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Overview

• Elliptic curves Ek : y2 = x3+k with j = 0 (“Mordell curves”)

• A curve Ek of rank at least 16

• 3-isogeny descent to 3-torsion in quadratic class group;

Ek has rank 16 under GRH

• Burgess bound with Booker and Treviño’s constants

⇒ Ek has rank 16 unconditionally

• Further records and challenges
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Mordell curves. An elliptic curve E/Q has j = 0 ⇐⇒
End(E) = Z[µ3] ⇐⇒ E can be written as the “Mordell curve”

Ek : y2 = x3 + k

for some k ∈ Q×. Two such curves Ek, Ek′ are isomorphic ⇐⇒
k′/k ∈ (Q×)6, so we may assume k ∈ Z and k is 6th power free.

Mordell’s theorem (1922, same year as Mordell’s conjecture):

For any elliptic curve E/Q, its set E(Q) of rational points

is an abelian group of finite torsion and rank.

In particular this is true for E = Ek.

So, what are the possible torsion groups Ek(Q)tors and ranks?
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Torsion in Mordell curves. As usual for such families, torsion

is much easier than rank. The only possible torsion in Ek(Q):

• a 2-torsion point (−n,0) if k = n3

[quadratic twist of y2 = x3 +1];

• 3-torsion points (0,±m) if k = m2

[cubic twists of E1, which has both 2- and 3-torsion,

so also 6-torsion: (2,±3)];

• 3-torsion points (12,±36) on E−432

[Fermat cubic curve X3 + Y 3 + Z3 = 0].

Otherwise Ek(Q) has trivial torsion.

[Can you find k ∈ Q(µ3)
× for which Ek(Q(µ3)) has 7-torsion?

Likewise 5-torsion on y2 = x3 + ax (j = 1728, CM by Z[i])

over Q(i).]
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Ranks of Mordell curves. The possible Q-ranks of curves Ek

are much harder to understand than the torsion. For now,

large ranks are the topic of speculation and record-hunting,

not theorems.

NDE on nmbrthry, 6 Feb. 2016: E16D has rank ≥ 16 for

D = 72513834653847828539450325493 = 41p

where p = the prime 1768630113508483622913422573.

Proved by searching for points and finding a bunch that gen-

erate a rank-16 subgroup of E16D(Q). (See paper for a list of

16 independent points.)

Expect rank = 16 exactly. How hard could that be to prove?
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\repeat{How hard is it to prove we have the right rank?}

Short of invoking BSD conj., all we know to do is compute

Selmer groups (descent); how hard is that?

Comparison with other families:

E with Etors = T ̸= {0} (e.g. a record |T | = 2 curve with

r = 20 from [NDE–Klasgbrun, ANTS-14, 2020]): entirely fea-

sible to compute Selmer groups for isogeny φ : E → E/T ′

(some nontrivial subgroup T ′ ⊆ T ) and its dual φ̂ : E/T ′ → E.

For high-rank curves, the resulting rank bound usually matches

the rank of the known subgroup of E(Q), so we’re done.

E unconstrained (e.g. the r = 28 curve of [NDE 2006]): need

2-torsion in class group of a large-disc. cubic extension F/Q

with Galois closure Q(E[2]). Needs GRH for all unram. abelian

extensions of F , as in [Klagsbrun–Sherman–Weigandt 2019].

5



So how hard is it to prove we have the right rank of Ek?

Our curves Ek : y2 = x3 + k are intermediate: not as easy as

curves with nontrivial torsion T , nor as intractable as uncon-

strained curves.

As with |T | > 1 curves, we can use isogeny descents, here via

a 3-isogeny φ : Ek → E−27k and its dual (see next slide).

As with unconstrained curves, the Selmer group involves tor-

sion in a class group, here 3-torsion in the class groups of the

quadratic fields Q(
√
k) and its “mirror field” Q(

√
−3k). That’s

still more accessible than a noncyclic cubic extension of huge

discriminant.
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The 3-isogenies between Ek and E−27k.

We can construct φ : Ek → E−27k from the CM of E. Fix a

cube root of unity ρ. Then EndQEk = Z[ρ] with ρ acting by

(x, y) 7→ (x, ρy). Hence
√
−3 = ρ− ρ̄ is a 3-isogeny with kernel

{0, (0,
√
k), (0,−

√
k)}, the points P s.t. ρP = ρ̄P .

This isogeny is defined only over the CM field Q(ρ) = Q(
√
−3),

but with rational x and y/
√
−3. So, we get a 3-isogeny φ

defined over Q from Ek to its quadratic twist by Q(
√
−3),

which is E−27k. Explicitly,

ϕ(x, y) =

(
x3 +4k

x2
,
(x3 − 8k)y

x3

)
.

