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Hyperelliptic curves

Definition
A curve C over a field k is hyperelliptic if its genus is at least 2 and it has an
involution ι such that C/⟨ι⟩ has genus 0.

Such an involution is unique if it exists.
Over a finite field Fq, every genus-0 curve is isomorphic to P1, so. . .
We get a double cover φ : C → P1, unique up to AutC and AutP1 ∼= PGL2(Fq).
If characteristic is odd: y2 = f (x , z) with f homogeneous, degree 2g + 2.
div f ⊂ P1 is the ramification divisor of φ. It is effective, reduced, degree 2g +2.

Theorem 1
C is determined up to quadratic twist by the PGL2(Fq) orbit of div f .

So: enumerating hyperelliptic curves of genus g over Fq
⇐⇒ enumerating PGL2(Fq) orbits of effective reduced divisors of degree 2g + 2.
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Moduli spaces of hyperelliptic curves of genus g

Classical strategy:
Compute invariants for hyperelliptic curves of genus g. (Framework for this
goes back to Gordan.)
Curve k -rational =⇒ invariants k -rational
Mestre (1990): For curves with no automorphisms other than ι, converse
holds if a certain conic has a rational point. Always true over a finite field.
Making the converse effective involves solving a system of polynomial
equations.
Curves with larger automorphism groups must be dealt with separately.
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The case of genus 2

Igusa invariants (Igusa 1972)
Elements [J2 : J4 : J6 : J8 : J10] of weighted projective space defined over Z
J10 ̸= 0 and 4J8 − J6J2 + J2

4 = 0
Easy to enumerate all elements over a field

Curves from invariants
Mestre (1990): Details of case where #AutC = 2
Cardona and Quer (2005): Handle the larger automorphism groups

Implemented in Magma
Uses “G2 invariants” of Cardona/Quer for convenience: triples (a,b, c) ∈ F3

q

All triples (a,b, c) ∈ F3
q are legal G2 invariants

Twists(HyperellipticCurveFromG2Invariants([a,b,c]))
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The case of genus 3

Invariants
Shioda (1967) worked out one set of invariants
Shioda’s basis does not include the discriminant
Lercier and Ritzenthaler (2012): Invariants in weighted projective space

Curves from invariants
Worked out by Lercier/Ritzenthaler: A tour de force!

Implemented in Magma
Start with invariants in weighted projective space
Compute Shioda invariants; check to see whether discriminant is nonzero
TwistedHyperellipticPolynomialsFromShiodaInvariants(S)
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Moduli spaces versus enumeration over finite fields

Advantages and disadvantages of moduli space approach
Works over essentially all fields
Requires new math to be done for every genus
Daunting to think of generalizing even just to genus 4

Advantages and disadvantages of our approach to enumeration
Specific to finite fields — a case of particular interest
Can handle arbitrary genera with no additional work
For fixed g: Enumerate all genus-g hyperelliptic curves /Fq in time Õ(q2g−1)

In practice, orders of magnitude faster than preceding approach
Have not yet worked out dependence on the genus
ANTS version uses O(q2g−1) memory — improved to O(log q) in followup
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Galois structure of Weierstrass points is relevant

Assume that 2g + 1 is not divisible by the characteristic of Fq.

Normal form for a hyperelliptic curve with a rational Weierstrass point
Use PGL2(Fq) to move a rational ramification point of C → P1 to ∞.
Get y2 = f (x) with deg f = 2g + 1.
Use translations to eliminate coefficient of x2g in f .
Up to twists, have y2 = x2g+1 + a2g−1x2g−1 + · · ·+ a1x + a0.

If a0 ̸= 0, scale x so that a0 is in a fixed set of representatives for F×
q /F×(4g+2)

q .

If a0 = 0, scale x so that a1 is in a fixed set of representatives for F×
q /F×(4g)

q .

At most (2g + 2)(4g + 2) ways of doing this. Choose “smallest” f we get.

To enumerate curves, loop through all degree-(2g + 1) polynomials f with a2g = 0
and with a0 (or a1) in given set of reps, and output those that are in normal form.

Quasilinear time algorithm for about 63.2% of all hyperelliptic curves.
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The fundamental case: An irreducible Weierstrass divisor

We can enumerate curves with a rational Weierstrass point.

Furthest away from that case: C → P1 ramified at a single place of degree 2g + 2.

Main question:
How do we quickly enumerate orbit representatives for PGL2(Fq) acting on:

Degree-2m places of P1 over Fq?
Or, equivalently, monic irreducible polynomials of degree 2m?

As argued in the paper, if we can do this, we can quickly enumerate all curves.
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The cross polynomial

Definition
Let f be a monic irreducible polynomial over Fq of degree n > 3.
Let α ∈ Fqn be a root of f , and let χ ∈ Fqn be the cross ratio of α, αq, αq2

, and αq3
:

χ :=
(αq3 − αq)(αq2 − α)

(αq3 − α)(αq2 − αq)
.

The cross polynomial Cross f of f is the characteristic polynomial of χ.

Theorem 2
Two monic irreducible polynomials over Fq of degree at least 4 are in the same
PGL2(Fq) orbit if and only if their cross polynomials are equal.
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Computing PGL2 orbits of places, but not quite fast enough

Algorithm: Representatives for PGL2 orbits of degree-n irreducibles
Input: q and n > 3.
Construct basis α1, . . . , αn of Fqn such that 1 = a1α1 + · · ·+ anαn with a1 ̸= 0.
Set L to be the empty list.
For every (b2, . . . ,bn) ∈ Fn−1

q such that first nonzero coordinate is 1:
Set f to be the minimal polynomial of b2α2 + · · ·+ bnαn.
If f has degree n then append the pair (Cross f , f ) to L.

