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Cryptographic Hash Functions

• A cryptograph hash function is a function

Hash :

(
arbitray length
bit strings

)
−→

(
bit strings of a
specified length

)
.

• They are crucial for modern encrypted communica-
tions.

• Required properties:

– Hash() is easy to compute.

– Given a specified output γ, it’s hard to find an in-
put β satisfying

Hash(β) = γ.

– It is hard to find distinct inputs β1 6= β2 satisfying

Hash(β1) = Hash(β2).
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Turning an Expander Graph into a Hash Function

• Charles, Goren, and Lauter [J. Cryptology 22 (2009)]
explained how to use expander graphs to construct
hash functions, assuming that it is hard to find paths
between specified initial and final vertices.

Graph to Hash Function
Rule: Start at (A)
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Turning an Expander Graph into a Hash Function

• Charles, Goren, and Lauter [J. Cryptology 22 (2009)]
explained how to use expander graphs to construct
hash functions, assuming that it is hard to find paths
between specified initial and final vertices.
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Turning an Expander Graph into a Hash Function

• Charles, Goren, and Lauter [J. Cryptology 22 (2009)]
explained how to use expander graphs to construct
hash functions, assuming that it is hard to find paths
between specified initial and final vertices.
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Turning an Expander Graph into a Hash Function

In practice one uses a large finite graph with a marked
initial point.
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The Markoff Equation

The Markoff equation is

M : x2 + y2 + z2 = 3xyz.

The equation is quadratic in each variable, so if we’re
given any solution (x0, y0, z0), we can create a new solu-
tion by fixing two of the coordinates and switching the
third coordinate to the other root of the quadratic equation.

This gives three non-commuting involutions

σ :M−→M,

and composing them with a coordinate permutation gives
three non-commuting rotations given by the easily com-
puted formulas

ρ1(x, y, z) = (x, z, 3xz − y),

ρ2(x, y, z) = (3xy − z, y, x),

ρ3(x, y, z) = (y, 3yz − x, z).
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The Markoff Graph

We use the set of non-zero points

M(Fp) =

{
solutions to x2 + y2 + z2 = 3xyz
with x, y, z in the finite field Fp

}
to create a graph with

Vertices =M(Fp), Initial Point = [1, 1, 1],

Edges =
{[
P, ρi(P )

]
: i = 1, 2, 3

}
.
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Properties of the Markoff Graph

• M(Fp) has roughly p2 vertices. [Elementary]

• M(Fp) is a connected graph for all sufficiently large p.
[Bourgain–Gamburd–Sarnak, W. Chen]

• M(Fp) is a family of expander graphs [Conjecture]

• Fuchs, Lauter, Litman, and Tran (2022) suggested
that the Markoff graphs “may be good candidates”
for the CGL hash function construction.

• In the remainder of this talk, I will sketch a heuristic
path-finding algorithm for M(Fp) that is subexpo-
nential time on a classical computer and polynomial
time on a quantum computer.

• More precisely, to connect points inM(Fp), it suffices
to factor p − 1 and to solve three discrete logarithm
in F∗p.
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Proof Sketch (as time permits)
We exploit ideas used by Bourgain–Gamburd–Sarnak.
They note that for fixed x0,

ρ1(x0, y, z) =

[
x0,

(
3x0 −1
1 0

)(
y
z

)]
.

Thus ρ1 acts on the x = x0 fiber via the matrix

Lx0 :=

(
3x0 −1
1 0

)
∈ SL2(Fp).

Lx0 has order p− 1 =⇒
(
ρ1 acts transitively
on the x = x0 fiber

)
.

If this occurs, we say that x0 is maximally hyper-
bolic. And similarly for ρ2 and ρ3.

For randomly chosen points inM(Fp), we have

Prob

(
P ∈M(Fp) is x(P )-
maximally hyperbolic

)
≈ φ(p− 1)

2(p− 1)
≥ 1

4 log log p
.
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Finding a path from P ∈M(Fp) to Q ∈M(Fp)
(1) Randomly apply ρ1 and ρ3 to P until reaching a

point P ′ that is y-maximally hyperbolic.

(2) Randomly apply ρ−1
1 and ρ−1

2 to Q until reaching
a point Q′ that is z-maximally hyperbolic.

(3) Let F (X, Y, Z) = X2 + Y 2 + Z2 − 3XY Z. Ran-
domly select maximally hyperbolic x0 ∈ Fp until
the pair of quadratic equations

F
(
x0, y(P ′), Z

)
= F

(
x0, Y, z(Q′)

)
= 0

has a solution (y0, z0) ∈ F2
q. Set

P ′′←
(
x0, y(P ′), z0

)
and Q′′←

(
x0, y0, z(Q′)

)
.

• P ′′ and Q′′ are on the maximally hyperbolic x0-fiber.

• P ′ and P ′′ are on the maximally hyperbolic y(P ′)-fiber.

• Q′ and Q′′ are on the maximally hyperbolic z(Q′)-fiber.
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Finding a path from P ∈M(Fp) to Q ∈M(Fp)

(4) Solve three DLPs in F∗p to find k,m, n satisfying

P ′′ = ρk2(P ′), Q′ = ρm3 (Q′′), Q′′ = ρn1 (P ′′).

These are DLPs because maximal hyperbolicity means
that the associated matrices diagonalize over Fp, so we
end up needing to solve equations of the form(

λ 0

0 λ−1

)n(
α

α−1

)
=

(
β

β−1

)
for known λ, α, β.
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Finding a path from P ∈M(Fp) to Q ∈M(Fp)

(5) This gives the path

P
〈ρ1,ρ3〉−−−−→ P ′

ρk2−→ P ′′
ρn1−→ Q′′

ρm3−−→ Q′
〈ρ1,ρ2〉−−−−→ Q.

Illustrating the Markoff
Path-Finding Algorithm

P ′′

Q′′

P ′

Q′

x0-fiber

y(P ′)-fiber z(Q′)-fiber

P
Q

Short random walks from P to P ′

and Q to Q′, together with three
DLP computations to find paths
P ′ → P ′′, P ′′ → Q′′, and Q′′ → Q′
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