The action of Z[ρ] on E−27k then gives us φ̂, with kernel

{0, (0,
√
−27k), (0,−

√
−27k)}.

[Yes, this generalizes to other CM curves.]
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The φ- and φ̂-descents. Our D is 1 mod 4, so the curves

Ek and E−27k (with k = 16D as before) have good reduction

at 2; e.g. Ek has model

x3 = y2 + y −
D − 1

4
=

(
y +

1+
√
D

2

)(
y +

1−
√
D

2

)
.

The factors y+(1±
√
D)/2 of x3 are Weil functions. Choosing

+
√
D, get homomorphism δ : E16D(Q) → Q(

√
D)×/(Q(

√
D)×)3

taking (x, y) [other than 0 and (0,−(1 +
√
D)/2)] to the class

of y + (1+
√
D)/2, with ker(δ) = φ̂(E−27k(Q)).

This connects the Selmer group for Ek(Q)/φ̂(E−27k(Q)) with

HD[3], where HD is the class group of Q(
√
D).

Likewise the Selmer group that contains E−27k(Q)/φ(Ek(Q))

involves H−3D[3].
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The φ- and φ̂-descents, cont’d.

Since D is squarefree (and also 1 mod 4 but ̸= 1), The only

other contribution to the Selmer groups is U/U3 where U =

unit group of Q(
√
D). Therefore

r(Ek) ≤ dimZ/3ZHD[3] + dimZ/3ZH−3D[3] + 1.

Using the known subgroup ∼= Z16 of Ek(Q) we find

dimZ/3ZHD[3] ≥ 7, dimZ/3ZH−3D[3] ≥ 8.

These are the current records for the 3-rank of a real and

imaginary quadratic field respectively. Also, 3-rank 8 with

|3D| < 361.5 compares favorably with the Cohen-Lenstra pro-

portion of about 3−64.

(This use of high r(Ek) to find high 3-ranks is already in

[Quer 1987], when the records were 12 = 5 + 6 + 1.)
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3-torsion in HD and H−3D. Since

r(Ek) ≤ dimZ/3ZHD[3] + dimZ/3ZH−3D[3] + 1,

r(Ek) = 16 would follow from

dimZ/3ZHD[3]
?
= 7, dimZ/3ZH−3D[3]

?
= 8,

and these two “
?
=” are equivalent by the reflection theorem

[Scholz 1932].

Magma soon computes

H−3D

GRH∼= (Z/2Z)2 × (Z/3Z)8 × (Z/77681Z)× (Z/139939Z),

HD

GRH∼= (Z/2Z)2 × (Z/3Z)7 .

What would it take to remove one of these GRH assumptions?
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From (H−3D)0 to H−3D

Consider H−3D, and denote by (H−3D)0 the known subgroup

(Z/2Z)2 × (Z/3Z)8 × (Z/77681Z) × (Z/139939Z). Actually a

known homomorphism from (H−3D)0 to H−3D, but we soon

prove unconditionally that it’s injective. It is surjectivity that’s

hard: how to prove we’ve found all of H−3D?

Enough to prove
∣∣H−3D

∣∣ = ∣∣(H−3D)0
∣∣.

By Legendre
∣∣H−3D

∣∣ is a multiple of
∣∣(H−3D)0

∣∣. Moreover, we

have all of H−3D[2] by genus theory, and H−3D[4] = H−3D[2]

using [Rédei 1934], so [H−3D : (H−3D)0] is odd.

Thus we need only show
∣∣H−3D

∣∣ < 3
∣∣(H−3D)0

∣∣.
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Bounding
∣∣H−3D

∣∣. Dirichlet’s class number formula gives

∣∣H−3D
∣∣ = √

3D

π
L(1, χ3D) =

√
3D

π

∞∑
n=1

χ3D(n)

n

where χ3D = (−3D
· ). So we expect L(1, χ3D) = 1.921597 . . .

and need only show L(1, χ3D) < 5.764.

It’s easy enough to numerically compute
∑N

n=1 χ3D(n)/n for N

large enough to get quite close to 1.921597 . . .. But how to

prove that the remainder

R(χ3D, N) :=
∞∑

n=N+1

χ3D(n)

n

is less than about 3.8?
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Bounding R(χ3D, N).

Start by writing R(χ3D, N) :=
∑∞

n>Nχ3D(n)/n in terms of

S(x) :=
∑

1≤n≤x

χ3D(n)

via “partial summation” / integration by parts:∫ ∞

N+1
2

1

x
d(S(x)− S(N)) =

∫ ∞

N+1
2

(S(x)− S(N))
dx

x2
.

