Modules over orders, conjugacy classes of integral matrices and abelian varieties over finite fields

Stefano Marseglia

University of French Polynesia

July 18 2024 - ANTS XVI - MIT

Back in Bristol... during the RUMP session

Don't forget to motivate your answers. The use of the (Magma) calculator is allowed.

 000 **COLLA** ces. **Common Street** \sim Stefano Marseglia 10 RUMP Session ANTS XV 10 August 2022 1/5

- \bullet Let R be an integral domain with unity.
- \bullet A, B ∈ Mat_{n×n}(R) are R-conjugate (A ~ R B) if AP = PB for some P ∈ GL_n(R).
- The minimal polynomial $m(x)$ of $A \in Mat_{n \times n}(R)$ is the monic polynomial of smallest degree such that $m(A) = O$ (the zero $n \times n$ matrix).
- The characteristic polynomial of $A \in Mat_{n \times n}(R)$ is det(xI_n − A).

Question 1: Are the following two matrices Φ -conjugate? Are they \mathbb{Z} -conjugate?

$$
A = \begin{pmatrix} 0 & -1 \\ 5 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} -1 & 2 \\ -3 & 1 \end{pmatrix}
$$

Answer(s):

Over $\mathbb Q$: yes! Same characteristic polynomial $x^2 + 5$, which is irreducible.

But...

Over \mathbb{Z} : no! Why?

Fix monic polynomials $m = m_1 \cdots m_n$ and $h = m_1^{s_1} \cdots m_n^{s_n}$ in $\mathbb{Z}[x]$ with

- each m_i irreducible and
- $m_i \neq m_j$ if $i \neq j$. (i.e. m is squarefree)

Question 2 Can we describe the representatives of the \mathbb{Z} -conjugacy classes of matrices with:

- \bullet minimal polynomial m , and
- \bullet characteristic polynomial h ?

Answer:

Theorem ((generalized) Latimer-MacDuffee)

The order
$$
\mathbb{Z}[\pi] = \frac{\mathbb{Z}[x]}{(m)}
$$
 acts on $V = \left(\frac{\mathbb{Q}[x]}{m_1}\right)^{s_1} \times \dots \times \left(\frac{\mathbb{Q}[x]}{m_n}\right)^{s_n}$.
We have a bijection

$$
\{ \mathbb{Z}[\pi] \text{-lattices in } V \}_{\text{max}} \}
$$
\n
$$
\{\text{matrices with } \min. \text{ poly. } m \text{ and } \text{char. } \text{poly. } h \}_{\text{max}}
$$

Example

If
$$
h = x^2 + 5
$$
 then $K = V = \mathbb{Q}(\sqrt{-5})$.

The conjugacy classes of matrices with char. poly h are in bijection with Pic(\mathcal{O}_K), which has 2 elements.

Proof (idea):

- Let M be a $\mathbb{Z}[\pi]$ -lattice in V and fix a \mathbb{Z} -basis \mathscr{B} .
- Let A be the matrix representing the multiplication-by- π wrt \mathscr{B} .
- The induced map is well-defined and injective.
- For the 'surjectivity' part: take the Z-span of 'algebraic eigenvectors'.

What about abelian varieties? **Question 3** Fix a Weil polynomial $h = m_1^{s_1} \cdots m_n^{s_n}$ which is ordinary over \mathbb{F}_q , or over \mathbb{F}_p and without real roots. How do you compute abelian varieties over F_q with char. poly of Frobenius h? (up to \mathbb{F}_q -isomorphism)? **Answer:** Do the same thing with $\mathbb{Z}[\pi, q/\pi]$ instead of $\mathbb{Z}[\pi]$:

Theorem (Deligne/Centelghe-Stix)

{abelian varieties with char. poly.
$$
h
$$
} \times
\n
$$
\begin{cases}\n\mathbb{Z}[\pi, q/\pi]\text{-lattices in } V = \left(\frac{\mathbb{Q}[x]}{m_1}\right)^{s_1} \times \dots \times \left(\frac{\mathbb{Q}[x]}{m_n}\right)^{s_n}\right\} \times \mathbb{Z}[\pi, q/\pi]\n\end{cases}
$$

How do we make these two theorems effective?

1 Find a 'finite box' that contains representatives of all isomorphism classes. ² (Use other people's work to) pick out a minimal set of representatives.

Set-up:

- K_1, \ldots, K_n number fields, with ring of integers $\mathcal{O}_i \subset K_i$.
- $K = K_1 \times \ldots \times K_n$
- \odot $\mathcal{O} = \mathcal{O}_1 \times ... \times \mathcal{O}_n$, the maximal order of K.
- $s_1,...,s_n$ integers > 0 , $V = K_1^{s_1} \times ... \times K_n^{s_n}$, with the component-wise diagonal action of K.
- for an order R in K, set $\mathscr{L}(R,V) = \{R\}$ -lattice in $V\}$.
- **•** By the Jordan-Zassenhaus Theorem, $\mathcal{L}(R, V)/\simeq_R$ is finite.

