Rank of an elliptic curve and 3-rank of a quadratic field via the Burgess bounds

ANTS-16, July 2024 at MIT

Noam D. Elkies

Harvard University, Cambridge, MA USA

Overview

- Elliptic curves E_k : $y^2 = x^3 + k$ with j = 0 ("Mordell curves")
- A curve E_k of rank at least 16
- 3-isogeny descent to 3-torsion in quadratic class group; E_k has rank 16 under GRH
- Burgess bound with Booker and Treviño's constants $\Rightarrow E_k$ has rank 16 unconditionally
- Further records and challenges

Mordell curves. An elliptic curve E/\mathbf{Q} has $j = 0 \iff$ End $(E) = \mathbf{Z}[\mu_3] \iff E$ can be written as the "Mordell curve"

$$E_k : y^2 = x^3 + k$$

for some $k \in \mathbf{Q}^{\times}$. Two such curves $E_k, E_{k'}$ are isomorphic $\iff k'/k \in (\mathbf{Q}^{\times})^6$, so we may assume $k \in \mathbf{Z}$ and k is 6th power free.

Mordell's theorem (1922, same year as Mordell's conjecture):

For any elliptic curve E/Q, its set E(Q) of rational points is an abelian group of finite torsion and rank.

In particular this is true for $E = E_k$.

So, what are the possible torsion groups $E_k(\mathbf{Q})_{tors}$ and ranks?

Torsion in Mordell curves. As usual for such families, torsion is much easier than rank. The only possible torsion in $E_k(\mathbf{Q})$:

- a 2-torsion point (-n, 0) if $k = n^3$ [quadratic twist of $y^2 = x^3 + 1$];
- 3-torsion points (0,±m) if k = m²
 [cubic twists of E₁, which has both 2- and 3-torsion, so also 6-torsion: (2,±3)];
- 3-torsion points (12, ±36) on E_{-432} [Fermat cubic curve $X^3 + Y^3 + Z^3 = 0$].

Otherwise $E_k(\mathbf{Q})$ has trivial torsion.

[Can you find $k \in \mathbf{Q}(\mu_3)^{\times}$ for which $E_k(\mathbf{Q}(\mu_3))$ has 7-torsion? Likewise 5-torsion on $y^2 = x^3 + ax$ $(j = 1728, CM by \mathbf{Z}[i])$ over $\mathbf{Q}(i)$.] **Ranks of Mordell curves.** The possible Q-ranks of curves E_k are much harder to understand than the torsion. For now, large ranks are the topic of speculation and record-hunting, not theorems.

NDE on nmbrthry, 6 Feb. 2016: E_{16D} has rank \geq 16 for

D = 72513834653847828539450325493 = 41p

where p = the prime 1768630113508483622913422573.

Proved by searching for points and finding a bunch that generate a rank-16 subgroup of $E_{16D}(\mathbf{Q})$. (See paper for a list of 16 independent points.)

Expect rank = 16 exactly. How hard could that be to prove?

\repeat{How hard is it to prove we have the right rank?}

Short of invoking BSD conj., all we know to do is compute Selmer groups (descent); how hard is that?

Comparison with other families:

E with $E_{\text{tors}} = T \neq \{0\}$ (e.g. a record |T| = 2 curve with r = 20 from [NDE–Klasgbrun, ANTS-14, 2020]): entirely feasible to compute Selmer groups for isogeny $\varphi : E \rightarrow E/T'$ (some nontrivial subgroup $T' \subseteq T$) and its dual $\hat{\varphi} : E/T' \rightarrow E$. For high-rank curves, the resulting rank bound usually matches the rank of the known subgroup of $E(\mathbf{Q})$, so we're done.

E unconstrained (e.g. the r = 28 curve of [NDE 2006]): need 2-torsion in class group of a large-disc. cubic extension F/\mathbf{Q} with Galois closure $\mathbf{Q}(E[2])$. Needs GRH for all unram. abelian extensions of *F*, as in [Klagsbrun–Sherman–Weigandt 2019].

