Efficient (3, 3)-isogenies between fast Kummer surfaces

Maria Corte-Real Santos¹ Craig Costello² Benjamin Smith³

1University College London

2Microsoft Research, Redmond

 3 INRIA & Laboratoire d'Informatique de l'École polytechnique (LIX)

ANTS XVI 2024

 Ω

Let \mathbb{F}_q be a finite field of characteristic $p > 5$.

Problem

Given an elliptic curve E defined over \mathbb{F}_q *and a finite subgroup G of* $E(\mathbb{F}_q)$ *, compute the quotient isogeny*

$$
\varphi: E \longrightarrow E' := E/G.
$$

This was solved by Vélu (1971) (when E is given by a Weierstrass equation).

 290

Given the Jacobian $\mathcal I$ *of a genus-2 curve* $\mathcal C$ *defined over* $\mathbb F_q$ *and a finite subgroup* G *of* $\mathcal I$, *compute the quotient isogeny*

 $\varphi : \mathcal{J} \longrightarrow \mathcal{J}' := \mathcal{J}/\mathcal{G}.$

We want to find efficient algorithms to compute these isogenies where $G \subset \mathcal{J}[N]$ for N odd.

Our motivation comes from isogeny-based cryptography: low-degree isogenies in higher dimension gives high-degree isogenies in genus 1 (e.g., SQIsign2D).

Using the Kummer Surface

Let *J* be the Jacobian of a genus-2 hyperelliptic curve *C* defined over \mathbb{F}_q . *J* is an abelian surface with projective embedding in $\mathbb{P}^{15} \rightsquigarrow$ not efficient!

Idea: follow Cassels–Flynn to replace *J* with the *Kummer surface*. The Kummer surface *K* of a Jacobian $\mathcal J$ is the quotient $\mathcal J/\{\pm 1\}$. It is the genus-2 analogue of the *x*-coordinate.

The surface K can be embedded as a quartic surface in \mathbb{P}^3 .

It has 16 nodes (point singularities) given by the image of $J[2]$ in K.

Let N be an odd prime. Given a Kummer surface K defined over F*^q and (the image of) a maximal* N-Weil isotropic subgroup $G \subset \mathcal{K}$, compute the quotient isogeny

$$
\varphi:\mathcal{K}\longrightarrow\mathcal{K}':=\mathcal{K}/G.
$$

A subgroup $\widetilde{G} \subseteq \mathcal{J}[N]$ is a *maximal N-Weil isotropic subgroup* if $e_N(\widetilde{P}, \widetilde{Q}) = 1$ for all \widetilde{P} , $\widetilde{Q} \in \widetilde{G}$ and is not contained in any other isotropic subgroup.

Let N be an odd prime. Given a Kummer surface K defined over F*^q and (the image of) a maximal N-Weil isotropic subgroup* $G \subset \mathcal{K}$ *, compute the quotient isogeny*

$$
\varphi : \mathcal{K} \longrightarrow \mathcal{K}' := \mathcal{K}/G.
$$

The quotient isogeny $\Phi : \mathcal{J} \to \mathcal{J}' := \mathcal{J}/\widetilde{G}$ descends to a morphism of Kummer surfaces $\varphi : \mathcal{K} \to \mathcal{K}'$, such that the following diagram commutes:

Let N be an odd prime. Given a Kummer surface K defined over F*^q and (the image of) a maximal N-Weil isotropic subgroup* $G \subset \mathcal{K}$ *, compute the quotient isogeny*

 $\varphi : \mathcal{K} \longrightarrow \mathcal{K}' := \mathcal{K}/\mathcal{G}.$

The quotient isogeny $\Phi : \mathcal{J} \to \mathcal{J}' := \mathcal{J}/\widetilde{G}$ descends to a morphism of Kummer surfaces $\varphi : \mathcal{K} \to \mathcal{K}'$. We set $G := \pi(\widetilde{G})$.

