Modules over orders, conjugacy classes of integral matrices and abelian varieties over finite fields

Stefano Marseglia

University of French Polynesia

July 18 2024 - ANTS XVI - MIT

Back in Bristol...during the RUMP session

Don't forget to motivate your answers. The use of the (Magma) calculator is allowed.

RUMP Session ANTS XV 10 August 2022

Stefano Marseglia

- Let R be an integral domain with unity.
- $A, B \in Mat_{n \times n}(R)$ are *R*-conjugate $(A \sim_R B)$ if AP = PB for some $P \in GL_n(R)$.
- The minimal polynomial m(x) of A ∈ Mat_{n×n}(R) is the monic polynomial of smallest degree such that m(A) = O (the zero n×n matrix).
- The characteristic polynomial of $A \in Mat_{n \times n}(R)$ is $det(xI_n A)$.

Question 1: Are the following two matrices \mathbb{Q} -conjugate? Are they \mathbb{Z} -conjugate?

$$A = \begin{pmatrix} 0 & -1 \\ 5 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} -1 & 2 \\ -3 & 1 \end{pmatrix}$$

Answer(s): Over \mathbb{Q} : yes! Same characteristic polynomial $x^2 + 5$, which is irreducible. But...

Over \mathbb{Z} : no! Why?

Fix monic polynomials $m = m_1 \cdots m_n$ and $h = m_1^{s_1} \cdots m_n^{s_n}$ in $\mathbb{Z}[x]$ with

- each m_i irreducible and
- $m_i \neq m_j$ if $i \neq j$. (i.e. *m* is squarefree)

Question 2 Can we describe the representatives of the \mathbb{Z} -conjugacy classes of matrices with:

- minimal polynomial *m*, and
- characteristic polynomial h?

Answer:

Theorem ((generalized) Latimer-MacDuffee)

The order
$$\mathbb{Z}[\pi] = \frac{\mathbb{Z}[x]}{(m)}$$
 acts on $V = \left(\frac{\mathbb{Q}[x]}{m_1}\right)^{s_1} \times \ldots \times \left(\frac{\mathbb{Q}[x]}{m_n}\right)^{s_n}$.
We have a bijection

$$\{\mathbb{Z}[\pi] \text{-lattices in } V \}_{\cong \mathbb{Z}[\pi]}$$

$$\{ \text{matrices with min. poly. m and char. poly. h} \}_{\nearrow \mathbb{Z}}$$

Example

If
$$h = x^2 + 5$$
 then $K = V = \mathbb{Q}(\sqrt{-5})$.

The conjugacy classes of matrices with char. poly *h* are in bijection with $Pic(\mathcal{O}_{\mathcal{K}})$, which has 2 elements.

Proof (idea):

- Let *M* be a $\mathbb{Z}[\pi]$ -lattice in *V* and fix a \mathbb{Z} -basis \mathscr{B} .
- Let A be the matrix representing the multiplication-by- π wrt \mathscr{B} .
- The induced map is well-defined and injective.
- For the 'surjectivity' part: take the \mathbb{Z} -span of 'algebraic eigenvectors'.

What about abelian varieties? **Question 3** Fix a Weil polynomial $h = m_1^{s_1} \cdots m_n^{s_n}$ which is ordinary over \mathbb{F}_q , or over \mathbb{F}_p and without real roots. How do you compute abelian varieties over \mathbb{F}_q with char. poly of Frobenius h? (up to \mathbb{F}_q -isomorphism)? **Answer:** Do the same thing with $\mathbb{Z}[\pi, q/\pi]$ instead of $\mathbb{Z}[\pi]$:

Theorem (Deligne/Centelghe-Stix)

$$\begin{aligned} \left\{ abelian \text{ varieties with char. poly. } h \right\}_{\simeq \mathbb{F}_{q}} \\ & \left\{ \mathbb{Z}[\pi, q/\pi] \text{-lattices in } V = \left(\frac{\mathbb{Q}[x]}{m_{1}}\right)^{s_{1}} \times \ldots \times \left(\frac{\mathbb{Q}[x]}{m_{n}}\right)^{s_{n}} \right\}_{\simeq \mathbb{Z}[\pi, q/\pi]} \end{aligned}$$

How do we make these two theorems effective?

9 Find a 'finite box' that contains representatives of all isomorphism classes.9 (Use other people's work to) pick out a minimal set of representatives.

Set-up:

- K_1, \ldots, K_n number fields, with ring of integers $\mathcal{O}_i \subset K_i$.
- $K = K_1 \times \ldots \times K_n$.
- $\mathcal{O} = \mathcal{O}_1 \times \ldots \times \mathcal{O}_n$, the maximal order of K.
- s_1, \ldots, s_n integers > 0, $V = K_1^{s_1} \times \ldots \times K_n^{s_n}$, with the component-wise diagonal action of K.
- for an order R in K, set $\mathscr{L}(R, V) = \{R \text{-lattice in } V\}.$
- By the Jordan-Zassenhaus Theorem, $\mathscr{L}(R,V)/\simeq_R$ is finite.

