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Introduction

Let p be an odd prime number. In the literature, there are several
definitions of p-adic height pairings on abelian varieties defined over Q.
Some of the definitions were given by Schneider, Mazur–Tate and Neková̌r.
For Jacobians of curves, there is another definition due to Coleman–Gross.

Algorithms for computing p-adic heights

allow one to compute p-adic regulators, some of which fit into p-adic
versions of BSD conjecture, and

play a crucial role in carrying out the quadratic Chabauty method to
determine integral/rational points on curves of genus at least two.

Goal

Present algorithms to compute

Coleman–Gross height on hyperelliptic Jacobians, and

Mazur–Tate height on Jacobian surfaces.
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Overview

1 The Coleman–Gross p-adic height pairing
Basic definitions
The local component at p
Computation of Ψ
Our algorithm
Numerical example: elliptic curve

2 The Mazur–Tate p-adic height function
Decomposition into p-adic Néron functions
Our algorithm
Numerical example: quadratic Chabauty for integral points
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§1. The Coleman–Gross p-adic height pairing

Let C/Q be a nice curve. The Coleman–Gross pairing

hCG : Div0(C )× Div0(C ) → Qp

is defined as
hCG = hCGp +

∑
q ̸=p

hCGq .

The local components away from p are described using “arithmetic
intersection theory” and their computation is standard these days, but

hCGp (D1,D2) :=
Vol∫

D2

ωD1

where

ωD1 is a “canonical” differential form attached to D1, and
Vol∫

is the Vologodsky integration.

From now on, everything is local; so set X = C ⊗Qp.
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§1. Vologodsky integration

Let ω be a meromorphic 1-form on X , let P,Q ∈ X (Qp). To this data,
Vologodsky associated an integral

Vol∫ Q

P
ω ∈ Qp

that satisfies the desirable properties. It’s called the Vologodsky integral.

Remarks:

1 When X has good reduction,
Vologodsky integral = Coleman integral.

2 When ω is holomorphic,
Vologodsky integral = abelian integral.

3 There are practical algorithms to compute these:

Balakrishnan–Tuitman: Coleman integrals on smooth curves,
Katz–K: Vologodsky integrals on hyperelliptic curves,
Katz–K (in progress): Vologodsky integrals on “schön” curves.

Enis Kaya Algorithms for p-adic heights ANTS XVI at MIT 5 / 17



§1. The logarithm map Ψ

I. A meromorphic 1-form ω on X is of the third kind if ω has at most
simple poles with integer residues.

II. Let H1
dR(X ) denote the first de Rham cohomology group of X . Let

∪ : H1
dR(X )× H1

dR(X ) → Qp

denote the algebraic cup product pairing on H1
dR(X ).

III. Let Ψ be the “logarithm for the universal vectorial extension” of the
Jacobian of X . It is a homomorphism

{third kind differentials} → H1
dR(X )

which is the identity on holomorphic differentials.
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§1. The local component at p

Let W = Wp be a subspace of H1
dR(X ) that is complementary to the

space of holomorphic forms:

H1
dR(X ) = H0(X ,Ω1

X )⊕W .

There exists a unique form ωD1 of the third kind satisfying

Res(ωD1) = D1, Ψ(ωD1) ∈ W .

Then

hCGp (D1,D2) :=
Vol∫

D2

ωD1 .

Remarks:

When X has semistable ordinary reduction, there is a canonical choice
for W : the unit root subspace for the action of the Frobenius endom.

An algorithm to compute hCGp when X is hyperelliptic with good
reduction was provided by Balakrishnan–Besser.
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§1. Computation of Ψ

A crucial step in computing hCGp (D1,D2) is the construction of the form
ωD1 . This requires the explicit computation of the map Ψ, but its original
definition is not suitable for computations.

Proposition (Besser): The logarithm map Ψ can be expressed in terms of
the cup product and “global symbol”.

Global symbol is defined in terms of Vologodsky integration, so

Computing Ψ ≈
computing Vol.

integrals
+

computing cup

products
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§1. Computing CG heights on hyperelliptic curves

Let C/Q be a genus-g hyperelliptic curve with affine model

y2 = f (x), f (x) ∈ Z[x ] is monic.

For simplicity, we assume that deg(f (x)) is odd.

The height pairing is bilinear. Therefore we may assume that

D1 = (P)− (Q), D2 = (R)− (S).

We also assume that P,Q,R,S are pairwise distinct.

Set X = C ⊗Qp. Let W = Wp be a subspace of H1
dR(X ) such that

H1
dR(X ) = H0(X ,Ω1

X )⊕W .
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§1. Computing CG heights on hyperelliptic curves

Step 1. Pick an ω of the third kind with residue divisor D1 = (P)− (Q):

ω :=


(
y + y(P)

x − x(P)
− y + y(Q)

x − x(Q)

)
dx

2y
if P and Q are finite;

y + y(P)

x − x(P)

dx

2y
if P is finite, Q is infinite.

Step 2. Determine the holomorphic form η such that Ψ(ω − η) lies in W ;
then ωD1 = ω − η:

I. Compute Ψ(ω) as an element of H1
dR(X ).

II. Compute Ψ(ω) as an element of H0(X ,Ω1
X )⊕W .

III. Compare them and get η.
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§1. Computing CG heights on hyperelliptic curves

Step 3. Compute the Vologodsky integral
Vol∫

D2
ωD1 =

Vol∫ R
S (ω − η):

I. Cover X by {Ui}i such that each Ui can be embedded into Xi , which is

either a rational curve,

or a hyperelliptic curve of good reduction.

