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Integral points of affine curves

K : A number field.
OK : Ring of integers of K .
U/OK : Absolutely irreducible affine curve.
C/K : Compactification of the generic fibre of U .

Theorem (Siegel’s Theorem (partial), 1929)

If the genus of C is greater than equal to 1, U(OK ) is finite.

The main example we will look at are elliptic curves without the identity section.



Integral points on affine elliptic curves
Let U/OK be an elliptic curve without the identity section, given by

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6.

Figure: Google Gemini rendition of integral points on elliptic curve



State of the art algorithms

• Siegel’s proof is ineffective, can not be used to determine the set U(OK ).

• Algorithms by Stroeker, Tszanakis (’94), Gebel, Pethö, Zimmer(’94), Smart,
Stephens (’97) to find integral points using elliptic logarithms.

• Zagier (’87), based on work of Lang (’78,’86), suggests use of elliptic logarithms.

• Hirata-Kohno, David (’91) give lower bounds for elliptic logarithms.

• Not implemented for imaginary quadratic fields on Sage/Magma/Pari GP/Oscar.



Quadratic Chabauty over Z

Chabuaty–Coleman–Kim idea: Compute locally analytic p-adic map ρ : U(Qp) ! Qp,
and finite set T ⊂ Qp, such that ρ(U(Z)) ⊆ T .
Locally analytic functions have finitely many roots, so the preimage ρ−1(T ) is finite
and contains U(Z).

Figure: QC over Q



Quadratic Chabauty over number fields
Use Weil restrictions, and consider U(K ⊗Qp). Need at least [K : Q] functions
ρi : U(K ⊗Qp) ! Qp and finite sets Ti ⊆ Qp such that ρi (U(OK )) ⊆ Ti . Consider⋂

ρ−1
i (Ti ).

Figure: QC over quadratic K



A survey of Chabauty–Coleman–Kim over number fields

• Siksek (’13) introduced Chabauty over number fields K . Using abelian Coleman
integrals, find functions that vanish on rational points of curves.

• Balakrishnan-Besser-Bianchi-Müller (’21) find quadratic Chabauty formulation of
the same. Use Coleman-Gross heights. The reason this works is Arakelov theory.

• Bianchi (’20) finds Z[ζ3]-points on the curve

y2 = x3 − 4.

• Gajović-Müller (’23) find Z[
√
7]-points on non-base changed hyperelliptic curve.

All the examples need the rank of the Jacobian of the curve bounded suitably.



Warning!

Two locally analytic p-adic functions vanish in two variables can vanish on infinitely
many points.
Consider A2

Qp
= SpecQp[x1, x2], and

f1 = log(1− x1)− log(1− x2), f2 = log(x1)− log(x2).

Both functions vanish on x1 = x2, so vanishing locus has infinitely many points!



Main theorem

• Let K be an imaginary quadratic field of class number 1, and E/K an elliptic
curve of rank 2 (rank suitably bounded), which is not a base change.

• Let p be a prime that splits in K , such that E has good ordinary reduction at
primes above p. Let U ⊂ A2

OK
be cut out by Weierstrass equation as before.

Theorem (Jha, ANTS XVI)

There exists an algorithm that computes a quadratic Chabauty set U(Zp)2 such that

U(OK ) ⊆ U(Zp)2 ⊆ U(OK ⊗ Zp)



Ideas of proof

Let K , p as before.

• Want at least 2 non-zero locally analytic p-adic functions

ρ1, ρ2 : U(K ⊗Qp) ! Qp.

• Compute finite sets Ti ⊂ Qp such that ρi (U(OK )) ⊆ Ti .

Mazur–Stein–Tate p-adic heights (’06) satisfy all these conditions!



p-adic heights

Given an idèle class character χ : A×
K/K

× ! Qp, one can associate a bilinear form
h := hχ : E (K )⊗ E (K ) ! Qp.

• h decomposes as h =
∑

v∈MK
hv . Let

ρ := h −
∑
p|p

hp.

There exists T ⊂ Qp such that ρ(U(OK )) ⊂ T . The set T can be computed
using intersection numbers (Silverman (’88), Cremona, Pricket, Siksek (’06)).

• One can extend h and hp for p|p to E (K ⊗Qp) using Coleman integrals.

• Imaginary quadratic K have two such χ, the cyclotomic and anticyclotomic
character.



Inputs for heights

• One can attach a p-adic sigma function (Mazur-Tate,’91) to elliptic curves over
finite extensions of Qp. Fast implementation due to David Harvey (’08).

• Let P be a point of E (K ) so we can find a denominator d such that

P = (x , y) =

(
a

d2
,
b

d3

)
.

