Computing modular polynomials by deformation

Sixteenth Algorithmic Number Theory Symposium (ANTS XVI)

Sabrina Kunzweiler & Damien Robert July 15th, 2024

Inria, IMB, Bordeaux, France

[Introduction to Modular](#page-1-0) [Polynomials](#page-1-0)

An **elliptic curve** over a field *k* is a smooth projective curve of genus 1 with a *k*-rational point O.

- The *j***-invariant** defines a 1-1 correspondence
	- *j* : {*E* elliptic curve over *k*}/ ∼= → *k*.

An **isogeny** is a nonzero morphism of elliptic curves *f* : *E* → *E* ′ with $f(\mathcal{O}) = \mathcal{O}.$

An ℓ**-isogeny** is an isogeny of degree ℓ with kernel $G \cong \mathbb{Z}/\ell\mathbb{Z}$.

Computing isogenies

Computing an ℓ**-isogenies with Velu's formulae ´**

- ▶ complexity: *O*(*ℓ*) or $\tilde{O}(\sqrt{2})$ ℓ) (sqrt-Vėlu).
- Λ The kernel *G* might only be defined over an extension k'/k .

Computing composite-degree isogenies

Example: *N*-isogeny with $N = 2^n$ and kernel $G = \langle P \rangle$.

complexity: $O(n \log(n)) = O(\log(N))$ (using optimal strategies).

Modular polynomials

The **modular polynomial** is a polynomial $\Phi_{\ell}(X, Y) \in \mathbb{Z}[X, Y]$ with the property that for *E*, *E* ′ elliptic curves, we have

 $\Phi_{\ell}(j(\mathsf{E}),j(\mathsf{E}'))=\mathsf{O} \Leftrightarrow \mathsf{there}\ \mathsf{is}\ \mathsf{an}\ \ell\text{-isogeny}\ \mathsf{E}\to \mathsf{E}'$

Example $\ell = 2$ $\Phi_2(X, Y) = X^3 - X^2Y^2 + 1488X^2Y - 162000X^2 + 1488XY^2 + 40773375XY +$ 8748000000*X* + *Y* ³ − 162000*Y* ² + 8748000000*Y* − 157464000000000.

- Elliptic curve with $j(E) = 739$ $E: y^2 = x^3 + 6x^2 + x$ over \mathbb{F}_{2063^2}
- Evaluated: $\bar{\Phi}_2(X, 739) =$ *X* ³ − 459*X* ² − 835*X* + 334 $=(X-589)(X-205)(X-1728)$ in $\mathbb{F}_{2063^2}[X]$.

Computing modular polynomials

Properties of Φ^ℓ for primes ℓ:

- deg_X(Φ_{ℓ}) = deg_Y(Φ_{ℓ}) = ℓ + 1.
- $\log(c) \le 6\ell \log(\ell) + ...$ for all coefficients *c*.

Total size (in bits): $O(\ell^3 \log \ell)$.

General Chinese Remainder approach

- Compute $\bar{\Phi}_\ell \in \mathbb{F}_p[X,Y]$ for many small primes (around ℓ primes with $\log \ell \approx \log p$)
- Combine the results using *Explicit CRT* to find $\Phi_{\ell} \in \mathbb{Z}[X, Y].$
- used in: Charles-Lauter (2005), Bröker-Lauter-Sutherland (2010), Sutherland (2012), Leroux (2023), this work

How to compute $\bar{\Phi}_{\ell} \in \mathbb{F}_p[X, Y]$? Goal: time $O(\ell^2 \log^c p)$

[Deformations of Elliptic Curves](#page-6-0)

Elliptic curves over $R = k[\epsilon]/(\epsilon^{m+1})$

An **elliptic curve** $\mathcal E$ **over** $R = k[\epsilon]/(\epsilon^{m+1})$ is a a group scheme $\mathcal{E} \rightarrow \mathsf{Spec}(R)$ which is also a smooth, proper, connected curve of genus 1 over *R*.

We say that (\mathcal{E}) is an *m*-th order **deformation** of *E*.

Given $\tilde{j} \in R$ with $j \neq 0, 1728$ (mod ϵ), we can compute E with $j(\mathcal{E}) = \tilde{j}$.

General idea to compute ϕ^ℓ **over** F*p***:** Choose an elliptic curve *E*/F*p*.

- 1. Compute the deformation \mathcal{E}/R with $j(\mathcal{E}) = j(E) + \epsilon$, where $R = \mathbb{F}_p[\epsilon]/(\epsilon^{\ell+2})$
- 2. Compute the evaluated modular polynomial $\phi_{\ell}(j(E) + \epsilon, Y) \in R[Y]$.

