Computing modular polynomials by deformation

Sixteenth Algorithmic Number Theory Symposium (ANTS XVI)

<u>Sabrina Kunzweiler</u> & Damien Robert July 15th, 2024

Inria, IMB, Bordeaux, France

Introduction to Modular Polynomials

An **elliptic curve** over a field k is a smooth projective curve of genus 1 with a k-rational point O.

- The j-invariant defines a 1-1 correspondence
 - $j: \{E \text{ elliptic curve over } k\} / \cong \rightarrow k.$

An **isogeny** is a nonzero morphism of elliptic curves $f : E \to E'$ with $f(\mathcal{O}) = \mathcal{O}$.

An ℓ -**isogeny** is an isogeny of degree ℓ with kernel $G \cong \mathbb{Z}/\ell\mathbb{Z}$.

Computing isogenies

Computing an $\ell\text{-}isogenies$ with Vélu's formulae

- complexity: $O(\ell)$ or $\tilde{O}(\sqrt{\ell})$ (sqrt-Vélu).
- \wedge The kernel G might only be defined over an extension k'/k.

Computing composite-degree isogenies

Example: N-isogeny with $N = 2^n$ and kernel $G = \langle P \rangle$.

▶ complexity: $O(n \log(n)) = \tilde{O}(\log(N))$ (using optimal strategies).

Modular polynomials

The **modular polynomial** is a polynomial $\Phi_{\ell}(X, Y) \in \mathbb{Z}[X, Y]$ with the property that for *E*, *E*' elliptic curves, we have

 $\Phi_\ell(j(E), j(E')) = 0 \Leftrightarrow$ there is an ℓ -isogeny $E \to E'$

Example $\ell = 2$ $\Phi_2(X, Y) = X^3 - X^2Y^2 + 1488X^2Y - 162000X^2 + 1488XY^2 + 40773375XY + 8748000000X + Y^3 - 162000Y^2 + 8748000000Y - 157464000000000.$

- Elliptic curve with j(E) = 739 $E: y^2 = x^3 + 6x^2 + x$ over \mathbb{F}_{2063^2} .
- Evaluated: $\overline{\Phi}_2(X, 739) =$ $X^3 - 459X^2 - 835X + 334$ = (X - 589)(X - 205)(X - 1728)in $\mathbb{F}_{2063^2}[X]$.

Computing modular polynomials

Properties of Φ_ℓ for primes ℓ :

- $\deg_X(\Phi_\ell) = \deg_Y(\Phi_\ell) = \ell + 1.$
- $\log(c) \le 6\ell \log(\ell) + ...$ for all coefficients c.

Total size (in bits): $O(\ell^3 \log \ell)$.

General Chinese Remainder approach

- Compute $\overline{\Phi}_{\ell} \in \mathbb{F}_p[X, Y]$ for many small primes (around ℓ primes with $\log \ell \approx \log p$)
- Combine the results using *Explicit CRT* to find $\Phi_{\ell} \in \mathbb{Z}[X, Y]$.
- used in: Charles-Lauter (2005), Bröker-Lauter-Sutherland (2010), Sutherland (2012), Leroux (2023), this work

How to compute $\bar{\Phi}_{\ell} \in \mathbb{F}_p[X, Y]$? Goal: time $O(\ell^2 \log^c p)$

Deformations of Elliptic Curves

Elliptic curves over $R = k[\epsilon]/(\epsilon^{m+1})$

An **elliptic curve** \mathcal{E} **over** $R = k[\epsilon]/(\epsilon^{m+1})$ is a a group scheme $\mathcal{E} \to Spec(R)$ which is also a smooth, proper, connected curve of genus 1 over R.

We say that (\mathcal{E}) is an *m*-th order **deformation** of *E*.

Given $\tilde{j} \in R$ with $j \neq 0, 1728 \pmod{\epsilon}$, we can compute \mathcal{E} with $j(\mathcal{E}) = \tilde{j}$.

General idea to compute ϕ_{ℓ} **over** \mathbb{F}_{p} **:** Choose an elliptic curve E/\mathbb{F}_{p} .

- 1. Compute the deformation \mathcal{E}/R with $j(\mathcal{E}) = j(E) + \epsilon$, where $R = \mathbb{F}_p[\epsilon]/(\epsilon^{\ell+2})$
- 2. Compute the evaluated modular polynomial $\phi_{\ell}(j(E) + \epsilon, Y) \in R[Y]$.

3. Substitute
$$\epsilon = X - j(E)$$
:

 $\phi_{\ell}(X,Y) \in \mathbb{F}_p[X,Y]/((X-j(E))^{\ell+2}).$

► This is the modular polynomial, since $\deg_X(\phi_\ell) = \ell + 1$.

<i>j</i> ₂	j_1
j ₃ (E)	+ e
j4	(j ₅)

Let $f: E \to E'$ be an isogeny over k.

