MACHINE LEARNING AND
" PURE MATHEMATICS:
EXPERIMENTS AND
SPECULATIONS

Jordan Ellenberg, University of Wisconsin-Madison: ANTS XVI

In Memoriam, Nigel Boston, 1961-2024

Article | Open access | Published: 14 December 2023

Mathematical discoveries from program search with
large language models

Bernardino Romera-Paredes &, Mohammadamin Barekatain, Alexander Novikov, Matej Balog, M. Pawan

Kumar, Emilien Dupont, Francisco J. R. Ruiz, Jordan S. Ellenberg, Pengming Wang, Omar Fawzi,

Pushmeet Kohli & & Alhussein Fawzi &

Nature 625, 468-475 (2024) | Cite this article

195k Accesses | 1017 Altmetric | Metrics

Capsets

A capset in (Z/3Z)" is a set S of vectors
such that no three distinct elements of s
satisfy

s+t+u=0

Capsets

A capset in (Z/3Z)" is a set S of vectors
such that no three distinct elements of s

satisfy

s+t+u=0
t = -(stu) = (1/2)(s+u)

Capsets

f(n) = size of the largest capset in
(Z/3Z)™n

Perhaps my favourite open question is the problem on the maximal size of a cap
set - a subset of [’ ([F'5 being the finite field of three elements) which contains

no lines, or equivalently no non-trivial arithmetic progressions of length three. As

f(1) = 2, f(2) = ?

Capsets

f(2) = 4

Capsets

f(2) = 4

S ={0,1}*n is a capset, so f(n) = 2"

In fact, f(m+n) = f(m)f(n)

Capsets

But:

f(3) = 9!

Capsets

- f(4)=20

44y

000

Capsets
What is lim f(n)1/™?

At least (20)Y/4=2.11 ...
At most 3.
E_-Giswijt, 2017: at most 2.756.

Best known lower bound: Tyrell, 2022: at
least 2.218.

Can a machine generate a large capset?

(even a single large example can narrow the gap!)

Can a machine generate a large capset?

Standard approach: somehow optimize over functions
F: R" — R, rewarding those such that

flve{0,12YV:F(v) >0}
is a large capset.

[Submitted on 29 Apr 2021]

Constructions in combinatorics via neural networks

Adam Zsolt Wagner

We demonstrate how by using a reinforcement learning algorithm, the deep cross-entropy method, one can find explicit constructions and counterexamples to several open conjectures in extremal combinatorics and graph
theory. Amongst the conjectures we refute are a question of Brualdi and Cao about maximizing permanents of pattern avoiding matrices, and several problems related to the adjacency and distance eigenvalues of graphs.

OUTPUT: Some huge mess of a function.

FUNSEARCH

Instead: search the space of
short Python programs,
rewarding those whose output is
a large n-dimensional capset.

FUNSEARCH: A CARTOON

|Qé (,\/n[ua]‘f;
04(ams | pick Lest
R

L LM , Mo T [lee_
+lese

def priority(el:

e

n: int) -> float:
score = n
in el = 0
el count = el.count (0)
if el count == 0:
score += n**2
if el[1] == el[-1]:
score *= 1.5
if el[2] == el[-2]:
score *= 1.5
if el[3] == el[-3]:
score *= 1.5
else:
if el[1l] == el[-1]:
score *= 0.5
if el[2] == el[-2]:
gcore *= 0.5

tuple [int; ..

1,

for e in el:

il & == D:
if in el == O0:
score *=n * 0.5
elif in el ==
score *= 0.5
else:

gscore *=n * 0.5 ** in el

in el += 1
else:
score += 1

if el[l] == el[-1]:
score *= 1.5

if el[2] == el[-2]:
score *= 1.5

return score

el count - 1:

Observations on Funsearch

It actually works! Matches best known lower bound on f(n)
(i.e. matches largest known n-dimensional capsets) for n =
1,2,..7, and improves f(8) from 496 to 512.

Observations on Funsearch

It actually works! Matches best known lower bound on f(n)
(i.e. matches largest known n-dimensional capsets) for n =

1,2,..7, and improves f(8) from 496 to 512.

(and improves the lower bound in general, though Naslund
recently beat this...)

Observations on Funsearch

We needed to search a very restrictive class of functions:
priority functions that assign a score to each element of
(Z/3Z)" in advance, then add vectors to the capset in order

of score, skipping any that violate the capset rule.

1!

def priority(el:

e

n: int) -> float:
score = n
in el = 0
el count = el.count (0)
if el count == 0:
score += n**2
if el[1] == el[-1]:
score *= 1.5
if el[2] == el[-2]:
score *= 1.5
if el[3] == el[-3]:
score *= 1.5
else:
if el[1l] == el[-1]:
score *= 0.5
if el[2] == el[-2]:
gcore *= 0.5

tuple [int; ..