Proposition (Steinitz)

Let *M* be in $\mathscr{L}(\mathcal{O}, V)$. Then there are fractional \mathcal{O}_i -ideals I_i and an \mathcal{O} -linear isomorphism

$$M\simeq\bigoplus_{i=1}^n \left(\mathscr{O}_i^{\oplus(s_i-1)}\oplus I_i \right).$$

The isomorphism class of M is uniquely determined by the isomorphism class of the fractional \mathcal{O} -ideal $I = I_1 \oplus \cdots \oplus I_n$.

- Let $\mathfrak{f} = (R : \mathcal{O}) = \{x \in K : x\mathcal{O} \subseteq R\}$ be the conductor of R in \mathcal{O} .
- Write $\mathfrak{f} = \bigoplus_{i=1}^{n} \mathfrak{f}_i$, \mathfrak{f}_i a fractional \mathcal{O}_i -ideal in K_i .

Theorem

Let *M* be in $\mathscr{L}(R, V)$. Then there exist *M'* in $\mathscr{L}(R, V)$, and fractional \mathcal{O}_i -ideals I_i such that

- $M' \simeq M$ as an *R*-module.
- $M'\mathcal{O} = \bigoplus_{i=1}^n \left(\mathcal{O}_i^{\oplus(s_i-1)} \oplus I_i \right).$

•
$$\bigoplus_{i=1}^{n} \left(\mathfrak{f}_{i}^{\oplus(s_{i}-1)} \oplus \mathfrak{f}_{i} I_{i} \right) \subseteq M' \subseteq \bigoplus_{i=1}^{n} \left(\mathcal{O}_{i}^{\oplus(s_{i}-1)} \oplus I_{i} \right).$$

Proof:

By Steinintz: there are I_i 's and an \mathcal{O} -isomorphism such that

$$\psi: M\mathcal{O} \to \bigoplus_{i=1}^n \Big(\mathcal{O}_i^{\oplus(s_i-1)} \oplus I_i \Big).$$

Set $M' = \psi(M)$. QED

Stefano Marseglia (UPF)

• The previous theorem tells us that $M \in \mathcal{L}(R, V)$ admits an isomorphic copy M' among the lifts to V of the finitely many sub-R-modules of

$$\mathscr{Q}(I) = \frac{\mathscr{O}_{1}^{\oplus(s_{1}-1)} \oplus I_{1} \oplus \cdots \oplus \mathscr{O}_{n}^{\oplus(s_{n}-1)} \oplus I_{n}}{\mathfrak{f}_{1}^{\oplus(s_{1}-1)} \oplus \mathfrak{f}_{1}I_{1} \oplus \cdots \oplus \mathfrak{f}_{n}^{\oplus(s_{n}-1)} \oplus \mathfrak{f}_{n}I_{n}}$$

- For each fractional \mathcal{O} -ideal $I = \bigoplus_i I_i$, we have an \mathcal{O} -isomorphism $\Psi_I : \mathcal{Q}(I) \to \mathcal{Q}(\mathcal{O})$ inducing a bijection between the sub-*R*-modules.
- Important: there are algorithms IsIsomorphic that answer the following question: given $M, M' \in \mathcal{L}(R, V)$, is there an *R*-linear isomorphism $M \simeq M'$? See:
 - Bley, Hofmann, Johnston. Computation of lattice isomor- phisms and the integral matrix similarity problem, (2022), in Nemo/Hecke, or
 - Eick, Hofmann, O'Brien. The conjugacy problem in $GL(n,\mathbb{Z})$, (2019), in Magma.

Algorithm

- **1** Enumerate all sub-*R*-modules of $\mathscr{Q}(\mathscr{O})$.
- **2** Compute the set $\mathcal{M}_{\mathcal{O}}$ of their lifts to V (via the natural quotient map).
- Use IsIsomorphic, to sieve-out from M_O a set L_O of representative of the R-isomorphism classes.
- For each class $[I] \in \operatorname{Pic}(\mathcal{O})$ compute $\Psi_I : \mathcal{Q}(I) \to \mathcal{Q}(\mathcal{O})$.
- **5** Define \mathscr{L}_I as the 'pull-back' of $\mathscr{L}_{\mathscr{O}}$ vie Ψ_I .
- **o** $Return <math>\sqcup_{I} \mathscr{L}_{I}.$

Example

Let

$$m_1 = x^2 - x + 3,$$
 $m_2 = x^2 + x + 3,$
 $m = m_1 m_2,$ $h = m_1^2 m_2.$

Set: $K_i = \mathbb{Q}[x]/m_i$, $K = K_1 \times K_2 = \mathbb{Q}[\pi]$, $V = K_1^2 \times K_2$, $E = \mathbb{Z}[\pi]$, $R = \mathbb{Z}[\pi, 3/\pi]$. Then:

- the Z-conj. classes of 6 × 6-matrices with min. poly m and char. poly h are in bijection with ℒ(E, V)/ ≃_E: there is 4 of them.
- the \mathbb{F}_3 -isomorphism classes of abelian varieties in the \mathbb{F}_3 -isogeny class determined by the 3-Weil polynomial *h* are in bijection with $\mathscr{L}(R, V) / \simeq_R$: there is 2 of them.