Computation of Fourier coefficients of automorphic forms of type G_2

Aaron Pollack

UC San Diego

ANTS XVI July 2024

Aaron Pollack Computation of cusp forms on G₂

Classical modular forms

Suppose

- ${\rm \bigcirc}\ \Gamma\subseteq {\rm SL}_2({\rm Z}) \hbox{ is a finite index subgroup,}$
- 2 $\ell \ge 0$ is an integer,
- **3** $\mathfrak{h} = \{z \in \mathbf{C} : Im(z) > 0\}$ is the complex upper half-plane.

Recall that $SL_2(\mathbf{R})$ acts on \mathfrak{h} by fractional linear transformations:

$$\gamma z = rac{az+b}{cz+d}$$
 if $\gamma = \left(egin{array}{cc} a & b \\ c & d \end{array}
ight)$.

Modular form

A modular form of weight ℓ and level Γ is a function $f:\mathfrak{h}\to \mathbf{C}$ that satisfies

•
$$f(\gamma z) = (cz + d)^{\ell} f(z)$$
 for all $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma$

- I is holomorphic
- I has "moderate growth"

Fourier expansion

- Suppose (for simplicity) that $\Gamma \supseteq \{ \begin{pmatrix} 1 & n \\ 1 \end{pmatrix} : n \in \mathbf{Z} \}$.
- Then f(z + 1) = f(z),
- and f holomorphic, so

$$f(z) = \sum_{n \in \mathbb{Z}} a_f(n) e^{2\pi i n z}$$
 with $a_f(n) \in \mathbb{C}$.

Moderate growth implies: $a_f(n) = 0$ if n < 0.

Fourier expansion

If f is a modular form,

$$f(z) = \sum_{n \ge 0} a_f(n) e^{2\pi i n z}.$$

The $a_f(n)$ are called the **Fourier coefficients** of f.

The modular forms $M_{\ell}(\Gamma)$ of weight ℓ and level Γ form a finite-dimensional vector space.

A question

Can one compute exactly (on a computer) many Fourier coefficients of a basis of $M_{\ell}(\Gamma)$?

- The answer requires both a theorem, and an implementation.
- The "theorem" in this case might be modular symbols, a trace formula, theta functions, something with multiplying modular forms.

Suppose G is a (non-compact) Lie group, and $\Gamma \subseteq G$ is an infinite discrete subgroup. Let $K \subseteq G$ be a maximal compact subgroup, and (V, ρ) a finite-dimensional representation of K.

A rough definition

A (cuspidal) automorphic form on G of weight ρ and level Γ is a smooth (bounded) function $\varphi: G \to V$ satisfying

•
$$\varphi(gk) = \rho(k)^{-1}\varphi(g)$$
 for all $k \in K$;

$${\color{black} {2 \over 9}} \hspace{0.1 cm} \varphi(\gamma g) = \varphi(g) \hspace{0.1 cm} \text{for all} \hspace{0.1 cm} \gamma \in \mathsf{\Gamma};$$

• φ satisfies some differential equation $D\varphi \equiv 0$ that comes from group theory.

Automorphic forms specialize to modular forms, by taking $G = SL_2(\mathbf{R})$.

直 ト イヨ ト イヨト

Can they be computed?

The motivating question for this work is if, in certain cases, the modular forms can be computed (in some sense to be made precise) on a computer.

- To answer this question requires a way of representing modular forms as, for example, sequences of numbers. This is a theorem, like the existence of some kind of Fourier expansion
- A theorem that allows one to compute these sequences of numbers in finite time
- An implementation for Step 2.

In this talk, I focus on the case of $G = G_2$, the exceptional group.

Modular forms on G_2

- *G*₂: a **noncompact** simple Lie group of dimension 14
- $K = (SU(2) \times SU(2))/\mu_2$ is a maximal compact subgroup of G_2
- $V_{\ell} := Sym^{2\ell}(C^2) \boxtimes 1$, $\ell \ge 1$ integer, a representation of K.

