## Efficient (3,3)-isogenies between fast Kummer surfaces

### Maria Corte-Real Santos<sup>1</sup> Craig Costello<sup>2</sup> Benjamin Smith<sup>3</sup>

<sup>1</sup>University College London

<sup>2</sup>Microsoft Research, Redmond

<sup>3</sup>INRIA & Laboratoire d'Informatique de l'École polytechnique (LIX)

### ANTS XVI 2024

| Maria | Corte-Real | Santos | (UCL) |
|-------|------------|--------|-------|
|-------|------------|--------|-------|

Let  $\mathbb{F}_q$  be a finite field of characteristic p > 5.

#### Problem

Given an elliptic curve E defined over  $\mathbb{F}_q$  and a finite subgroup G of  $E(\mathbb{F}_q)$ , compute the quotient isogeny

$$\varphi: E \longrightarrow E' := E/G.$$

This was solved by Vélu (1971) (when E is given by a Weierstrass equation).

2/11

Given the Jacobian  $\mathcal{J}$  of a genus-2 curve C defined over  $\mathbb{F}_q$  and a finite subgroup G of  $\mathcal{J}$ , compute the quotient isogeny

$$\varphi:\mathcal{J}\longrightarrow \mathcal{J}':=\mathcal{J}/G.$$

We want to find efficient algorithms to compute these isogenies where  $G \subset \mathcal{J}[N]$  for N odd.

Our motivation comes from isogeny-based cryptography: low-degree isogenies in higher dimension gives high-degree isogenies in genus 1 (e.g., SQIsign2D).

イロト 不得下 イヨト イヨト

## Using the Kummer Surface

Let  $\mathcal{J}$  be the Jacobian of a genus-2 hyperelliptic curve  $\mathcal{C}$  defined over  $\mathbb{F}_q$ .  $\mathcal{J}$  is an abelian surface with projective embedding in  $\mathbb{P}^{15} \rightsquigarrow$  not efficient!

**Idea:** follow Cassels–Flynn to replace  $\mathcal{J}$  with the *Kummer surface*. The Kummer surface  $\mathcal{K}$  of a Jacobian  $\mathcal{J}$  is the quotient  $\mathcal{J}/\{\pm 1\}$ . It is the genus-2 analogue of the *x*-coordinate.



The surface  $\mathcal{K}$  can be embedded as a quartic surface in  $\mathbb{P}^3$ .

It has 16 nodes (point singularities) given by the image of  $\mathcal{J}[2]$  in  $\mathcal{K}$ .

Let N be an odd prime. Given a Kummer surface  $\mathcal{K}$  defined over  $\mathbb{F}_q$  and (the image of) a maximal N-Weil isotropic subgroup  $G \subset \mathcal{K}$ , compute the quotient isogeny

$$\varphi: \mathcal{K} \longrightarrow \mathcal{K}' := \mathcal{K}/\mathcal{G}.$$

A subgroup  $\widetilde{G} \subseteq \mathcal{J}[N]$  is a maximal N-Weil isotropic subgroup if  $e_N(\widetilde{P}, \widetilde{Q}) = 1$  for all  $\widetilde{P}, \widetilde{Q} \in \widetilde{G}$  and is not contained in any other isotropic subgroup.

Let N be an odd prime. Given a Kummer surface  $\mathcal{K}$  defined over  $\mathbb{F}_q$  and (the image of) a maximal N-Weil isotropic subgroup  $G \subset \mathcal{K}$ , compute the quotient isogeny

$$\varphi: \mathcal{K} \longrightarrow \mathcal{K}' := \mathcal{K}/\mathcal{G}.$$

The quotient isogeny  $\Phi: \mathcal{J} \to \mathcal{J}' := \mathcal{J}/\widetilde{G}$  descends to a morphism of Kummer surfaces  $\varphi: \mathcal{K} \to \mathcal{K}'$ , such that the following diagram commutes:



Let N be an odd prime. Given a Kummer surface  $\mathcal{K}$  defined over  $\mathbb{F}_q$  and (the image of) a maximal N-Weil isotropic subgroup  $G \subset \mathcal{K}$ , compute the quotient isogeny

 $\varphi: \mathcal{K} \longrightarrow \mathcal{K}' := \mathcal{K}/\mathcal{G}.$ 

The quotient isogeny  $\Phi: \mathcal{J} \to \mathcal{J}' := \mathcal{J}/\widetilde{G}$  descends to a morphism of Kummer surfaces  $\varphi: \mathcal{K} \to \mathcal{K}'$ . We set  $G := \pi(\widetilde{G})$ .

As  $G \cong (\mathbb{Z}/N\mathbb{Z})^2$ , i.e.,  $G = \langle R, S \rangle$  with  $e_N(\widetilde{R}, \widetilde{S}) = 1$ , we call  $\varphi$  an (N, N)-isogeny.