Sort L.
Delete (Cross f , f ) from L if Cross f appears earlier on list.
Output the second elements of each pair remaining on L.

Easy to see: Output is correct. Requires time Õ(qn−2) and space O(qn−2).
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Orbit reps for even-degree places in quasilinear time: The idea

Suppose f is monic irreducible polynomial over Fq of degree 2m.

Then over Fq2 , f factors as a product g · g(q), where g is monic of degree m.

To enumerate degree-2m irreducibles over Fq up to PGL2(Fq),
enumerate degree-m irreducibles over Fq2 up to PGL2(Fq).

(We will see why this is helpful.)

First take orbit reps for the degree-m irreducibles over Fq2 up to PGL2(Fq2),
then expand them using right coset represetatives for PGL2(Fq) in PGL2(Fq2).

It’s easy to produce an explicit list of these coset representatives: See the paper.
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Orbit reps for even-degree places in quasilinear time: Details

Algorithm: Representatives for PGL2 orbits of degree-2m irreducibles
Input q, m > 2, and list R of right coset reps of PGL2(Fq) in PGL2(Fq2).
Construct list M of orbit reps for degree-m irreducibles /Fq2 up to PGL2(Fq2).
Set L to be the empty list.
For every h ∈ M and Γ ∈ R:

Set g = Γ(h) and set f = gg(q).
Append the pair (Cross f , f ) to L.

Sort L.
Delete (Cross f , f ) from L if Cross f appears earlier on list.
Output the second elements of each pair remaining on L.

First step takes time Õ((q2)(m−2)) = Õ(qn−4) using earlier algorithm.
O(qn−6) elements in M and O(q3) elements in R.
Output is correct. Requires time Õ(qn−3) and space O(qn−3).
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Timings

Sample timings (in seconds) to compute all hyperelliptic curves of genus 2 and 3 over Fq .

“Magma” columns: timings for Mestre/Cardona/Quer and Lercier/Ritzenthaler as built into Magma.
“Divisors”columns: timings for our method of computing orbit reps for PGL2 acting on divisors.
“Curves” columns: timings for deriving curves from divisors (i.e. checking twists).

Timings with an asterisk are estimates based on extrapolation from 10,000 random examples.

Genus 2

Our method

q Magma Divisors Curves Total

17 8 0.2 0.02 0.2
31 52 0.8 0.06 0.8
59 327 3.8 0.25 4.1

127 3308 36 2 38
257 27448∗ 290 10 300
509 211655∗ 2307 76 2384

Genus 3

Our method

q Magma Divisors Curves Total

17 5274 20 1 21
31 99463∗ 304 14 318
59 2408665∗ 5932 479 6411
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What about odd-degree places?

For enumerating hyperelliptic curves in quasilinear time, we have all we need.

Yet we might still wonder:
How to enumerate PGL2 orbits of odd-degree places in quasilinear time?

Interesting on its own as a question.
But also useful (for example) for enumerating cyclic covers of P1 of higher degree.

This is covered in the followup paper:
Enumerating places of P1 up to automorphisms of P1 in quasilinear time
arXiv: 2407.05534 [math.NT]
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Frobenius functions and Frobenius divisors

Theorem/Definition
Let f be a monic irreducible degree-n polynomial with n > 1 odd. Among the
rational functions of degree at most (n − 1)/2, there is a unique F such that
αq = F (α) for all roots α of f . We call F the Frobenius function for f .

The uniqueness depends on n being odd.

Definition
Let F = g/h be the Frobenius function for f , viewed as a rational function on P1,
so g and h are homogeneous polynomials in Fq[x , z].
The divisor of the homogeneous polynomial xh − zg is the Frobenius divisor of f .

The Frobenius divisor is the “divisor of fixed points” of F ; its degree is ≤ (n + 1)/2.

Theorem 3
The map from irreducible odd-degree polynomials to their Frobenius divisors is
PGL2-equivariant under the natural action of PGL2 on both sets.
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Polynomials and their Frobenius functions

Frobenius functions and fixed points
Suppose F is the Frobenius function for a degree-n polynomial f .

Let α be a root of f .
Then αq = F (α), and more generally αqi

= F (i)(α).
α is a fixed point of F (n).
f divides the numerator of x − F (n).

Finding the degree-n polynomials with Frobenius function F
For every degree-n irreducible factor f of the numerator of x − F (n), check whether
F is the Frobenius function for f .

Warning: If degF = 1 this doesn’t work (why?), and instead we do something else.
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Orbit reps for odd-degree places in quasilinear time

Algorithm: PGL2 orbit representatives for irreducibles of odd degree n
Input q, odd n > 1, and list M of orbit representatives for PGL2(Fq) acting on
effective divisors of degree up to (n + 1)/2.
For each divisor D on the list M, find the functions F with fixed-point divisor D.
(Only use one F from each orbit of AutD ⊂ PGL2(Fq) acting by conjugation.)
For each such F , output the degree-n polynomials f with Frobenius function F .

How to compute the list M required as input?

When n > 5, naïve methods are fast enough! But we can also use recursion.
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