3. Substitute
$$
\epsilon = X - j(E)
$$
:

$$
\phi_{\ell}(X,Y) \in \mathbb{F}_p[X,Y]/((X-j(E))^{\ell+2}).
$$

 \blacktriangleright This is the modular polynomial, since $\mathsf{deg}_\mathsf{X}(\phi_\ell) = \ell + \mathsf{1}.$

Let $f:E\to E'$ be an isogeny over $k.$

For any deformation $\mathcal E$ of E , there exists a unique (up to iso) deformation \mathcal{E}' of E' , so that f lifts to an isogeny $\tilde{f}:\mathcal{E}\rightarrow\mathcal{E}'.$

Computing the lift ˜*f* **of an** ℓ**-isogeny** *f*

- 1. Lift the the generator *P* of ker(*f*) to an element $\tilde{P} \in \mathcal{E}[\ell].$
- 2. Compute the isogeny with kernel $\langle \tilde{P} \rangle$ using Vélu's formulae.

We will do this faster by working in dimension 2!

[Kani's Lemma and isogenies in](#page-10-0) [dimension](#page-10-0) 2

Overview of the 2**-dimensional setting**

Principally polarized abelian varieties *A* **in dimension** 2

• Product of elliptic curves.

• Jacobian of genus-2 curve *C*.

(ℓ, ℓ)**-Isogenies**

- Kernels are maximal isotropic subgroups of *A*[ℓ] and isomorphic to $(\mathbb{Z}/\ell\mathbb{Z})^2$.
- Computation is polynomial in ℓ .

Kani's Lemma

A commutative diagram of isogenies (as on the right) with $d_a=\deg(f)=\deg(f')$ and $d_b = \deg(g) = \deg(g')$ is called (*da*, *db*)**-isogeny diamond**.

Kani's Lemma

If $gcd(d_a, d_b) = 1$, then a (d_a, d_b) -isogeny diamond gives rise to a $(d_a + d_b, d_a + d_b)$ -product isogeny

 $F: E \times E_{ab} \to E_a \times E_b$ with ker(F) = {(- $\hat{g}(P), f'(P)$) | $P \in E_b[d_a + d_b]$ }.

A special isogeny diamond

Let $E : y^2 = x^3 + 6x^2 + x$ over \mathbb{F}_p with $p \equiv 3$ (mod 4), and ℓ a prime $\ell \equiv 3$ (mod 4). Let ι : $E \to E$ the isogeny with $\iota \circ \iota = [-4]$.

- Consider an ℓ -isogeny $f : E \to E'$.
- Choose n, a, b so that $2^n \ell = a^2 + b^2$.
- Define $\gamma = [a] + [b/2] \iota$. \Rightarrow deg $(\gamma) = a^2 + b^2$.

(ℓ, 2 *ⁿ* − ℓ)-isogeny diamond ⇒ (2 *n* , 2 *n*)-product isogeny

[An algorithm for computing](#page-14-0) [modular polynomials](#page-14-0)

Computing $\varphi_{\ell} \in \mathbb{F}_p[X, Y]$

Input: A prime ℓ with $\ell \equiv 3 \pmod{4}$, integers n, a, b with 2ⁿ − $\ell = a^2 + 4b^2$, and a prime *p* ≡ −1 (mod $l \cdot 2^n$).

Output: $\varphi_{\ell} \in \mathbb{F}_p[X, Y]$.

- 1. $E : y^2 = x^3 + 6x^2 + x$ over \mathbb{F}_{p^2} , $\iota = [2i] \in \text{End}(E)$.
- 2. Set $\mathcal E$ deformation with $j(\mathcal E) = j(E) + \epsilon \in \mathbb F_{p^2}[\epsilon]/(\epsilon^{\ell+2}).$
- 3. For each ℓ -isogeny $f_i:E\to E'$:
	- (a) Construct a special $(\ell, 2^n \ell)$ -isogeny diamond (E, E', E, E'') .
	- (b) Lift the isogeny diamond by lifting the $(2^n, 2^n)$ -product isogeny \rightsquigarrow ($\mathcal{E}, \mathcal{E}', \mathcal{E}_0, \mathcal{E}'$). Set $j_k = j(\mathcal{E}')$.
- $\varphi_{\ell} = \prod (Y j_k)(\epsilon = X j(E)) \in \mathbb{F}_p[X, Y].$

Dominating step: $\ell + 1$ different $(2^n, 2^n)$ -isogenies over $\mathbb{F}_{p^2}[\epsilon]/(\epsilon^{\ell+2})$. \Rightarrow complexity: $O(n \cdot \ell^2 \log^2 \ell \log \log \ell)$ when $\log(p) \approx \log(\ell).$

Summary

This presentation

- Quasi-linear algorithm to compute Φ_{ℓ} , when $\ell \equiv 3 \pmod{4}$, based on a mild heuristic ($\exists n \in \mathcal{O}(\log(\ell))$: $2^n - \ell = a^2 + 4b^2$).
- Key ideas:
	- Computing Φ_ℓ modulo small primes and use CRT
	- Lifting smooth-degree isogenies (in dim 2) instead of prime degree isogenies (in dim 1).

Our paper

- Generalization to arbitrary primes ℓ .
- Unconditional quasi-linear algorithm.

Thanks for your attention!