As $G \cong (\mathbb{Z}/N\mathbb{Z})^2$, i.e., $G = \langle R, S \rangle$ with $e_N(\widetilde{R}, \widetilde{S}) = 1$, we call φ an (N, N) -isogeny.

Our result is to give a new efficient method for $N = 3$ (and more generally odd prime N).

 298

K ロ ▶ K 個 ▶ K 결 ▶ K 결 ▶ │ 결

 0.002

m.

 λ and λ

 $\mathcal{L} \left(\mathbf{m} \right) \left(\mathbf{x} \right) = \mathcal{L} \left(\mathbf{m} \right) \left(\mathbf{x} \right) = \mathcal{L} \left(\mathbf{x} \right)$

Following Gaudry (2007), we use the *fast Kummer surface* model.

The Fast Kummer Surface

Let X_1, X_2, X_3, X_4 be coordinates on \mathbb{P}^3 . The equation defining the fast Kummer surface *K* is

$$
\mathcal{K}: X_1^4 + X_2^4 + X_3^4 + X_4^4 - 2E \cdot X_1 X_2 X_3 X_4 - F \cdot (X_1^2 X_4^2 + X_2^2 X_3^2) - G \cdot (X_1^2 X_3^2 + X_2^2 X_4^2) - H \cdot (X_1^2 X_2^2 + X_3^2 X_4^2) = 0,
$$

where E, F, G, H are rational functions in the *fundamental theta constants* a, b, c, $d \in \overline{\mathbb{F}}_p$.

The identity element *K* is $\mathcal{O}_K = (a : b : c : d)$.

General method for computing (*N,N*)-isogenies

Fix odd $N \neq p$. Let $\mathcal{K}[N]$ be the image of $\mathcal{J}[N]$ in \mathcal{K} . Fix $R, S \in \mathcal{K}[N]$ generating the kernel of an (N, N) -isogeny $\varphi : \mathcal{K} \to \mathcal{K}/\langle R, S \rangle$.

Step 1: Find homogeneous functions of degree *N* that are invariant under translation-by-*R*. These forms generate a space *XR*. Repeat for *S*.

Invariant Forms

Let $P = (X_1 : X_2 : X_3 : X_4)$ and $R \in K[N]$. For $I = (i_1, \ldots, i_N) \in \{1, 2, 3, 4\}^N$, compute homogeneous forms of degree *N* defined by

$$
F_{R,N}(I)=\sum_{\tau\in C_N}X_{i_{\tau(1)}}\prod_{k=1}^{(N-1)/2}B_{i_{\tau(2k)},i_{\tau(2k+1)}}(P,[k]R),
$$

where C_N is the cyclic group of order N and B_i *_i* are the biquadratic forms associated to [K](#page-15-0).

General method for computing (*N,N*)-isogenies

Fix odd $N \neq p$. Let $\mathcal{K}[N]$ be the image of $\mathcal{J}[N]$ in \mathcal{K} . Fix $R, S \in \mathcal{K}[N]$ generating the kernel of an (N, N) -isogeny $\varphi : \mathcal{K} \to \mathcal{K}/\langle R, S \rangle$.

Step 1: Find homogeneous functions of degree *N* that are invariant under translation-by-*R*. These forms generate a space *XR*. Repeat for *S*.

 298

化重新润滑剂

General method for computing (*N,N*)-isogenies

Fix odd $N \neq p$. Let $\mathcal{K}[N]$ be the image of $\mathcal{J}[N]$ in \mathcal{K} . Fix $R, S \in \mathcal{K}[N]$ generating the kernel of an (N, N) -isogeny $\varphi : \mathcal{K} \to \mathcal{K}/\langle R, S \rangle$.

Step 1: Find homogeneous functions of degree *N* that are invariant under translation-by-*R*. These forms generate a space *XR*. Repeat for *S*.