So how hard is it to prove we have the right rank of E_k ?

Our curves E_k : $y^2 = x^3 + k$ are intermediate: not as easy as curves with nontrivial torsion T, nor as intractable as unconstrained curves.

As with |T| > 1 curves, we can use isogeny descents, here via a 3-isogeny $\varphi : E_k \to E_{-27k}$ and its dual (see next slide).

As with unconstrained curves, the Selmer group involves torsion in a class group, here 3-torsion in the class groups of the quadratic fields $Q(\sqrt{k})$ and its "mirror field" $Q(\sqrt{-3k})$. That's still more accessible than a noncyclic cubic extension of huge discriminant.

The 3-isogenies between E_k and E_{-27k} .

We can construct $\varphi : E_k \to E_{-27k}$ from the CM of E. Fix a cube root of unity ρ . Then $\operatorname{End}_{\overline{\mathbf{Q}}} E_k = \mathbb{Z}[\rho]$ with ρ acting by $(x, y) \mapsto (x, \rho y)$. Hence $\sqrt{-3} = \rho - \overline{\rho}$ is a 3-isogeny with kernel $\{0, (0, \sqrt{k}), (0, -\sqrt{k})\}$, the points P s.t. $\rho P = \overline{\rho} P$.

This isogeny is defined only over the CM field $\mathbf{Q}(\rho) = \mathbf{Q}(\sqrt{-3})$, but with rational x and $y/\sqrt{-3}$. So, we get a 3-isogeny φ defined over \mathbf{Q} from E_k to its quadratic twist by $\mathbf{Q}(\sqrt{-3})$, which is E_{-27k} . Explicitly,

$$\phi(x,y) = \left(\frac{x^3 + 4k}{x^2}, \frac{(x^3 - 8k)y}{x^3}\right)$$

The action of $\mathbb{Z}[\rho]$ on E_{-27k} then gives us $\hat{\varphi}$, with kernel $\{0, (0, \sqrt{-27k}), (0, -\sqrt{-27k})\}.$

[Yes, this generalizes to other CM curves.]

The φ - and $\hat{\varphi}$ -descents. Our D is 1 mod 4, so the curves E_k and E_{-27k} (with k = 16D as before) have good reduction at 2; e.g. E_k has model

$$x^{3} = y^{2} + y - \frac{D-1}{4} = \left(y + \frac{1+\sqrt{D}}{2}\right)\left(y + \frac{1-\sqrt{D}}{2}\right)$$

The factors $y + (1 \pm \sqrt{D})/2$ of x^3 are Weil functions. Choosing $+\sqrt{D}$, get homomorphism $\delta : E_{16D}(\mathbf{Q}) \to \mathbf{Q}(\sqrt{D})^{\times}/(\mathbf{Q}(\sqrt{D})^{\times})^3$ taking (x, y) [other than 0 and $(0, -(1 + \sqrt{D})/2)$] to the class of $y + (1 + \sqrt{D})/2$, with ker $(\delta) = \hat{\varphi}(E_{-27k}(\mathbf{Q}))$.

This connects the Selmer group for $E_k(\mathbf{Q})/\hat{\varphi}(E_{-27k}(\mathbf{Q}))$ with $H_D[3]$, where H_D is the class group of $\mathbf{Q}(\sqrt{D})$.

Likewise the Selmer group that contains $E_{-27k}(\mathbf{Q})/\varphi(E_k(\mathbf{Q}))$ involves $H_{-3D}[3]$.

The φ - and $\hat{\varphi}$ -descents, cont'd.

