Fast square-free decomposition of integers using class groups

Erik Mulder

17 July 2024

Erik Mulder

Fast square-free decomposition of integers using class groups

1/16

Thanks to the organizers

Figure: Cool guy

Erik Mulder

Fast square-free decomposition of integers using class groups

2/16

Definition

Square-free decomposition problem: Let $n = a^2 b$ with $a, b \in \mathbb{N}$ and b square-free. Find a and b.

- Who doesn't like integer factorization?
- Cryptographic systems that use $n = p^2 q$ or $n = p^k q$ rely on the hardness of factoring of n.
- Computing ring of integers of number field
- Computing endomorphism ring of an elliptic curve over a finite field

Theorem

Assume some heuristic assumptions. Fix $0 \le \alpha \le 1$. Then for all integers $n = a^2 b$ with $b = n^{\alpha}$, there is an algorithm that finds the square-free decomposition of n in expected time:

$$\mathcal{O}(L_b[1/2,1]) = \mathcal{O}(L_n[1/2,\sqrt{\alpha}]),$$

where

$$L_b[\alpha, c] = e^{(c+o(1))\ln(b)^{\alpha}(\ln\ln(b))^{1-\alpha}}$$

If a, b are distinct primes of roughly the same cryptographic size, then this is the current fastest method.

- $f(x,y) = ax^2 + bxy + cy^2 = (a, b, c)$, where $a, b, c \in \mathbb{Z}$.
- $D = D_f = b^2 4ac$ is the *discriminant* of *f*. We always have D < 0.
- f is primitive if gcd(a, b, c) = 1.
- f, g are equivalent if there exists $A = \begin{pmatrix} p & q \\ r & s \end{pmatrix} \in \Gamma$ such that $f(x, y) = g(A \cdot (x, y)^T) = g(px + qy, rx + sy)$. Then $D_f = D_g$.
- If |b| < a < c, then f is reduced. Every form is equivalent to a unique reduced form.
- C(D) is the *class group* of forms of discriminant D. With composition as its group operation. If $D = 0 \mod 4$, then $e_D = (1, 0, \frac{-D}{4})$.
- The class number $h(D) \approx \sqrt{D}$ is the order of C(D).
- Why not use ideals instead of forms?

- Let $n \in \mathbb{N}$, possibly square-free
- Take a random $f \in C(-4n)$
- Construct k, consisting of powers of all primes up to some B
- Pray that $f^k = e_{-4n}$, i.e. h(-4n) is smooth
- If so, try to construct g of order 2
- Then g is of the form $(d, 0, \frac{n}{d})$
- The complete factorization of *n* can be found this way
- If h(-4n) is not smooth, try C(-4ns) instead for some small square-free s
- Quite similar to the ECM

6/16

Definition

Let p be a prime and D a discriminant. We say $f \in C(Dp^2)$ is derived from $g \in C(D)$ if there exists a 2 × 2 integer matrix A with det(A) = psuch that $f(x, y) = g(A \cdot (x, y)^T)$.

Proposition

- For every form f ∈ C(Dp²) there exists a unique g ∈ C(D) up to equivalence such that f is derived from g.
- For each g = (a, b, c) ∈ C(D) there are exactly p − (^D/_p) inequivalent primitive forms in C(Dp²) that are derived from g.
- These forms are:

$$(ap^2, p(b+2ah), ah^2+bh+c)$$
 for $0 \le h \le p-1$
and (a, bp, cp^2)

Corollary

$$h(Dp^2) = h(D) \cdot (p - \left(\frac{D}{p}\right)).$$

Proposition

If $f_1, f_2 \in C(Dp^2)$ are derived from $g_1, g_2 \in C(D)$ respectively, then $f_1 \cdot f_2$ is derived from $g_1 \cdot g_2$.

The new square-free decomposition algorithm I

From now on, $n = p^2 b$, with p prime.

Proposition

Suppose $g \in C(-4n)$ is derived from $e_{-4b} = (1, 0, b) \in C(-4b)$ and $g \not\sim e_{-4n} = (1, 0, n)$. Furthermore, suppose that g is reduced and $b > p^2$. Then

$$g = (p^2, 2pk, k^2 + b)$$

for some $-p/2 \le k \le p/2$.

Lemma

Suppose $g \in C(-4n)$ is derived from e_{-4b} . Let r be a prime with $r \neq p$. Lift g to some $h \in C(-4nr^2)$. Then $I = h^{r - \left(\frac{-4n}{r}\right)}$ is not only derived from e_{-4b} , but also from e_{-4br^2} .

The condition of the proposition now becomes: $br^2 > p^2$, so take $r > \sqrt{n}$.

Erik Mulder

New factorization plan:

- Take random $f \in C(-4n)$, compute $g = f^k$
- If $g = e_{-4n}$, then continue as Schnorr-Lenstra
- Otherwise, pray that g is derived from e_{-4b} , i.e. h(-4b) is smooth
- Let $r > \sqrt{n}$ be a prime.
- Lift g to some $h \in C(-4nr^2)$ and compute $l = h^{r (\frac{-4n}{r})}$.
- Reduce I and read off factor p^2 of n
- If h(-4b) is not smooth, try C(-4ns) instead for some small square-free s (then h(-4bs) needs to be smooth)

Theorem

Assume some heuristic assumptions. Fix $0 \le \alpha \le 1$. Then for all integers $n = a^2 b$ with $b = n^{\alpha}$, there is an algorithm that finds the square-free decomposition of n in expected time:

$$\mathcal{O}(L_b[1/2,1]) = \mathcal{O}(e^{(1+o(1))\sqrt{\ln(b)\ln\ln(b)}}) = \mathcal{O}(L_n[1/2,\sqrt{\alpha}]).$$

• The runtime follows from optimizing the size of the exponent k.

- In stage 1, our k consisted of all primes up to some B.
- We then computed $g = f^k$ and hoped that g is derived from e_{-4b} .
- If not, then quite often we are missing just one prime factor of h(-4b).
- In stage 2, we take some $B_2 > B$ and check for each prime $q \in [B, B_2]$ separately if g^q is derived from e_{-4b} .
- Using a generic method, we can take $B_2 = B \ln(B)$ without increasing the asymptotic runtime per C(-4ns) that we try.
- Roughly a factor ln(ln(b)) fewer groups have to be tried this way.

- Algorithms like ECM have a much better stage 2
- Completely different, with FFT or Pollard rho method
- Roughly $B_2 = B^2$ can be used there (instead of $B_2 = B \ln(B)$)
- Roughly a factor In(b) fewer groups would have to be tried that way.
- Please help!

Timings I

Let $n = p^2 q$ with $p \approx q$.

	$qpprox 10^{15}$	$qpprox 10^{20}$	$q pprox 10^{25}$	$q pprox 10^{30}$	$q pprox 10^{35}$
Mean time with stage 2	0.11	0.80	5.16	30.30	135.91
Mean time only stage 1	0.16	1.63	11.65	66.71	357.74
Mean ECM time	0.07	1.01	14.15	141.78	1549.16

Table: Comparison between factorization algorithms, in seconds

(B)

	$qpprox 10^{20}$	$qpprox 10^{30}$	$qpprox 10^{40}$	$qpprox 10^{50}$
Mean time NFS	61.17 s	22.82 m	572.51 m	\sim 8 d
Mean time with stage 2	0.72 s	33.63 s	9.74 m	174.47 m
Mean number of groups	6.19	26.80	63.54	206.36

Table: Comparison with the NFS

Image: A matrix

A B M A B M

Thank you!

Please find a better stage 2 :)

Erik Mulder

Fast square-free decomposition of integers using class groups