Step 2: Compute the intersection $X_{R,S} := X_R \cap X_S$. Then, dim $X_{R,S} = 4$ with basis ψ_1, \ldots, ψ_4 . The morphism

$$
\psi = (\psi_1 : \psi_2 : \psi_3 : \psi_4) : \mathcal{K} \to \widetilde{\mathcal{K}}
$$

has kernel $\langle R, S \rangle$, but $\tilde{\mathcal{K}}$ is *not* a fast Kummer surface.

Step 3: Find a linear transformation $M: \mathcal{K} \to \mathcal{K}'$, where \mathcal{K}' is a fast Kummer surface. Then $\varphi = \mathsf{M} \circ \psi$. To find **M**, we observe: for $T \in \mathcal{K}[2]$

$$
\sigma_{(\varphi(\mathcal{T}))}((\varphi_1: \varphi_2: \varphi_3: \varphi_4)) = \varphi(\sigma_{\mathcal{T}}(X_1: X_2: X_3: X_4)).
$$

We now focus on $N = 3$. Run steps 1 and 2.

The morphism ψ is of the form

$$
\psi_1 := X_1(a_1X_1^2 + a_2X_2^2 + a_3X_2^2 + a_4X_4^2) + a_5X_2X_3X_4
$$

\n
$$
\psi_2 := X_2(b_1X_1^2 + b_2X_2^2 + b_3X_3^2 + b_4X_4^2) + b_5X_1X_3X_4
$$

\n
$$
\psi_3 := X_3(c_1X_1^2 + c_2X_2^2 + c_3X_3^2 + c_4X_4^2) + c_5X_1X_2X_4
$$

\n
$$
\psi_4 := X_4(d_1X_1^2 + d_2X_2^2 + d_3X_3^2 + d_4X_4^2) + d_5X_1X_2X_3
$$

for some a_i , b_i , c_i , $d_i \in \mathbb{F}_q[\mathcal{O}_K, R, S]$.

K ロ ▶ K 何 ▶

G.

We now focus on $N = 3$. Run steps 1 and 2. Apply the linear map (a scaling in this case).

The isogeny φ is of the form

$$
\varphi_1 := X_1(a_1X_1^2 + a_2X_2^2 + a_3X_2^2 + a_4X_4^2) + a_5X_2X_3X_4
$$

$$
\varphi_2 := X_2(a_2X_1^2 + a_1X_2^2 + a_4X_3^2 + a_3X_4^2) + a_5X_1X_3X_4
$$

$$
\varphi_3 := X_3(a_3X_1^2 + a_4X_2^2 + a_1X_3^2 + a_2X_4^2) + a_5X_1X_2X_4
$$

$$
\varphi_4 := X_4(a_4X_1^2 + a_3X_2^2 + a_2X_3^2 + a_1X_4^2) + a_5X_1X_2X_3
$$

for some $a_i \in \mathbb{F}_q[\mathcal{O}_K, R, S]$.

← ロ → → ← 何 →

G.

Precomputation: to compute the (3*,* 3)-isogeny, we precompute *tripling constants*. This requires 12M, 4S and 6a.

Computing Image of Isogeny: Given tripling constants, compute coefficients a_1, \ldots, a_5 defining the isogeny and then the image constants (*a'* : *b'* : *c'* : *d'*). Requires 102M, 8S and 113a.

Pushing points through the isogeny: Given tripling constants and the coefficients *a*1*,..., a*5, compute the image of the point under the isogeny. This requires 26M, 4S and 16a.

We implement and optimise these algorithms in the code accompanying our paper.

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ 『 콘 │ ◆ 9,9,0*

Benchmarks

We compare our algorithms for computing $(3^k, 3^k)$ -isogenies to those due to Castryk–Decru and Decru–Kunzweiler. We ran the algorithms in Magma and average over 100 random inputs for each prime size $(\log_2(p) = 128, 256)$.

We also give a implementation of our algorithms in SageMath/Python which returns the precise cost.

 299