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The Mertens conjecture

The Mertens function is defined as
M(x) =

∑
1≤n≤x

µ(n),

where

µ(n) =

{
(−1)k n sq.free, has k prime factors,

0 otherwise

is the Möbius function.

S. Kim, P. Nguyen (UC, ENS/INRIA) July 19, 2024



Why does one care about M(x)? It is related to the Riemann hypothesis.
More precisely, by elementary manipulations,

1

ζ(s)
= s

∫ ∞

1

M(x)

x s+1
dx

on some right-half plane, so

M(x) = O(xθ) ⇒ 1
ζ(s) is holomorphic on Re s > θ,

i.e., ζ(s) has no zeros in the region Re s > θ.

RH is equivalent to saying θ < 1/2 + ε for any ε > 0.
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The Mertens conjecture is a much stronger claim that

|M(x)| <
√
x for all x > 1,

that dates back to the late 19th century.

Up to 1016, M(x) rarely goes above 0.5
√
x .

(figure from Hurst (2016))

The Mertens conjecture was disproved in 1985 by Odlyzko-te Riele, in what is perhaps one of the most
striking applications of a lattice reduction algorithm to number theory.
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Natural follow-up questions:

• What is the smallest value x such that |M(x)| ≥ √
x?

• What is a correct asymptotic on M(x)?

For the first question, the known conjecture in the literature is

x ≈ exp(5.15× 1023)

due to Kotnik-van de Lune in 2004, which arises from another conjecture of theirs

|M(x)| ≈ 1

2
x1/2

√
log log log x

based on lattice reduction and other numerical methods.
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Our result is that the smallest counterexample x to the Mertens conjecture is no greater than

≈ exp(1.957× 1019),

significantly smaller than the Kotnik-van de Lune conjecture. This would impact their conjecture about
the growth rate of M(x) as well.
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Previous works

To explain our work, we first need to understand the original disproof by Odlyzko-te Riele.

The argument goes by contradiction. Assume the conjecture holds, and for each zero ρ of ζ(s), associate
γ := Im ρ, α := |ρζ ′(ρ)|−1, ψ := arg(ρζ ′(ρ)). It can be shown that

q(x) :=
M(x)√

x
= 2 lim

n→∞

∑
ρ:γ∈(0,Tn)

α cos(γy − ψ) + O(x−1/2)

for some sequence Tn ∼ n and y := log x .

(It may help to note α→ 0 albeit rather slowly as γ → ∞.)
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The above suggests a strategy: for some large T > 0, find y such that

qT (x) := 2
∑

ρ:γ∈(0,T )

α cos(γy − ψ)

is large.

Odlyzko-te Riele translates this problem to a case of (simultaneous weighted inhomogeneous) diophantine
approximation: provided all |γy − ψ|2π are small, we can hope
(here |x |2π is the absolute value of x mod 2π ∈ (−π, π])

qT (x) = 2
∑

ρ:γ∈(0,T )

α cos(γy − ψ) ≈
∑

ρ:γ∈(0,T )

α(2− |γy − ψ|22π)

to be > 1, since
∑

2α→ ∞ as T → ∞.
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To find a value of y that makes all |γy − ψ|2π small (each weighted by α), Odlyzko-te Riele essentially
solves an instance of the approximate closest vector problem (aCVP) — the problem of finding a point of
a given lattice L ⊆ Rn reasonably close to a given “target” t ∈ Rn.
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This makes sense, since, for some N,

(γ1y − ψ1, . . . , γNy − ψN) small mod 2π

⇒ (γ1y − ψ1 − 2πp1, . . . , γNy − ψN − 2πpN) small for some p1, . . . , pN ∈ Z

⇒ (γ1y − 2πp1, . . . , γNy − 2πp1) is close to the “target” (ψ1, . . . , ψN)

⇒ (γ1z2
−µ1 − 2πp1, . . . , γNz2

−µ1 − 2πp1, z2
−µ2) is close to the “target” (ψ1, . . . , ψN , 0), where z ∈ Z

with z2−µ1 ≈ y , for an appropriate choice of the parameters µ1, µ2.

But the former is a point of the lattice generated by rows of
2π

. . .

2π
γ12

−µ1 . . . γN2
−µ1 2−µ2

 .

This is essentially the construction of Odlyzko-te Riele, except that extra modifications were made to
make the lattice integral, and to weight each γy − ψ according to their coefficients in qT .
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(Some lattice notions I won’t explain. . . )

Odlyzko-te Riele uses the Babai’s nearest plane algorithm to solve the aCVP, which is the standard
method to this day.

In order to obtain a high-quality solution, a basis need to be reduced i.e., consist of short and orthogonal
vectors. Odlyzko-te Riele uses the LLL reduction algorithm, which was state-of-the-art at that time.
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A rigorous upper bound on x is possible, thanks to

Theorem (Pintz)

Let
hP(y) := 2

∑
γ<14000

α exp(−1.5 · 10−6γ2) cos(γy − ψ).