Definition (Gross-Wallach, Gan-Gross-Savin)

Suppose $\Gamma \subseteq G_2$ a congruence subgroup. A cuspidal modular form on G_2 of weight ℓ and level Γ is a smooth, bounded function $\varphi : \Gamma \setminus G_2 \to \mathbf{V}_{\ell}$ satisfying **1** $\varphi(gk) = k^{-1} \cdot \varphi(g)$ for all $k \in K$ and **2** $D_{\ell} \varphi \equiv 0$ for a certain special linear differential operator D_{ℓ} .

We denote the cuspidal forms of weight ℓ and level Γ by $S_{\ell}(\Gamma)$. They form a finite-dimensional complex vector space.

• • = • • = •

Theorem 1 (P. 2020)

Fix $\ell \geq 1$. For every real binary cubic form f, there is an explicit function $W_f : G_2 \to \mathbf{V}_{\ell}$. If φ a cuspidal modular form of weight ℓ and level Γ (sufficiently large), then

$$\varphi(g)$$
 " = " $\sum_{\text{Disc}(f)>0,f \text{ integral}} a_{\varphi}(f) W_f(g)$

for some $a_{\varphi}(f) \in \mathbf{C}$.

Remark

The existence of the Fourier coefficients (without the explicit functions W_f) was given by Gan-Gross-Savin, crucially using a result of Wallach.

Fourier coefficients on G_2 are computable

Remark

The Fourier coefficients $a_{\varphi}(f)$ are defined in a very transcendental way. There is no *a priori* reason that they might be exactly computable, in even a single nonzero example.

Nevertheless, in a previous work:

Theorem 2 (P. 2023)

Suppose $\ell \ge 6$ is even. The Fourier coefficients of elements of elements of $S_{\ell}(\Gamma)$ can be computed in terms of vectors in finite-dimensional representations of the exceptional group F_4 . There is a basis of $S_{\ell}(\Gamma)$ for which every Fourier coefficient of an element of this basis lies in \mathbf{Q}^{cyc} , the cyclotomic extension of \mathbf{Q} .

The content of the present work is to implement the formulas of this theorem and to get consequences of these calculations.

Theta functions work

- No modular symbols: So far as has been proved, there is no real analogue of modular symbols to the case of *G*₂
- Ont the trace formula: The trace formula, even if you could make it explicit, would give you eigenvalues of Hecke operators. This is great information, but it doesn't tell you the Fourier coefficients.
- So **No multiplication**: You cannot multiply modular forms on G_2 .
- Theta functions: It turns out, there is an analogue of harmonic theta functions on G_2 . Theorem 2 on the previous page is the combination of two separate theorems:
 - (P.) The existence of an analogue to G₂ of harmonic theta functions: cuspidal modular forms, whose Fourier coefficients can be written down concretely.
 - (P.) A theorem that says that every cuspidal QMF (of even weight at least 6) is one of these harmonic theta functions.

回 とう キャン・キャン

Theta functions, quickly

The data

- **(**) *J*, the 27 = 1 + 26-dimensional real-representation of *F*₄.
- **2** $\Lambda \subseteq J$ a lattice.
- Special points $I, E \in \Lambda$ (Elkies-Gross)
- Certain allowable elements $X \wedge Y \in \wedge^2 J \otimes \mathbf{C}$.
- An integer $m \geq 1$.

The output

- Cusp forms $\Theta_{I,m}(X;Y)(g)$, $\Theta_{E,m}(X,Y)(g)$ on G_2 of weight 4+m
- O To each *T* ∈ Λ, there are two associated monic binary cubic forms $f_{T,I}(u, v) = u^3 + b_I(T)u^2v + c_I(T)uv^2 + d(T)v^3$ and similarly $f_{T,E}(u, v)$.
- Solution A polynomial $Q_I(T; X, Y)$ (cubic in T, linear in X and Y).
- The f(u, v) Fourier coefficient of Θ_{I,m} is a sum of Q_I(T; X, Y)^m for all T with f_{T,I} = f.

A result of Rahul Dalal

In case $\Gamma = G_2(\mathbf{Z})$, Rahul Dalal has computed dim $_{\ell} S_{\ell}(G_2(\mathbf{Z}))$ explicitly, using the Arthur-Selberg trace formula.

