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Cryptographic Hash Functions

e A cryptograph hash function is a function

~ (arbitray length bit strings of a
aEEulE (bit strings ) — (Speciﬁed length /

e They are crucial for modern encrypted communica-
tions.

e Required properties:
—Hash() is easy to compute.

— Given a specified output 7y, it’s hard to find an in-
put [ satistying

Hash(3) = 7.
— It is hard to find distinct inputs 8 # B> satistying
Hash(31) = Hash(fs).



Turning an Expander Graph into a Hash Function

e Charles, Goren, and Lauter |J. Cryptology 22 (2009)]
explained how to use expander graphs to construct
hash functions, assuming that it is hard to find paths
between specified initial and final vertices.
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Hash Functions and Expander Graphs

Turning an Expander Graph into a Hash Function

B
Ny

A
A
Viins i S i\

DN

In practice one uses a large finite graph with a marked

initial point.



The Markoff Equation

The Markoff equation is
M2+ +2
The equation is quadratic in each variable, so if we're
given any solution (x, yo, 20), We can create a new solu-

tion by fixing two of the coordinates and switching the
third coordinate to the other root of the quadratic equation.

2 = STYZ.

This gives three non-commuting involutions

o M— M,

and composing them with a coordinate permutation gives
three non-commuting rotations given by the easily com-
puted formulas

pl(x7 Y, Z) — ($7 <, 3rz — y)7
,02($, Y, Z) — (Bl'y — Y, ZU),
pg(x7 Y, Z) — (ya 3?/2 — I, Z)



The Markoft Equation and the Markoff Graph

The Markoff Graph

We use the set of non-zero points

M(Fp)

solutions to z2 + y2 + 2

= 3TYZ

with z,y, z in the finite field I,

to create a graph with

Vertices

Edges

M(Fp), Initial Point
{[P, pi(P)] i = 1,2,3}.

= |1, 1L, 1,




Properties of the Markoff Graph

o M(FF)) has roughly p? vertices. [Elementary]

o M(IF)) is a connected graph for all sufficiently large p.
|Bourgain-Gamburd—Sarnak, W. Chen]

o M(F,) is a family of expander graphs |Conjecture]

e Fuchs, Lauter, Litman, and Tran (2022) suggested
that the Markofl graphs “may be good candidates”
for the CGL hash function construction.

e In the remainder of this talk, I will sketch a heuristic
path-finding algorithm for M(F,) that is subexpo-
nential time on a classical computer and polynomial
time on a quantum computer.

e More precisely, to connect points in M([F;), it suffices

to factor p — 1 and to solve three discrete logarithm
in .



Proof Sketch (as time permits)
We exploit ideas used by Bourgain—Gamburd—Sarnak.

They note that for fixed xq,

p1(x0, Y, 2) = [$0> (3? _01> (‘Z)] -

Thus p; acts on the x = x( fiber via the matrix

3rg —1
Ly, = ( 10 o) € SLy(Fp).

Ly, hasorderp—1 = (

p1 acts transitively
on the x = xq fiber / °

If this occurs, we say that zg is maximally hyper-
bolic. And similarly for po and ps.

For randomly chosen points in M(F,), we have

P e M(Fy) is z(P)- d(p— 1) 1
Prob . - > .
maximally hyperbolic 2(p — 1) — 4loglog p




Finding a path from P € M(F,) to @ € M([F))
(1) Randomly apply p; and p3 to P until reaching a
point P’ that is y-maximally hyperbolic.

(2) Randomly apply ,01_1 and po L'to @ until reaching
a point @’ that is z-maximally hyperbolic.

(3) Let F(X,Y,Z) = X*+Y?+ Z?> - 3XYZ. Ran-
domly select maximally hyperbolic zy € I, until
the pair of quadratic equations

F(z0,y(P'), Z) = F(20,Y, 2(Q")) =0
has a solution (yg, 2g) € IF?]. Set

P« (:co,y(P/),zo) and Q" + (xo,yo,z(Q/)).
e P and Q" are on the maximally hyperbolic xg-fiber.
e P" and P" are on the maximally hyperbolic y(P’)-fiber.
e Q' and Q" are on the maximally hyperbolic z(Q’)-fiber.



Finding a path from P € M(F,) to @ € M([F))
(4) Solve three DLPs in ), to find k, m, n satisfying

P// _ IO]2§(P/)’ Q/ _ pg’L(Q//)7 Q// _ p?lv,(P//>

These are DLPs because maximal hyperbolicity means
that the assoclated matrices diagonalize over Iy, so we
end up needing to solve equations of the form

G (2)-(8) s



Finding a path from P € M(F,) to @ € M([F))
(5) This gives the path

k n m
P1,03 P P P 1,02
P < >> P/ 2 P// _1> Q// __3% Q/ <p P >> Q

Illustrating the Markoft
Path-Finding Algorithm

y(P')-fiber 2(Q)-fiber Q'

Q”/
xo-fiber

°Q

e

Short random walks from P to P’
and @ to @', together with three

DLP computations to find paths
P/ — P”, P// N QN, and Q// — Ql
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