If there exists y ∈ [e7, e50000] with |hP(y)| > 1 + e−40, then x < exp(y +
√
y).

Again, finding such y comes down to the diophantine approximation problem discussed above.

The value of y found by Odlyzko-te Riele gives x < exp(3.21× 1064).
Kotnik-te Riele (2006, ANTS XII) improved it to x < exp(1.59× 1040), by multiple trials over varying
parameters.
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Recently, Saouter-te Riele (2014) improved Pintz’s result as follows.

Theorem (Saouter-te Riele, paraphrased)

Let
hStR(y) := 2

∑
γ<74000

α exp(−3 · 10−9γ2) cos(γy − ψ).

If there exists y ≥ 200 with |hStR(y)| > 1 + 6 · 10−8, then x < exp(y +
√
y).

Using this, and some more trials, they attain x < exp(1.004× 1033).
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All the above results, even the recent ones, use LLL for lattice reduction, which appeared in 1982.

But lattice reduction and other tools has improved drastically since the times of LLL, especially in the last
two decades, motivated by post-quantum cryptography. Knowing this, one would naturally try to replace
LLL with one of those.

Last year, K. and Rozmarynowycz (then UC undergrad) replaced LLL with BKZ, together with a few
additional tricks, which led to x < exp(1.017× 1029).
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The method of the present work

Previous experiences led me to realize a few limitations of the previous approach.

Note that lattice reduction is a rather time-consuming process, especially in three-digit dimensions. So it
is infeasible to control all terms of

hStR(y) = 2
∑

γ<74000

α exp(−3 · 10−9γ2) cos(γy − ψ).

In realistic terms, one is limited to working with the first ≤ 150 terms or so with the largest coefficients.
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At first, one may think that reducing the lattice under question really well may yield a winning value of
hStR — this takes days to weeks. But this does not yield a particularly impressive value of hStR .

In fact, the quality of aCVP solution and size of hStR correlate somewhat, but not too well, because the
“tail” fluctuates by a small yet nontrivial amount.

Instead, one could go for quantity over quality: collect as many candidate points as possible, and hope
that in one of those cases the fluctuation occurs in our favor. Luckily, there happens to exist a lattice
algorithm that is perfectly suited for this task: lattice-point enumeration.
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Lattice-point enumeration aims to quickly count all or most of the lattice points within a given ball in the
Euclidean space. Roughly, the idea is that it is far more efficient to count those contained within a
carefully chosen rectangular/cylindrical shape than those within a literal ball, by using the Gram-Schmidt
orthogonalization of a decently well-reduced basis.

In our work, we used a slight modification of the algorithm of Liu-Nguyen (2013).
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It turns out that the lattice under question has a very special shape, almost like εZ⊕ZN for ε ≈ 10−12 —
nearly orthogonal, with one exceptionally short vector. This leads to a certain amount of time saving:

• On the one hand, this fact itself makes enumeration more efficient than on generic lattices.

• On the other hand, this means along the direction of εZ there are many candidate points with similar
values of hStR . So we enumerated on the projection of the lattice onto the orthogonal component of
this “short axis,” which cut down the search space by a factor of a few million.
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Some values we found during a single enumeration in a dimension 141 lattice, among ∼ 17, 000 points
found within a few hours of preprocessing + a few hours of counting, on Phong’s personal desktop:

y hStR(y) y +
√
y

889543786 4289868028.044074 -0.974798 8.895× 1018

1385953971 0197847064.062257 -0.9949 1.386× 1019

1957187885 0562201959.215107 -1.007 1.957× 1019

6417170555 7420452732.080835 -1.02 6.417× 1019

1 5555848868 6568113612.224656 1.025 1.555× 1020

1 8947128314 9477540226.654238 0.997 1.894× 1020

From the third line, we obtain our result x < exp(1.957× 1019).
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Some remarks and discussions

• With more time and patience, it may be possible to lower the bound even further.

• With even more time and patience, it may be possible to use our method to numerically investigate
the growth rate of M(x). By adjusting parameters, we can heuristically target a specific range of y ,
enumerate the relevant lattice vectors, and evaluate qT in that range.

If we are lucky, this may have a say about the existing conjectures about the growth of M(x):

|M(x)| = O(x1/2(log log log x)θ),

with θ = 1/2 (Kotnik-van de Lune), θ = 1 (Kaczorowski), θ = 5/4 (Gonek).
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• Most importantly, we hope this work helps inform the community of the advances in lattice
algorithms, and motivate revisiting other problems where lattice reduction etc. are used in a crucial
way e.g., linear relations among the imaginary parts of the zeroes of ζ(s) — cf. Best-Trudgian
(2015).
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