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Introduction to Modular
Polynomials



Elliptic curves and isogenies

An elliptic curve over a field k is a smooth projective
curve of genus 1 with a k-rational point O.

+ The j-invariant defines a 1-1 correspondence
J : {E elliptic curve over R}/ =~ — k.

An isogeny is a nonzero morphism of elliptic curves f : E — E’ with
f(0)=o.

\/ An /-isogeny is an isogeny
of degree ¢ with kernel

N\ N G = Z/¢L.



Computing isogenies

Computing an /-isogenies with Vélu's formulae

complexity: O(¢) or O(v/7) (sqrt-Vélu).
The kernel G might only be defined over an extension k’/k.

Computing composite-degree isogenies
Example: N-isogeny with N = 2" and kernel G = (P).

~
A

complexity: O(nlog(n)) = O(log(N)) (using optimal strategies).



Modular polynomials

The modular polynomial is a polynomial ®,(X, Y) € Z[X, Y] with the
property that for E, E’ elliptic curves, we have

[cbg(j(E),j(E’)) = 0 & there is an /-isogeny E — E’J

Example / =2
D, (X,Y) = X3 — X>Y? + 1488X°Y — 162000X° + 1488XY?> + 40773375XY +
8748000000X + Y3 — 162000Y? + 8748000000Y — 157464000000000.

« Elliptic curve with j(E) = 739 o \‘ y
E:y?> =x3+6x>+x over 3

Fa0632. .- @ )—68
- Evaluated: ®,(X,739) =

X3 — 450X? — 835X + 334 T './ \

= (X —589)(X —205)(X — 1728) . \

in F20632 [X]

2-isogeny graph over F,g52



Computing modular polynomials

Properties of ®, for primes ¢

Total size
degy(Pr) = degy(Pr) = £ + 1. ' (in bits):
+ log(c) < 6/log(¢) + ... for all coefficients c. 0(23 log ).

General Chinese Remainder approach

« Compute &, € Fp[X, Y] for many small primes (around ¢ primes
with log ¢ = log p)
« Combine the results using Explicit CRT to find &, € Z[X, Y].

+ used in: Charles-Lauter (2005), Broker-Lauter-Sutherland
(2010), Sutherland (2012), Leroux (2023), this work

Goal: time O(2 log® p)



Deformations of Elliptic Curves




Elliptic curves over R = R[e]/(e™"")

An elliptic curve € over R = R[¢]/(¢™1") is a a group scheme
& — Spec(R) which is also a smooth, proper, connected curve of

genus 1over R.
‘I reduction
g. —
N mod (c)
1 1

Spec(R) Spec(R)

We say that is an m-th order deformation of E.

Given j € R with j # 0, 1728 (mod €), we can compute £ with j(£) =J.



What's the connection to modular polynomials?

General idea to compute ¢, over F;:
Choose an elliptic curve E/Fp.

1. Compute the deformation £/R with
J(€) = J(E) + ¢, where R = Fp[e] /(¢+2)

2. Compute the evaluated modular @ @
polynomial ¢,(j(E) +¢,Y) € R[Y].

3. Substitute ¢ = X — j(E): @
(X, Y) € FplX, YI/((X — J(E))*2). » ®

This is the modular polynomial, since
degy(¢e) =€ +1.



Deformations of isogenies

Letf : E— E’ be an isogeny over k. C\/ O/\

For any deformation & of E, there exists a unique (up to iso)
deformation &£’ of E’, so that f lifts to an isogeny f : £ — &£'.
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Computing the lift f of an (-isogeny f

1. Lift the the generator P of ker(f) to an element P € £[/].
2. Compute the isogeny with kernel (P) using Vélu’s formulae.

We will do this faster by working in dimension 2!



Kani’'s Lemma and isogenies in
dimension 2




Overview of the 2-dimensional setting

Principally polarized abelian varieties A in dimension 2

+ Product of elliptic curves. « Jacobian of genus-2 curve C.

S

« Kernels are maximal isotropic subgroups of A[¢] and isomorphic
to (Z/¢Z.)3.
« Computation is polynomial in 2.

(¢, ¢)-1sogenies



Kani’'s Lemma

A commutative diagram of isogenies (as on

the right) with dq — deg(f) = deg(f") and \ C<
.

dy = deg(g) = deg(g’) is called gj
(dq, dp)-isogeny diamond. C<

Kani's Lemma
If gcd(dq, dp) = 1, then a (dq, dp)-isogeny diamond gives rise to a
(dq + dp, dq + dp)-product isogeny

F:ExEgp — EqxEp with ker(F) = {(—=8(P).f'(P)) | P € Ep[da+dp]}.



A special isogeny diamond

Let E : y> = x3 + 6x> + x over Fp with p =3
(mod 4), and ¢ a prime ¢ = 3 (mod 4).

Let . : E — E the isogeny with c o v = [—4]. E E
« Consider an E—FE. V\L \LW'
+ Choose n,a, b so that 2" — ¢ = a? + b>. E %

« Define v = [a] + [b/2]:. = deg(y) = a® + b

(¢,2" — ¢)-isogeny diamond = (2",2")-product isogeny

GLT &
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An algorithm for computing
modular polynomials




Computing ¢, € Fy[X, Y]

Input: A prime ¢ with £ = 3 (mod 4), integers E E
n,a, b with 2" — ¢ = a? + 4b?, and a prime
p=—1 (mod ¢-2M). V\L \LW’

Output: ¢, € Fp[X, Y]. E E”

1. E:y?> =x3+6x>+ x over Fp, « = [2i] € End(E).
2. Set & deformation with j(€) = j(E) + € € Fp:[e]/(¢“™2).
3. For each ¢-isogeny f; : E — E':
(@) Construct a special (¢,2" — ¢)-isogeny diamond (E, E’ E, E").
(b) Lift the isogeny diamond by lifting the (2",2")-product isogeny
~ (E,E,E0,E"). Set jr, = j(E).

b oo = TI(Y — ji)(e = X — J(E)) € Fp[X, V1.

Dominating step: ¢ + 1 different (2", 2")-isogenies over Fp:[e] /(e+2).
= complexity: O(n - £2log® ¢ log log ¢) when log(p) = log(¥).

1"



This presentation

« Quasi-linear algorithm to compute ¢, when ¢ =3 (mod 4),
based on a mild heuristic (3n € O(log(¢)) : 2" — ¢ = @ + 4b?).
+ Key ideas:

« Computing ¢, modulo small primes and use CRT
- Lifting smooth-degree isogenies (in dim 2) instead of prime
degree isogenies (in dim 1).

Our paper

+ Generalization to arbitrary primes /.

+ Unconditional quasi-linear algorithm.
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