1,

for e in el:

il & == D:
if in el == O0:
score *=n * 0.5
elif in el ==
score *= 0.5
else:

gscore *=n * 0.5 ** in el

in el += 1
else:
score += 1

if el[l] == el[-1]:
score *= 1.5

if el[2] == el[-2]:
score *= 1.5

return score

el count - 1:

Observations on Funsearch

No hallucination problem because assessment doesn’t involve
the LLM!

(,\/a[uaf L<

f 1 Ce Lesf'
pustorvecs.

Observations on Funsearch

Results are interpretable; we can read the code ourselves and
try to figure out what it’s doing.

Observations of Funsearch

My attempts to seed Funsearch with “well-chosen” functions
did not improve performance!

Observations on Funsearch:

Funsearch does not seem to learn that (Z/3Z)"n has
symmetry by GL_n(F_3), but does learn it has symmetry by

S_n.

1f el count ==

score += n**2

if el[1l] == el[-1]:
score *= 1.

if el [2] == el [-2]:
score *= 1.

if el [3] == el[-3]:

SCore *=

Observations on Funsearch

Funsearch does not seem to learn how to combine an m-
dimensional capset and an n-dimensional capset into an
(m+n)-dimensional capset.

Funsearch can:

* Learn to produce a program that gives good (better than
previous human-generated) solutions for a particular n

Funsearch can:

* Learn to produce a program that gives good (better than
previous human-generated) solutions for a particular n

general-n

AYA AYA A a () a AVAVYAYA () ANa ()
\J \J = - y =\ VA VAS _J 1 U/ _J \J

' Funsearch can:

* Learn to produce a program that gives good (better than
previous human-generated) solutions for a particular n

* Learn to produce a program that gives a human reader a good
1dea for creating good solutions for general n
(interpretability!)

general-n

Funsearch can:

* Learn to produce a program that gives good (better than
previous human-generated) solutions for a particular n

* Learn to produce a program that gives a human reader a good
1dea for creating good solutions for general n

general-n
Enclave/oat/of] . il 1]

» Renderresearch-mathematics-obsolete

AYA AYA aa a () a AVAVAYA () ANa
\J \J = - y =\ VA VA _J 1 U/ _J

Forward from here

What kind of problems are most suitable
for Funsearch-style attack! Can we get
outside combinatorics!?

Forward from here

DeepMind wants to work on hard
problems; | want to work on easy
problems

Forward from here

DeepMind wants to work on hard
problems; | want to work on easy
problems

AT
e
[comy clent S edocT jo,,,(Erccellort

A R R
liemnse
) ' . by

-~
01 Cne e [
el L e

B e 2
s e S
P e raew

L e o -

1w Sk vowwwiniy, TN
i & L e

LT e
T M AN e

_— 4
et UD

{
A r 'z INNIF
‘ -‘. ¢ Tl -

fw

-
\

.
n..‘

g h ME lm P-noul (ompoehg Snn-!

mbd oy e N Il sdatey m v v vom nau- B oom s we Sy

b, pms

Forward from here

“we have empirically observed that the results obtained in this
paper are not too sensitive to the exact choice of LLM, as
long as it has been trained on a large enough corpus of code.”

Can we make Funsearch (or Funsearch-likes) a tool for
working mathematicians?

Learning the Mobius function

un) =
* 1 if nis the product of an even number of distinct primes
* -1 if n is the product of an odd number of distinct primes

* 0 if n has a nontrivial square factor

Can a neural net learn the Mobius function?

First try: learning the Mobius function

' Neural nets are very good at:

INPUT

cat faucet cat

OUTPUT: A function F from space of pixels (R*N) to [0,1]
sending pictures of cats to 0 and pictures of faucets to 1

First try: learning the Mobius function

INPUT:
(17,1)

(15, -1)
(105, -1)
(12, 0),

First try: learning the Mobius function

INPUT: OUTPUT:

(17,1) A function that
(15, -1) matches Mobius
(105, -1) much better than

(12, 0) chance!

First try: learning the Mobius function
u(n)=

* 1 if n is the product of an even number of distinct primes
* -1 if n is the product of an odd number of distinct primes
* 0 if n has a nontrivial square factor

Our function: O if n is a multiple of 4, random +1 otherwise.

Philosophical question:

If the machine, given f(p) data points, can learn to return 0
when n is a multiple of p*2, should we say the machine has
learned to detect squarefreeness?

Philosophical question:

If the machine, given f(p) data points, can learn to return 0

when n is a multiple of p*2, should we say the machine has
learned to detect squarefreeness?

Accuracy of answers near 100%, proportion of concept
learned is 0%.

