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Integral points of affine curves

K : A number field.

Ok : Ring of integers of K.

U/ Ok : Absolutely irreducible affine curve.

C/K : Compactification of the generic fibre of U.

Theorem (Siegel's Theorem (partial), 1929)
If the genus of C is greater than equal to 1, U(Ok) is finite.

The main example we will look at are elliptic curves without the identity section.



Integral points on affine elliptic curves
Let U/ Ok be an elliptic curve without the identity section, given by

y2 + aixy + azy = x3 + 32X2 + agx + ae.

Figure: Google Gemini rendition of integral points on elliptic curve
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State of the art algorithms

Siegel's proof is ineffective, can not be used to determine the set U (Ok).

Algorithms by Stroeker, Tszanakis ('94), Gebel, Petho, Zimmer('94), Smart,
Stephens ('97) to find integral points using elliptic logarithms.

Zagier ('87), based on work of Lang ('78,'86), suggests use of elliptic logarithms.
Hirata-Kohno, David ('91) give lower bounds for elliptic logarithms.
Not implemented for imaginary quadratic fields on Sage/Magma/Pari GP/Oscar.



Quadratic Chabauty over Z

Chabuaty—Coleman-Kim idea: Compute locally analytic p-adic map p: U(Qp) — Qp,
and finite set T C Qp, such that p(U(Z)) C T.
Locally analytic functions have finitely many roots, so the preimage p~1(T) is finite

and contains U(Z).
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Figure: QC over Q



Quadratic Chabauty over number fields
Use Weil restrictions, and consider (K @ Q). Need at least [K : Q] functions
pi: U(K ® Qp) — Qp and finite sets T; C Qp such that p;(U(Ok)) C T;. Consider
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Figure: QC over quadratic K



A survey of Chabauty—Coleman—Kim over number fields

Siksek ('13) introduced Chabauty over number fields K. Using abelian Coleman
integrals, find functions that vanish on rational points of curves.

Balakrishnan-Besser-Bianchi-Miiller ('21) find quadratic Chabauty formulation of
the same. Use Coleman-Gross heights. The reason this works is Arakelov theory.

Bianchi ('20) finds Z[(3]-points on the curve
y2 =x3 4.
Gajovi¢-Miiller ('23) find Z[v/7]-points on non-base changed hyperelliptic curve.

All the examples need the rank of the Jacobian of the curve bounded suitably.



Warning!

Two locally analytic p-adic functions vanish in two variables can vanish on infinitely
many points.
Consider A?Qp = Spec Qp[x1, x2], and

fi = log(1l — x1) — log(1 — x2), fo = log(x1) — log(x2).

Both functions vanish on x; = xp, so vanishing locus has infinitely many points!



Main theorem

® Let K be an imaginary quadratic field of class number 1, and E/K an elliptic
curve of rank 2 (rank suitably bounded), which is not a base change.

® |et p be a prime that splits in K, such that E has good ordinary reduction at
primes above p. Let U C A%K be cut out by Weierstrass equation as before.

Theorem (Jha, ANTS XVI)

There exists an algorithm that computes a quadratic Chabauty set U(Zp)> such that

U(OK) QU(ZP)Z C U(OK ®ZP)



Ideas of proof

Let K, p as before.
® Want at least 2 non-zero locally analytic p-adic functions

P1, P2 - U(K ® Qp) — Qp'
e Compute finite sets T; C Q, such that p;(U/(Ok)) C T;.

Mazur-Stein—Tate p-adic heights ('06) satisfy all these conditions!



p-adic heights

Given an idele class character x : A /K* — Qp, one can associate a bilinear form
h=hx: E(K)® E(K) — Qp.

® hdecomposes as h =3,y hy. Let

p=h=> h.

There exists T C Qp such that p(U(Ok)) C T. The set T can be computed
using intersection numbers (Silverman ('88), Cremona, Pricket, Siksek ('06)).

® One can extend h and hy for p|p to E(K ® Qp) using Coleman integrals.

® |maginary quadratic K have two such y, the cyclotomic and anticyclotomic
character.



Inputs for heights

® One can attach a p-adic sigma function (Mazur-Tate,'91) to elliptic curves over
finite extensions of Q,. Fast implementation due to David Harvey ('08).