Since D is squarefree (and also 1 mod 4 but \neq 1), The only other contribution to the Selmer groups is U/U^3 where U = unit group of $\mathbf{Q}(\sqrt{D})$. Therefore

 $r(E_k) \leq \dim_{\mathbb{Z}/3\mathbb{Z}} H_D[3] + \dim_{\mathbb{Z}/3\mathbb{Z}} H_{-3D}[3] + 1.$

Using the known subgroup $\cong \mathbf{Z}^{16}$ of $E_k(\mathbf{Q})$ we find

 $\dim_{\mathbb{Z}/3\mathbb{Z}} H_D[3] \ge 7, \qquad \dim_{\mathbb{Z}/3\mathbb{Z}} H_{-3D}[3] \ge 8.$

These are the current records for the 3-rank of a real and imaginary quadratic field respectively. Also, 3-rank 8 with $|3D| < 3^{61.5}$ compares favorably with the Cohen-Lenstra proportion of about 3^{-64} .

(This use of high $r(E_k)$ to find high 3-ranks is already in [Quer 1987], when the records were 12 = 5 + 6 + 1.)

3-torsion in H_D and H_{-3D} . Since

 $r(E_k) \leq \dim_{\mathbb{Z}/3\mathbb{Z}} H_D[3] + \dim_{\mathbb{Z}/3\mathbb{Z}} H_{-3D}[3] + 1,$ $r(E_k) = 16 \text{ would follow from}$

 $\dim_{\mathbb{Z}/3\mathbb{Z}} H_D[3] \stackrel{?}{=} 7, \qquad \dim_{\mathbb{Z}/3\mathbb{Z}} H_{-3D}[3] \stackrel{?}{=} 8,$

and these two " $\stackrel{?}{=}$ " are equivalent by the reflection theorem [Scholz 1932].

Magma soon computes

$$H_{-3D} \stackrel{\text{GRH}}{\cong} (\mathbf{Z}/2\mathbf{Z})^2 \times \underbrace{(\mathbf{Z}/3\mathbf{Z})^8}_{H_D} \times (\mathbf{Z}/77681\mathbf{Z}) \times (\mathbf{Z}/139939\mathbf{Z}),$$

What would it take to remove one of these GRH assumptions?

From $(H_{-3D})_0$ **to** H_{-3D}

Consider H_{-3D} , and denote by $(H_{-3D})_0$ the known subgroup $(\mathbb{Z}/2\mathbb{Z})^2 \times (\mathbb{Z}/3\mathbb{Z})^8 \times (\mathbb{Z}/77681\mathbb{Z}) \times (\mathbb{Z}/139939\mathbb{Z})$. Actually a known homomorphism from $(H_{-3D})_0$ to H_{-3D} , but we soon prove unconditionally that it's injective. It is surjectivity that's hard: how to prove we've found <u>all</u> of H_{-3D} ?

Enough to prove $|H_{-3D}| = |(H_{-3D})_0|$.

By Legendre $|H_{-3D}|$ is a multiple of $|(H_{-3D})_0|$. Moreover, we have all of $H_{-3D}[2]$ by genus theory, and $H_{-3D}[4] = H_{-3D}[2]$ using [Rédei 1934], so $[H_{-3D} : (H_{-3D})_0]$ is odd.

Thus we need only show $|H_{-3D}| < 3 |(H_{-3D})_0|$.

Bounding $|H_{-3D}|$. Dirichlet's class number formula gives

$$|H_{-3D}| = \frac{\sqrt{3D}}{\pi} L(1, \chi_{3D}) = \frac{\sqrt{3D}}{\pi} \sum_{n=1}^{\infty} \frac{\chi_{3D}(n)}{n}$$

where $\chi_{3D} = (\frac{-3D}{.})$. So we expect $L(1, \chi_{3D}) = 1.921597...$ and need only show $L(1, \chi_{3D}) < 5.764$.

It's easy enough to numerically compute $\sum_{n=1}^{N} \chi_{3D}(n)/n$ for N large enough to get quite close to 1.921597.... But how to prove that the remainder

$$R(\chi_{3D}, N) := \sum_{n=N+1}^{\infty} \frac{\chi_{3D}(n)}{n}$$

is less than about 3.8?

Bounding $R(\chi_{3D}, N)$.