II. Express Vologodsky integrals on X as explicit linear combinations of
Vologodsky integrals on Xi .

III. In order to compute Vologodsky integrals on Xi ,

parametrize Xi if it is rational,

make use of the Coleman integration algorithms if Xi is hyperelliptic.

Remark: We can define hCGp for divisors with common support, but, for

instance, hCGp (P −∞,P −∞) becomes a double Vologodsky integral and
we do not know (yet) how to deal with them...
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§1. Computing a canonical complementary subspace

All complementary subspaces are equal,
but some are more equal than others.

We now assume that

X has semistable ordinary reduction, and

X has genus g = 2.

Extending a construction by Blakestad, Bianchi constructed a very
“canonical” complementary subspace W C of H1

dR(X ).

Proposition (Bianchi): If X has good ordinary reduction, then

W C= the unit root subspace.

Algorithm (Bianchi–K–Müller)

We can compute Blakestad’s complementary subspace W C .
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§1. Numerical example: elliptic curve

The following curve has split multiplicative reduction at p = 43:

C : y2 = x3 − 1351755x + 555015942, P :=
(
330483
361 , 631480326859

)
∈ C (Q).

Using SageMath, the “canonical” Mazur–Tate height of P is

19 · 43 + 7 · 432 + 8 · 433 + 2 · 434 + O(435). (1)

Canonical MT height = CG height wrt the unit root subspace

For Q = (2523, 114912), R = (219, 16416) ∈ C (Q), let

DQ := (Q)− (−Q), DR := (R)− (−R) =⇒ P = DQ = DR .

The Coleman–Gross height hCG(DQ ,DR) wrt the unit root subspace is

9 · log43(2)+ 29 · 43 + 28 · 432 + 10 · 433 + 39 · 434 + O(435). (2)

Luckily, (1) and (2) are equal...
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§2. The Mazur–Tate p-adic height function

Let C/Q be a nice curve, and let J be its Jacobian variety. The
Mazur–Tate height function

hMT : J(Q) → Qp

is defined using “biextensions”.

Theorem (Bianchi, Bianchi–K.–Müller)

For each q, there exists a function λq : J(Qq) → Qp such that hMT can be
decomposed into a sum of λq’s.

We call λq the p-adic Néron function at q. It is

the real-valued Néron function (up to a constant) for q ̸= p;

defined using Besser’s “p-adic log” function for q = p.

This is a p-adic analogue of a classical result in Diophantine geometry: the
Néron–Tate height can be decomposed into a sum of Néron functions.
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§2. Computing MT heights on Jacobian surfaces

Assume C/Q is of genus-2 with affine model

y2 = f (x), f (x) ∈ Z[x ] is quintic.

Then extending a construction by Blakestad, Bianchi defined a
2-dimensional p-adic sigma function σp: it is a certain solution of a
differential equation inside the formal group of J.

Algorithm (Bianchi, Bianchi–K.–Müller)

The p-adic Néron function λp is essentially the p-adic log of σp.
Therefore, we can compute the Mazur–Tate height function hMT on J.

This is a genus-2 analogue of a classical result: global p-adic heights on
elliptic curves can be expressed in terms of 1-dimensional p-adic sigma
functions (this goes back to Bernardi, Mazur–Tate, Mazur–Stein–Tate...).
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§2. Num. example: quadratic Chabauty for integral points

Method: It uses properties of local and global heights to produce a locally
analytic function

ρ : C (Zp) → Qp

such that ρ(C (Z)) ⊂ Γ for an effectively computable finite set Γ. The
method requires the computation of local heights of the form
hq(P −∞,P −∞). With our p-adic Néron function approach, this is not
a problem at all:

Example: The following curve has bad reduction at p = 5:

C : y2 = x5 + x3 − 2x + 1.

Applying the quadratic Chabauty method for p = 5, we get

C (Z) = {(0,±1), (1,±1), (−1,±1)}.

Remark: This is, to the best of our knowledge, the first worked quadratic
Chabauty example in the literature at a prime of bad reduction...
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Thank you! Dank u wel! Teşekkür ederim!

p-adic heights on curves - Coleman–Gross

Hodge structure on the fundamental group and its application to p-adic integration -
Vologodsky

p-adic heights and Vologodsky integration - Besser

p-adic Arakelov theory - Besser

Computing local p-adic height pairings on hyperelliptic curves - Balakrishnan–Besser

Coleman-Gross height pairings and the p-adic sigma function - Balakrishnan–Besser

Quadratic Chabauty: p-adic height pairings and integral points on hyperelliptic curves -
Balakrishnan–Besser–Müller

Explicit Coleman integration for curves - Balakrishnan–Tuitman

On generalizations of p-adic Weierstrass sigma and zeta functions - Blakestad

p-adic integration on bad reduction hyperelliptic curves - Katz–Kaya

Explicit Vologodsky integration for hyperelliptic curves - Kaya

p-adic sigma functions and heights on Jacobians of genus 2 curves - Bianchi

Coleman–Gross heights and p-adic Néron Functions on Jacobians of genus 2 curves -
Bianchi–Kaya–Müller

Algorithms for p-adic heights on hyperelliptic curves of arbitrary reduction -
Bianchi–Kaya–Müller

Enis Kaya Algorithms for p-adic heights ANTS XVI at MIT 17 / 17


	The Coleman–Gross p-adic height pairing
	Basic definitions
	The local component at p
	Computation of 
	Our algorithm
	Numerical example: elliptic curve

	The Mazur–Tate p-adic height function
	Decomposition into p-adic Néron functions
	Our algorithm
	Numerical example: quadratic Chabauty for integral points