For any deformation \mathcal{E} of E, there exists a unique (up to iso) deformation \mathcal{E}' of E', so that f lifts to an isogeny $\tilde{f} : \mathcal{E} \to \mathcal{E}'$.

Computing the lift \tilde{f} of an ℓ -isogeny f

- 1. Lift the the generator *P* of ker(*f*) to an element $\tilde{P} \in \mathcal{E}[\ell]$.
- 2. Compute the isogeny with kernel $\langle \tilde{P} \rangle$ using Vélu's formulae.

We will do this faster by working in dimension 2!

Kani's Lemma and isogenies in dimension 2

Overview of the 2-dimensional setting

Principally polarized abelian varieties A in dimension 2

Product of elliptic curves.

• Jacobian of genus-2 curve C.

 (ℓ,ℓ) -Isogenies

- Kernels are maximal isotropic subgroups of $A[\ell]$ and isomorphic to $(\mathbb{Z}/\ell\mathbb{Z})^2$.
- Computation is polynomial in ℓ .

Kani's Lemma

A commutative diagram of isogenies (as on the right) with $d_a = \deg(f) = \deg(f')$ and $d_b = \deg(g) = \deg(g')$ is called (d_a, d_b) -isogeny diamond.

Kani's Lemma

If $gcd(d_a, d_b) = 1$, then a (d_a, d_b) -isogeny diamond gives rise to a $(d_a + d_b, d_a + d_b)$ -product isogeny

 $F: E \times E_{ab} \to E_a \times E_b \quad \text{with } \ker(F) = \{(-\hat{g}(P), f'(P)) \mid P \in E_b[d_a + d_b]\}.$

A special isogeny diamond

Let $E: y^2 = x^3 + 6x^2 + x$ over \mathbb{F}_p with $p \equiv 3 \pmod{4}$, and ℓ a prime $\ell \equiv 3 \pmod{4}$. Let $\iota: E \to E$ the isogeny with $\iota \circ \iota = [-4]$.

- Consider an ℓ -isogeny $f : E \to E'$.
- Choose n, a, b so that $2^n \ell = a^2 + b^2$.
- Define $\gamma = [a] + [b/2]\iota \Rightarrow \deg(\gamma) = a^2 + b^2$.

 $(\ell, 2^n - \ell)$ -isogeny diamond $\Rightarrow (2^n, 2^n)$ -product isogeny

An algorithm for computing modular polynomials

Computing $\varphi_{\ell} \in \mathbb{F}_p[X, Y]$

Input: A prime ℓ with $\ell \equiv 3 \pmod{4}$, integers n, a, b with $2^n - \ell = a^2 + 4b^2$, and a prime $p \equiv -1 \pmod{\ell \cdot 2^n}$.

Output: $\varphi_{\ell} \in \mathbb{F}_p[X, Y]$.

- 1. $E: y^2 = x^3 + 6x^2 + x$ over \mathbb{F}_{p^2} , $\iota = [2i] \in \operatorname{End}(E)$.
- 2. Set \mathcal{E} deformation with $j(\mathcal{E}) = j(E) + \epsilon \in \mathbb{F}_{p^2}[\epsilon]/(\epsilon^{\ell+2})$.
- 3. For each ℓ -isogeny $f_i : E \to E'$:
 - (a) Construct a special $(\ell, 2^n \ell)$ -isogeny diamond (E, E', E, E'').
 - (b) Lift the isogeny diamond by lifting the $(2^n, 2^n)$ -product isogeny $\rightsquigarrow (\mathcal{E}, \mathcal{E}', \mathcal{E}_0, \mathcal{E}'')$. Set $j_k = j(\mathcal{E}')$.
- 4. $\varphi_{\ell} = \prod (Y j_k)(\epsilon = X j(E)) \in \mathbb{F}_p[X, Y].$

Dominating step: $\ell + 1$ different $(2^n, 2^n)$ -isogenies over $\mathbb{F}_{p^2}[\epsilon]/(\epsilon^{\ell+2})$. \Rightarrow complexity: $O(n \cdot \ell^2 \log^2 \ell \log \log \ell)$ when $\log(p) \approx \log(\ell)$.

Summary

This presentation

- Quasi-linear algorithm to compute Φ_{ℓ} , when $\ell \equiv 3 \pmod{4}$, based on a mild heuristic $(\exists n \in \mathcal{O}(\log(\ell)) : 2^n \ell = a^2 + 4b^2)$.
- Key ideas:
 - + Computing Φ_ℓ modulo small primes and use CRT
 - Lifting smooth-degree isogenies (in dim 2) instead of prime degree isogenies (in dim 1).

Our paper

- Generalization to arbitrary primes ℓ .
- Unconditional quasi-linear algorithm.

Thanks for your attention!