite Fields

Joseph H. Silverman

Brown University

Algorithmic Number Theory Symposium
(ANTS XVI), MIT

Friday July 19, 2024, 12:15-12:45pm