Start by writing $R(\chi_{3D}, N) := \sum_{n>N}^{\infty} \chi_{3D}(n)/n$ in terms of

$$S(x) := \sum_{1 \le n \le x} \chi_{3D}(n)$$

via "partial summation" / integration by parts:

$$\int_{N+\frac{1}{2}}^{\infty} \frac{1}{x} d(S(x) - S(N)) = \int_{N+\frac{1}{2}}^{\infty} (S(x) - S(N)) \frac{dx}{x^2}.$$

Now $|S(x) - S(N)| \le x - N$ (because each $|\chi_{3D}(n)| \le 1$); and $S(x)-S(N) \ll \sqrt{3D} \log 3D$ (Pólya–Vinogradov 1918, with small \ll -constant). So, enough to take $N \ll D^{1/2} \log D$, as usual for unconditional computations of class groups etc. But for our $D \sim 7 \cdot 10^{28}$ that's $N \sim 10^{16}$ — not happening (at least not anytime soon).

The Burgess bound.

We expect $S(x) - S(N) \ll (x - N)^{1/2 + o(1)}$ once $x - N \ll q^{\eta}$ (any $\eta > 0$), but nothing like that is known unconditionally.

But we could use any improvement over trivial $|S(x) - S(N)| \le x - N$ with x - N significantly smaller than $D^{1/2} \ldots$

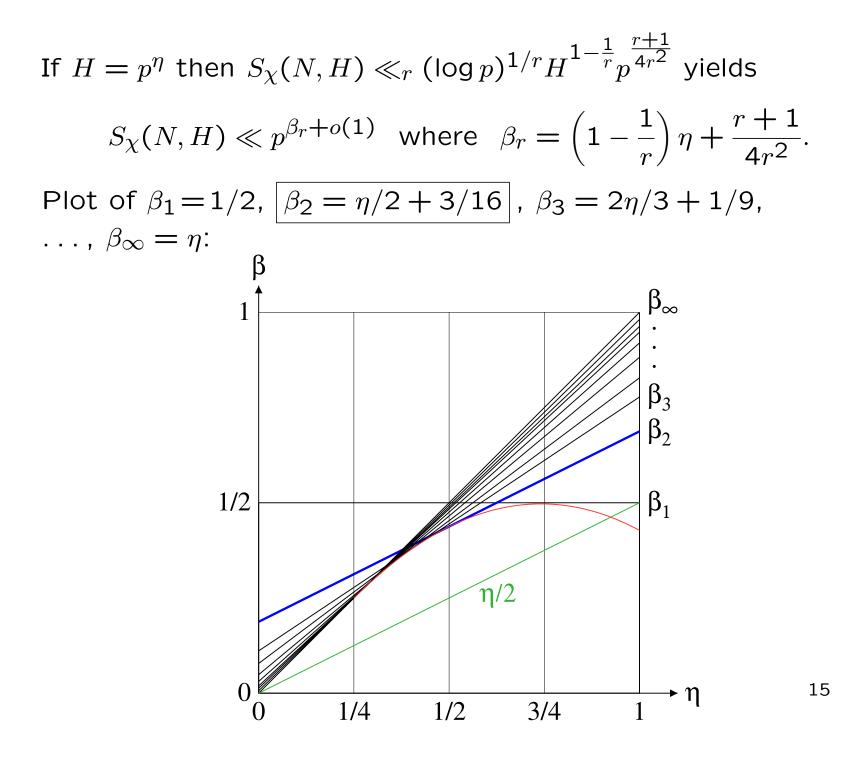
Burgess (1962) supplied such a bound on short character sums

$$S_{\chi}(N,H) := S(N+H) - S(N) = \sum_{h=1}^{H} \chi(N+h)$$

for nontrivial characters χ of prime modulus p:

$$S_{\chi}(N,H) \ll_r (\log p)^{1/r} H^{1-\frac{1}{r}} p^{\frac{r+1}{4r^2}}$$

for each $r = 2, 3, 4, \ldots$ Thus $\eta > 1/4 \Longrightarrow S_{\chi}(N, p^{\eta}) = o(p^{\eta})$:



Burgess is better than Pólya–Vinogradov (i.e. $\beta_r < 1/2$) for $\eta < (2r+1)/4r$, and better than trivial (i.e. $\beta_r < \eta$) for $\eta > (r+1)/4r$. These are 5/8 and 3/8 for r = 2.