- The smallest nonzero example, $F_6(g)$, occurs in weight $\ell = 6$. The space $S_6(G_2(\mathbf{Z}))$ is one-dimensional.
- The spaces S₉(G₂(Z)) and S₁₁(G₂(Z)) are also one-dimensional. Let F₉(g), F₁₁(g) denote basis elements.
- It follows from Dalal's dimension formula that dim $S_{\ell}(G_2(\mathbf{Z}))$ grows like ℓ^5 .

An example

In the table, the ordered 3-tuple is the (b, c, d) of the monic binary cubic $f(u, v) = u^3 + bu^2v + cu^2v + dv^3$, and a(f) is the associated Fourier coefficient of $F_6(g)$.

$f(u, v) = u^3 + bu^2v + cu^2v + dv^3$	a(f)	
(0, -3, -1)	48600	
(0, -3, 0)	1620	
(0, -2, -1)	15	
(0, -2, 0)	1680	
(0, -1, 0)	-7	
(1, -3, -3)	-10080	
(1, -3, -2)	25575	
(1, -3, -1)	28800	
(1, -3, 0)	-1485	
(1, -2, -2)	-30	
(1, -2, -1)	12600	
(1, -2, 0)	-63	

Aaron Pollack Computation of cusp forms on G₂

A conjecture of Gross

- Solution The Arthur Multiplicity Conjecture predicts that certain special cusp forms on G₂ of weight ℓ "come from" classical cusp forms of weight 2ℓ.
- Associated to an SL₂(Z)-orbit of an integral binary cubic form f is a cubic ring R_f. We write a_φ(R) := a_φ(f) if R = R_f. (The Fourier coefficients of φ ∈ S_ℓ(G₂(Z)) are constant on SL₂(Z)-orbits of integral binary cubics.)

A conjecture of Gross

Suppose $\alpha \in S_{2\ell}(SL_2(\mathbb{Z}))$ is an eigenform, and $F_\alpha \in S_\ell(G_2(\mathbb{Z}))$ is its lift, as predicted by Arthur. Suppose *E* is a totally real cubic etale algebra, *R* is the maximal order in *E*, and let V_E be the two-dimensional motive satisfying $\zeta_E(s) = \zeta_Q(s)L(V_E, s)$. The square Fourier coefficients $a_{F_\alpha}(R)^2$ should be related to the value of the *L*-function $L(\alpha \times V_E, s)$ at its center point.

- 4 同 ト 4 ヨ ト 4 ヨ ト

The space of cusp form $S_{18}(SL_2(\mathbf{Z}))$ and $S_{22}(SL_2(\mathbf{Z}))$ are one-dimensional.

• If Arthur is correct, the cusp forms F_9 , F_{11} on G_2 should be lifts of these SL₂ cusp forms.

Suppose *F* is a real quadratic field, and $E = \mathbf{Q} \times F$. Let $\alpha \in S_{2\ell}(SL_2(\mathbf{Z}))$ be an eigenform, with ℓ odd. Then $L(\alpha \times V_E, s)$ vanishes at the center.

• If Gross' conjecture is correct, we must have $a_{\varphi}(\mathbf{Z} \times \mathcal{O}_F) = 0$ for $\varphi = F_9, F_{11}$.

Theorem 3

For all real quadratic F, one has $a_{\varphi}(\mathbf{Z} \times \mathcal{O}_{F}) = 0$ for $\varphi = F_{9}, F_{11}$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Proof.

- By computer calculation, there are X, Y allowable so that Θ_{E,m}(X, Y)(g) ≠ 0, for m = 5,7.
- **2** By one-dimensionality (Dalal), $\Theta_{E,5}(X, Y) = F_9$, $\Theta_{E,7}(X, Y) = F_{11}$.
- So Let $R = \mathbf{Z} \times \mathcal{O}_F$ and $f_R(u, v)$ an associated binary cubic.
- Properties (Elkies-Gross) of the pointed lattice (Λ, E) imply that the sum giving the Fourier coefficient of $\Theta_{E,m}(X, Y)$ corresponding to $f_R(u, v)$ is empty.
- The property in (4) is special to (Λ, E); it does not hold for (Λ, I).

.

Thank you for your attention!

æ