Our result is to give a new efficient method for N = 3 (and more generally odd prime N).

5/11

・ロット 通マ マロマ キロマー 田

|                                                                                   | Construct invariant homogeneous forms                                                    | Theta structures<br>of level 2                            | Multiradical<br>formulae |
|-----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-----------------------------------------------------------|--------------------------|
| N=2                                                                               | Cassels–Flynn (1996)                                                                     | Dartois–Maino–Pope–Robert (2023)                          | Castryk–Decru (2021)     |
| N=3                                                                               | Bruin–Flynn–Testa (2014),<br>revisited by Flynn–Ti (2019)<br>and Decru–Kunzweiler (2023) |                                                           | Castryk–Decru (2021)     |
| N = 4                                                                             | Nicholls (2018)                                                                          |                                                           |                          |
| N = 5                                                                             | Flynn (2015)                                                                             |                                                           | Castryk–Decru (2021)     |
| $\begin{array}{l} \textbf{General odd} \\ \textbf{N} \neq \textbf{p} \end{array}$ |                                                                                          | Lubicz–Robert (2012, 2015, 2022),<br>Cosset–Robert (2015) |                          |

|                               |                                   |          | ≣ *) Q (* |
|-------------------------------|-----------------------------------|----------|-----------|
| Maria Corte-Real Santos (UCL) | Isogenies between Kummer surfaces | ANTS XVI | 6/11      |

Following Gaudry (2007), we use the fast Kummer surface model.

### The Fast Kummer Surface

Let  $X_1, X_2, X_3, X_4$  be coordinates on  $\mathbb{P}^3$ . The equation defining the fast Kummer surface  $\mathcal{K}$  is

$$\begin{split} \mathcal{K} &: X_1^4 + X_2^4 + X_3^4 + X_4^4 - 2E \cdot X_1 X_2 X_3 X_4 - F \cdot (X_1^2 X_4^2 + X_2^2 X_3^2) \\ &- G \cdot (X_1^2 X_3^2 + X_2^2 X_4^2) - H \cdot (X_1^2 X_2^2 + X_3^2 X_4^2) = 0, \end{split}$$

where E, F, G, H are rational functions in the fundamental theta constants  $a, b, c, d \in \overline{\mathbb{F}}_{p}$ .

The identity element  $\mathcal{K}$  is  $\mathcal{O}_{\mathcal{K}} = (a: b: c: d)$ .

Maria Corte-Real Santos (UCL)

7/11

# General method for computing (N, N)-isogenies

Fix odd  $N \neq p$ . Let  $\mathcal{K}[N]$  be the image of  $\mathcal{J}[N]$  in  $\mathcal{K}$ . Fix  $R, S \in \mathcal{K}[N]$  generating the kernel of an (N, N)-isogeny  $\varphi : \mathcal{K} \to \mathcal{K}/\langle R, S \rangle$ .

**Step 1:** Find homogeneous functions of degree N that are invariant under translation-by-R. These forms generate a space  $X_R$ . Repeat for S.

#### Invariant Forms

Let  $P = (X_1 \colon X_2 \colon X_3 \colon X_4)$  and  $R \in \mathcal{K}[N]$ . For  $I = (i_1, \ldots, i_N) \in \{1, 2, 3, 4\}^N$ , compute homogeneous forms of degree N defined by

$$F_{R,N}(I) = \sum_{\tau \in C_N} X_{i_{\tau(1)}} \prod_{k=1}^{(N-1)/2} B_{i_{\tau(2k)},i_{\tau(2k+1)}}(P,[k]R),$$

where  $C_N$  is the cyclic group of order N and  $B_{i,j}$  are the biquadratic forms associated to  $\mathcal{K}$ .

## General method for computing (N, N)-isogenies

Fix odd  $N \neq p$ . Let  $\mathcal{K}[N]$  be the image of  $\mathcal{J}[N]$  in  $\mathcal{K}$ . Fix  $R, S \in \mathcal{K}[N]$  generating the kernel of an (N, N)-isogeny  $\varphi : \mathcal{K} \to \mathcal{K}/\langle R, S \rangle$ .

**Step 1:** Find homogeneous functions of degree N that are invariant under translation-by-R. These forms generate a space  $X_R$ . Repeat for S.

# Example: N = 3Let $R_{i,j} = B_{i,j}(P, R)$ • $F_{R,3}(1,1,1) = X_1 R_{1,1}$ • $F_{R,3}(1,2,3) = X_1 R_{2,3} + X_2 R_{1,3} + X_3 R_{1,2}$

8/11

## General method for computing (N, N)-isogenies

Fix odd  $N \neq p$ . Let  $\mathcal{K}[N]$  be the image of  $\mathcal{J}[N]$  in  $\mathcal{K}$ . Fix  $R, S \in \mathcal{K}[N]$  generating the kernel of an (N, N)-isogeny  $\varphi : \mathcal{K} \to \mathcal{K}/\langle R, S \rangle$ .