• There exists E •(K ) ⊆ E (K ) of finite index such that if P ∈ E •(K ).

log d(nP) = n2 log d(P) + log fn(P),

log σ(nP) = n2 log σ(P) + log fn(P)



Formulas for heights

Let ψ1, ψ2 : K ↪! Qp be embeddings. Let σ1, σ2 be the associated p-adic sigma
functions to curves basec There exists finite index E ◦(K ) ⊆ E (K ) such that if
P ∈ E ◦(K ),

hcyc(P) = log

(
σ1(P)

ψ1(d)

)
+ log

(
σ2(P)

ψ2(d)

)
hanti(P) = log

(
σ1(P)

ψ1(d)

)
− log

(
σ2(P)

ψ2(d)

)
We can extend this formula to all of E (K ) via

h(P) =
h(nP)

n2
.



Quadratic Chabauty algorithm

Let E/K be an elliptic curve of rank 2 and U as described before. Also fix p as before.

Algorithm

Input: Given generators P,Q of E (K )/E (K )tors.

1. Compute heights hχ(P,P), hχ(Q,Q), hχ(P,Q). Solve for constants αχ
ij such that

hχ(Pi ,Pj) = αχ
11f

2
1 + αχ

12f1f2 + αχ
22f

2
2

where fn =
∫
ψ∗
nω for n = 1, 2 for Pi ,Pj ∈ {P,Q}.

2. Compute sets Tχ such that ρχ(U(OK )) ⊆ Tχ.

3. Compute Ap = {R ∈ U(K ⊗Qp) : ρ
cyc(R) ∈ T cyc, ρanti(R) ∈ T anti}.

Output: Obtain a set Ap ⊆ U(K ⊗Qp) which contains U(OK ). Output error if this set
is infinite.



An example

Set K = Q(ζ6). Consider the scheme U ⊆ A2
K given by the equation

y2 + (ζ6 + 1)y = x3 + (−ζ6 − 1)x2 + ζ6x . (1)

• The corresponding elliptic curve E has rank 2, and trivial K -torsion. Generators
are P = (1, 0),Q = (ζ6, 0)

• LMFDB label: 134689.3-CMa1

• Primes p = 7 and q = 13 split in K , and E has good, ordinary reduction at primes
above p, q.

• T cyc = T anti = {0}.

https://beta.lmfdb.org/EllipticCurve/2.0.3.1/134689.3/CMa/1


Integral points from QC set

• Using the Quadratic Chabauty algorithm, we can compute the sets Ap,Aq. We
get #Ap = 216,#Aq = 120. This took about 10 minutes on my laptop.

• A search yields 12 small OK -points. Let Bp,Bq be the complement of the known
OK -points in Ap,Aq.

Do Bp,Bq have any OK -points?



A sieve for elliptic curves

Let p1, p2 be the primes above p, q1, q2 be the primes above q. One checks that

• EFp1
(Fp) ∼= EFp2

(Fp) ∼= Z/13Z
• EFq1

(Fq) ∼= Z/7Z and EFq2
(Fq) ∼= Z/19Z.

Idea: Log and reduction restriction

• If (R1,R2) ∈ Ap comes from U(OK ), then it is the image of R = aP + bQ for
a, b ∈ Z.

• Restrict (a, b) with structure of group of reductions at p, q and Coleman integrals.



Sieve example

Let
(R1,R2) = ((3 + 6 · 7 + .., 6 + 6 · 7..), (2 + 7 + .., 2 + 2 · 7 + ..)) ∈ Bp

• Solving the system

R1 = aP1 + bQ1 in EFp1
(Fp)

R2 = aP2 + bQ2 in EFp2
(Fp)

yields restrictions on (a, b) = (7, 0) mod 13.

• Also have

f1(R1) = af1(P) + bf1(Q) in Qp

f2(R2) = af2(P) + bf2(Q) in Qp

giving constraints (a, b) = (6, 5) mod 7.



• To (R1,R2) =: R we have associated log and reduction information:

logR ⊆ F2
p, redR ⊆ F2

q.

• For each R ∈ Ap and S ∈ Aq compute log and reduction information.

• Compute ⋃
R∈Ap

(logR× redR)
⋂ ⋃

S∈Aq

(redS × logS)

• Hope this intersection is empty.

• For the curve in Equation (1), it is empty!

• #U(OK ) = 12.



Future work

• Good methods to solve systems of multivariate power series.

• Use method for rank 1 elliptic curves.

• Find a better sieve for elliptic curves.

• Use method for higher genus curves.



Summary

Let K be an imaginary quadratic field K with class number 1. Let E be an elliptic
curve of rank at most 2. Let U/OK be given by a minimal Weierstrass equation of E .

Theorem

There exists a prime p and an algorithm such that we can compute a quadratic
Chabauty set U(Zp)2 with

U(OK ) ⊆ U(Zp)2 ⊆ U(OK ⊗ Zp).

Thank You!!