Now |S(x) − S(N)| ≤ x − N (because each |χ3D(n)| ≤ 1); and

S(x)−S(N) ≪
√
3D log 3D (Pólya–Vinogradov 1918, with small

≪-constant). So, enough to take N ≪ D1/2 logD, as usual for

unconditional computations of class groups etc. But for our

D ∼ 7 · 1028 that’s N ∼ 1016 — not happening (at least not

anytime soon).
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The Burgess bound.

We expect S(x) − S(N) ≪ (x − N)1/2+o(1) once x − N ≪ qη

(any η > 0), but nothing like that is known unconditionally.

But we could use any improvement over trivial |S(x)−S(N)| ≤
x−N with x−N significantly smaller than D1/2 . . .

Burgess (1962) supplied such a bound on short character sums

Sχ(N,H) := S(N +H)− S(N) =
H∑

h=1

χ(N + h)

for nontrivial characters χ of prime modulus p:

Sχ(N,H) ≪r (log p)1/rH
1−1

rp
r+1
4r2

for each r = 2,3,4, . . .. Thus η > 1/4 =⇒ Sχ(N, pη) = o(pη):
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If H = pη then Sχ(N,H) ≪r (log p)1/rH
1−1

rp
r+1
4r2 yields

Sχ(N,H) ≪ pβr+o(1) where βr =
(
1−

1

r

)
η +

r +1

4r2
.

Plot of β1=1/2, β2 = η/2+ 3/16 , β3 = 2η/3+ 1/9,

. . . , β∞ = η:
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Burgess is better than Pólya–Vinogradov (i.e. βr < 1/2) for

η < (2r + 1)/4r, and better than trivial (i.e. βr < η) for η >

(r +1)/4r. These are 5/8 and 3/8 for r = 2.

The modulus 3D of χ3D is not quite prime, but 3D = 123p.

We split the sum into ϕ(123) = 80 AP’s, each of which is

±Sχ(N ′, H/123) for χ = (·/p), and apply Burgess to each Sχ.

The upper bound on |R(χ3D, N)| is ≪ (log p)1/2p3/16N−1/2,

so we need N ≫ p3/8+o(1). The p1/8 saving is enough to make

this practical — provided the ≪-constant is small enough to

make the ≫-constant tolerable!

So what are these constants?

Burgess’s proof is entirely effective (clever use of Weil’s bounds

on complete character sums) but rather complicated . . .
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The Burgess–Booker–Treviño bounds.

Fortunately Booker (2006) already worked out numerical bounds

in a very similar context. For r = 2,

|Sχ(N,H)| ≤ 1.8221 p3/16(log p+8.9077)1/4H1/2

once p > 1020 (which our p is, > 1.7 · 1027).

This requires H < 2
√
p. Booker used a better (but slower to

compute) approximation to L(1, χ) than just a partial sum so

that the remainder involves only H < 2
√
p. We fill in H > 2

√
p

using the weaker but uniform bound from Treviño (2015):

|Sχ(N,H)| ≤ 2.74 p3/16(log p)1/2H1/2

for any p > 107 and all N,H. We conclude that

|R(χ3D, N)| <
8 · 106√

N
+0.4 .
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Computational conclusion.

We took N = 243 < 1013; this makes |R(χ3D, N)| < 3.1 .

We computed
∑N

n=1 χ3D(n)/n numerically twice: first in float-

ing point (large n to small), then as 2−61∑N
n=1 χ3D(n)⌊261/n⌋

summing in 64-bit integer arithmetic. Either way it took < 24

hours on 16 processors, and the sum is within 10−6 of the

expected value 1.92 . . . of L(1, χ).

Combining everything we find that [H−3D : (H−3D)0] < 3; since

that index is known to be odd, it equals 1 and we are done. □
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Further records and challenges.

As φ̂- and φ-descents related r(Ek) to Hk[3] and H−3k[3], a

2-descent relates r(Ek) to the 2-rank of the “pure cubic field”

Q(k1/3). We thus get the current record of ≥ 15 for this

2-rank, but here we prove rank exactly 15 only under GRH.

Our E16D and E−432D are not the highest-rank Mordell curves

known: Ek and E−27k have rank at least 17 for

k = −908800736629952526116772283648363
= −2195745961 · 413891567044514092637683.

[The relevant 3-ranks are still 7 and 8 due to bad reduction

at 2; likewise no new 2-rank record for Q(k1/3).] Rank equals

17 under GRH, but not unconditionally while Burgess is limited

to prime (and nearly-prime) moduli. It’s been 60+ years since

[Burgess 1962]. . .
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T HE END

T HANK YOU

P.S. The j = 1728 curve y2 = x3 − (1 + 2i)x has 5-torsion at
(x, y) = (1,1− i) [in ker(2− i)];

The j = 0 curve y2 = x3 − 64(5 + ρ) has 7-torsion at (x, y) =
(12(1 + 2ρ),108ρ) [in ker(2− ρ)].
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