Proposition (Steinitz)

Let M be in $\mathscr L(\mathscr O, V)$. Then there are fractional $\mathscr O_i$ -ideals I_i and an $\mathscr O$ -linear isomorphism

$$
M \simeq \bigoplus_{i=1}^n \left(\mathcal{O}_i^{\oplus (s_i-1)} \oplus I_i\right).
$$

The isomorphism class of M is uniquely determined by the isomorphism class of the fractional \mathcal{O} -ideal $I = I_1 \oplus \cdots \oplus I_n$.

- Let $f = (R : \mathcal{O}) = \{x \in K : x\mathcal{O} \subseteq R\}$ be the conductor of R in \mathcal{O} .
- Write $\mathfrak{f} = \bigoplus_{i=1}^n \mathfrak{f}_i$, \mathfrak{f}_i a fractional \mathscr{O}_i -ideal in K_i .

Theorem

Let M be in $\mathscr{L}(R,V)$. Then there exist M' in $\mathscr{L}(R,V)$, and fractional \mathscr{O}_i -ideals I_i such that

- $M' \simeq M$ as an R-module.
- $M' \mathcal{O} = \bigoplus_{i=1}^n \left(\mathcal{O}_i^{\oplus (s_i-1)} \right)$ $i_j^{\oplus (s_i-1)} \oplus I_i$.
- $\bigoplus_{i=1}^n \left(\mathfrak{f}_i^{\oplus (s_i-1)}\right)$ $\mathcal{F}_i^{(s_i-1)} \oplus \mathcal{F}_i I_i$ $\subseteq M' \subseteq \bigoplus_{i=1}^n \left(\mathcal{O}_i^{\oplus (s_i-1)} \right)$ $i^{\oplus (s_i-1)} \oplus I_i$.

Proof:

By Steinintz: there are I_i 's and an $\mathscr O$ -isomorphism such that

$$
\psi: M\mathcal{O} \to \bigoplus_{i=1}^n \Bigl(\mathcal{O}_i^{\oplus (s_i-1)} \oplus I_i\Bigr).
$$

Set $M' = \psi(M)$. QED

Stefano Marseglia (UPF) and [ANTS XVI - MIT](#page-0-0) ANTS 2024 9/12

The previous theorem tells us that $M \in \mathscr{L}(R, V)$ admits an isomorphic copy M' among the lifts to V of the finitely many sub- R -modules of

$$
\mathcal{Q}(I) = \frac{\mathcal{O}_1^{\oplus (s_1-1)} \oplus I_1 \oplus \cdots \oplus \mathcal{O}_n^{\oplus (s_n-1)} \oplus I_n}{f_1^{\oplus (s_1-1)} \oplus f_1 I_1 \oplus \cdots \oplus f_n^{\oplus (s_n-1)} \oplus f_n I_n}.
$$

- For each fractional $\mathscr O$ -ideal $I=\oplus_i I_i$, we have an $\mathscr O$ -isomorphism $\Psi_I:\mathscr Q(I)\to\mathscr Q(\mathscr O)$ inducing a bijection between the sub- R -modules.
- Important: there are algorithms IsIsomorphic that answer the following question: given $M, M' \in \mathscr{L}(R, V)$, is there an R -linear isomorphism $M \simeq M'$? See:
	- Bley, Hofmann, Johnston. Computation of lattice isomor- phisms and the integral matrix similarity problem, (2022), in Nemo/Hecke, or
	- Eick, Hofmann, O'Brien. The conjugacy problem in $GL(n,\mathbb{Z})$, (2019), in Magma.

Algorithm

- **1** Enumerate all sub-R-modules of $\mathcal{Q}(\mathcal{O})$.
- **2** Compute the set \mathcal{M}_{Ω} of their lifts to V (via the natural quotient map).
- **3** Use IsIsomorphic, to sieve-out from \mathcal{M}_{α} a set \mathcal{L}_{α} of representative of the R-isomorphism classes.
- **•** For each class $[I] \in \text{Pic}(\mathcal{O})$ compute $\Psi_I : \mathcal{Q}(I) \to \mathcal{Q}(\mathcal{O})$.
- **5** Define \mathscr{L}_I as the 'pull-back' of $\mathscr{L}_\mathscr{O}$ vie $\Psi_I.$
- 6 Return ⊔ $_1\mathscr{L}_1$.

Example

Let
$$
m_1 = x^2 - x + 3
$$
, $m_2 = x^2 + x + 3$,
\n $m = m_1 m_2$, $h = m_1^2 m_2$.

Set: $K_i = \mathbb{Q}[x]/m_i$, $K = K_1 \times K_2 = \mathbb{Q}[\pi]$, $V = K_1^2 \times K_2$, $E = \mathbb{Z}[\pi]$, $R = \mathbb{Z}[\pi, 3/\pi]$. Then:

- the Z-conj. classes of 6×6 -matrices with min. poly m and char. poly h are in bijection with $\mathscr{L}(E,V)/\simeq_F$: there is 4 of them.
- \bullet the F₃-isomorphism classes of abelian varieties in the F₃-isogeny class determined by the 3-Weil polynomial h are in bijection with $\mathcal{L}(R,V)/\simeq_R$: there is 2 of them.

Thank you!