® Let P be a point of E(K) so we can find a denominator d such that

P:(x,y):(;,CZ).

® There exists E*(K) C E(K) of finite index such that if P € E*(K).

log d(nP) = n?log d(P) + log f,(P),
log o(nP) = n?log o(P) + log f,(P)



Formulas for heights

Let 91,7¢» : K — Qp be embeddings. Let 01,02 be the associated p-adic sigma
functions to curves basec There exists finite index E°(K) C E(K) such that if

P € E°(K),
= (G )+ ()
o= (Ga) - ()

We can extend this formula to all of E(K) via




Quadratic Chabauty algorithm

Let E/K be an elliptic curve of rank 2 and U as described before. Also fix p as before.

Algorithm

Input: Given generators P, Q of E(K)/E(K)tors.
1. Compute heights hX(P, P), ’X(Q, Q), hX(P, Q). Solve for constants az‘- such that

WX(Pi, Pj) = a1 ff + afafifs + agyfy

where f, = [kw for n = 1,2 for P;, P; € {P, Q}.
2. Compute sets TX such that pX(U(Ok)) C TX.
3. Compute A, = {R € U(K @ Q) : pP(R) € TV, pai(R) € Tt}
Output: Obtain a set A, C U(K ® Qp) which contains U(Ok). Output error if this set
is infinite.



An example

Set K = Q((6). Consider the scheme U C A% given by the equation
y?+ (G + 1)y =7 + (=G — 1)x* + Gox. (1)

® The corresponding elliptic curve E has rank 2, and trivial K-torsion. Generators
are P =(1,0), Q = (¢,0)
® | MFDB label: 134689.3-CMal

® Primes p =7 and g = 13 split in K, and E has good, ordinary reduction at primes
above p, q.

e Ty — Tanti — {0}


https://beta.lmfdb.org/EllipticCurve/2.0.3.1/134689.3/CMa/1

Integral points from QC set

® Using the Quadratic Chabauty algorithm, we can compute the sets A,, A;. We
get #A, = 216, #A, = 120. This took about 10 minutes on my laptop.

® A search yields 12 small Ok-points. Let By, B; be the complement of the known
Ok-points in A, Ag.

Do B,, Bg have any Ok-points?



A sieve for elliptic curves

Let p1,po be the primes above p, q1, g2 be the primes above g. One checks that
* Es,, (Fp) = E,, (Fp) = Z/13Z
* Er,, (Fq) = Z/7Z and Eg,,(Fq) = Z/19Z.

Idea: Log and reduction restriction

® If (R, R2) € Ap comes from U(Ok), then it is the image of R = aP + bQ for
a,beZ.

® Restrict (a, b) with structure of group of reductions at p, ¢ and Coleman integrals.



Sieve example

Let
(Ri,R)=(83+6-7+..,64+6-7..),24+7+.,24+2-7T4+..)) € By

® Solving the system

Ry = aP; + bQ; in Er,, (Fp)
Ry = aP, + b@: in Eg, (F)p)

yields restrictions on (a, b) = (7,0) mod 13.

® Also have

fA(R1) = af(P) + bA(Q) in Q,
f2(Rz) = af2(P) + bf(Q) in Qp

giving constraints (a, b) = (6,5) mod 7.



To (R1, R2) =: R we have associated log and reduction information:
logr, C F2, redg C 2.

For each R € A, and § € A, compute log and reduction information.

Compute

U (loggr x redgr) ﬂ U (reds x logg)

REA, S€A,
Hope this intersection is empty.
For the curve in Equation (1), it is empty!
#U(Ok) = 12.



Future work

Good methods to solve systems of multivariate power series.
Use method for rank 1 elliptic curves.
Find a better sieve for elliptic curves.

Use method for higher genus curves.



Summary

Let K be an imaginary quadratic field K with class number 1. Let E be an elliptic
curve of rank at most 2. Let U/Ok be given by a minimal Weierstrass equation of E.

Theorem

There exists a prime p and an algorithm such that we can compute a quadratic
Chabauty set U(Zp)2 with

M(OK) - U(ZP)2 C z/[(OK ®Zp)-

Thank You!!