The modulus 3D of χ_{3D} is not quite prime, but 3D = 123p. We split the sum into $\phi(123) = 80$ AP's, each of which is $\pm S_{\chi}(N', H/123)$ for $\chi = (\cdot/p)$, and apply Burgess to each S_{χ} .

The upper bound on $|R(\chi_{3D}, N)|$ is $\ll (\log p)^{1/2} p^{3/16} N^{-1/2}$, so we need $N \gg p^{3/8+o(1)}$. The $p^{1/8}$ saving is enough to make this practical — provided the \ll -constant is small enough to make the \gg -constant tolerable!

So what are these constants?

Burgess's proof is entirely effective (clever use of Weil's bounds on complete character sums) but rather complicated ...

The Burgess–Booker–Treviño bounds.

Fortunately Booker (2006) already worked out numerical bounds in a very similar context. For r = 2,

$$|S_{\chi}(N,H)| \le 1.8221 \, p^{3/16} (\log p + 8.9077)^{1/4} H^{1/2}$$

once $p > 10^{20}$ (which our *p* is, $> 1.7 \cdot 10^{27}$).

This requires $H < 2\sqrt{p}$. Booker used a better (but slower to compute) approximation to $L(1,\chi)$ than just a partial sum so that the remainder involves only $H < 2\sqrt{p}$. We fill in $H > 2\sqrt{p}$ using the weaker but uniform bound from Treviño (2015):

$$|S_{\chi}(N,H)| \le 2.74 \, p^{3/16} (\log p)^{1/2} H^{1/2}$$

for any $p > 10^7$ and all N, H. We conclude that

$$|R(\chi_{3D}, N)| < \frac{8 \cdot 10^6}{\sqrt{N}} + 0.4.$$

Computational conclusion.

We took $N = 2^{43} < 10^{13}$; this makes $|R(\chi_{3D}, N)| < 3.1$.

We computed $\sum_{n=1}^{N} \chi_{3D}(n)/n$ numerically twice: first in floating point (large *n* to small), then as $2^{-61} \sum_{n=1}^{N} \chi_{3D}(n) \lfloor 2^{61}/n \rfloor$ summing in 64-bit integer arithmetic. Either way it took < 24 hours on 16 processors, and the sum is within 10^{-6} of the expected value 1.92... of $L(1, \chi)$.

Combining everything we find that $[H_{-3D} : (H_{-3D})_0] < 3$; since that index is known to be odd, it equals 1 and we are done. \Box

Further records and challenges.

As $\hat{\varphi}$ - and φ -descents related $r(E_k)$ to $H_k[3]$ and $H_{-3k}[3]$, a 2-descent relates $r(E_k)$ to the 2-rank of the "pure cubic field" $\mathbf{Q}(k^{1/3})$. We thus get the current record of ≥ 15 for this 2-rank, but here we prove rank exactly 15 only under GRH.

Our E_{16D} and E_{-432D} are not the highest-rank Mordell curves known: E_k and E_{-27k} have rank at least 17 for

- k = -908800736629952526116772283648363
 - $= -2195745961 \cdot 413891567044514092637683.$

[The relevant 3-ranks are still 7 and 8 due to bad reduction at 2; likewise no new 2-rank record for $Q(k^{1/3})$.] Rank equals 17 under GRH, but not unconditionally while Burgess is limited to prime (and nearly-prime) moduli. It's been 60+ years since [Burgess 1962]...

THE END

THANK YOU

P.S. The j = 1728 curve $y^2 = x^3 - (1+2i)x$ has 5-torsion at (x,y) = (1,1-i) [in ker(2-i)];

The j = 0 curve $y^2 = x^3 - 6^4(5 + \rho)$ has 7-torsion at $(x, y) = (12(1+2\rho), 108\rho)$ [in ker $(2 - \rho)$].