**Step 1:** Find homogeneous functions of degree N that are invariant under translation-by-R. These forms generate a space  $X_R$ . Repeat for S.

**Step 2:** Compute the intersection  $X_{R,S} := X_R \cap X_S$ . Then, dim  $X_{R,S} = 4$  with basis  $\psi_1, \ldots, \psi_4$ . The morphism

$$\psi = (\psi_1 \colon \psi_2 \colon \psi_3 \colon \psi_4) \colon \mathcal{K} \to \widetilde{\mathcal{K}}$$

has kernel  $\langle R, S \rangle$ , but  $\tilde{\mathcal{K}}$  is *not* a fast Kummer surface.

**Step 3:** Find a linear transformation  $\mathbf{M} : \widetilde{\mathcal{K}} \to \mathcal{K}'$ , where  $\mathcal{K}'$  is a fast Kummer surface. Then  $\varphi = \mathbf{M} \circ \psi$ . To find  $\mathbf{M}$ , we observe: for  $T \in \mathcal{K}[2]$ 

$$\sigma_{(\varphi(T))}((\varphi_1:\varphi_2:\varphi_3:\varphi_4)) = \varphi(\sigma_T(X_1:X_2:X_3:X_4)).$$

8/11

We now focus on N = 3. Run steps 1 and 2.

The morphism  $\psi$  is of the form

$$\begin{split} \psi_1 &:= X_1 (a_1 X_1^2 + a_2 X_2^2 + a_3 X_2^2 + a_4 X_4^2) + a_5 X_2 X_3 X_4 \\ \psi_2 &:= X_2 (b_1 X_1^2 + b_2 X_2^2 + b_3 X_3^2 + b_4 X_4^2) + b_5 X_1 X_3 X_4 \\ \psi_3 &:= X_3 (c_1 X_1^2 + c_2 X_2^2 + c_3 X_3^2 + c_4 X_4^2) + c_5 X_1 X_2 X_4 \\ \psi_4 &:= X_4 (d_1 X_1^2 + d_2 X_2^2 + d_3 X_3^2 + d_4 X_4^2) + d_5 X_1 X_2 X_3 \end{split}$$

for some  $a_i, b_i, c_i, d_i \in \mathbb{F}_q[\mathcal{O}_{\mathcal{K}}, R, S]$ .

イロト 不得 トイヨト イヨト

We now focus on N = 3. Run steps 1 and 2. Apply the linear map (a scaling in this case).

The isogeny  $\varphi$  is of the form

$$\begin{aligned} \varphi_1 &:= X_1 (a_1 X_1^2 + a_2 X_2^2 + a_3 X_2^2 + a_4 X_4^2) + a_5 X_2 X_3 X_4 \\ \varphi_2 &:= X_2 (a_2 X_1^2 + a_1 X_2^2 + a_4 X_3^2 + a_3 X_4^2) + a_5 X_1 X_3 X_4 \\ \varphi_3 &:= X_3 (a_3 X_1^2 + a_4 X_2^2 + a_1 X_3^2 + a_2 X_4^2) + a_5 X_1 X_2 X_4 \\ \varphi_4 &:= X_4 (a_4 X_1^2 + a_3 X_2^2 + a_2 X_3^2 + a_1 X_4^2) + a_5 X_1 X_2 X_3 \end{aligned}$$

for some  $a_i \in \mathbb{F}_q[\mathcal{O}_{\mathcal{K}}, R, S]$ .

イロト 不得 トイヨト イヨト

**Precomputation:** to compute the (3,3)-isogeny, we precompute *tripling constants*. This requires 12M, 4S and 6a.

**Computing Image of Isogeny:** Given tripling constants, compute coefficients  $a_1, \ldots, a_5$  defining the isogeny and then the image constants (a': b': c': d'). Requires 102M, 8S and 113a.

**Pushing points through the isogeny:** Given tripling constants and the coefficients  $a_1, \ldots, a_5$ , compute the image of the point under the isogeny. This requires 26M, 4S and 16a.

We implement and optimise these algorithms in the code accompanying our paper.

## Benchmarks

We compare our algorithms for computing  $(3^k, 3^k)$ -isogenies to those due to Castryk–Decru and Decru–Kunzweiler. We ran the algorithms in Magma and average over 100 random inputs for each prime size  $(\log_2(p) = 128, 256)$ .

|                  | k   | Time taken (ms) |
|------------------|-----|-----------------|
| Castryk–Decru    | 225 | 1.51            |
| (2021)           | 462 | 4.81            |
| Decru–Kunzweiler | 240 | 5.99            |
| (2023)           | 477 | 18.29           |
| This work        | 225 | 0.18            |
| THIS WORK        | 462 | 0.53            |

We also give a implementation of our algorithms in SageMath/Python which returns the precise cost.

Maria Corte-Real Santos (UCL)