Rank of an elliptic curve and 3-rank of a quadratic field via the Burgess bounds

ANTS-16, July 2024 at MIT

Noam D. Elkies

Harvard University, Cambridge, MA USA

Overview

- Elliptic curves $E_k: y^2 = x^3 + k$ with $j = 0$ ("Mordell curves")
- A curve E_k of rank at least 16
- 3-isogeny descent to 3-torsion in quadratic class group; E_k has rank 16 under GRH
- Burgess bound with Booker and Treviño's constants \Rightarrow E_k has rank 16 unconditionally
- Further records and challenges

Mordell curves. An elliptic curve E/\mathbf{Q} has $j=0 \iff$ $End(E) = \mathbf{Z}[\mu_3] \Longleftrightarrow E$ can be written as the "Mordell curve"

$$
E_k : y^2 = x^3 + k
$$

for some $k\in\mathbf{Q}^{\times}.$ Two such curves $E_{k},E_{k^{\prime}}$ are isomorphic \Longleftrightarrow $k'/k \in (\mathbf{Q}^{\times})^{6}$, so we may assume $k \in \mathbf{Z}$ and k is 6th power free.

Mordell's theorem (1922, same year as Mordell's conjecture):

For any elliptic curve E/\mathbf{Q} , its set $E(\mathbf{Q})$ of rational points is an abelian group of finite torsion and rank.

In particular this is true for $E = E_k$.

So, what are the possible torsion groups $E_k(Q)_{\text{tors}}$ and ranks?

Torsion in Mordell curves. As usual for such families, torsion is much easier than rank. The only possible torsion in $E_k(Q)$:

- a 2-torsion point $(-n,0)$ if $k=n^3$ [quadratic twist of $y^2 = x^3 + 1$];
- 3-torsion points $(0, \pm m)$ if $k = m^2$ [cubic twists of E_1 , which has both 2- and 3-torsion, so also 6-torsion: $(2,\pm 3)$];
- 3-torsion points $(12, \pm 36)$ on E_{-432} [Fermat cubic curve $X^3 + Y^3 + Z^3 = 0$].

Otherwise $E_k(Q)$ has trivial torsion.

[Can you find $k \in \mathbf{Q}(\mu_3)^{\times}$ for which $E_k(\mathbf{Q}(\mu_3))$ has 7-torsion? Likewise 5-torsion on $y^2 = x^3 + ax$ (j = 1728, CM by Z[i]) over $Q(i)$.]

Ranks of Mordell curves. The possible Q-ranks of curves E_k are much harder to understand than the torsion. For now, large ranks are the topic of speculation and record-hunting, not theorems.

NDE on nmbrthry, 6 Feb. 2016: E_{16D} has rank ≥ 16 for $D = 72513834653847828539450325493 = 41p$

where $p =$ the prime 1768630113508483622913422573.

Proved by searching for points and finding a bunch that generate a rank-16 subgroup of $E_{16D}(\textbf{Q})$. (See paper for a list of 16 independent points.)

Expect rank $= 16$ exactly. How hard could that be to prove?

\repeat{How hard is it to prove we have the right rank?}

Short of invoking BSD conj., all we know to do is compute Selmer groups (descent); how hard is that?

Comparison with other families:

E with $E_{\text{tors}} = T \neq \{0\}$ (e.g. a record $|T| = 2$ curve with $r = 20$ from [NDE–Klasgbrun, ANTS-14, 2020]): entirely feasible to compute Selmer groups for isogeny φ : $E \to E/T'$ (some nontrivial subgroup $T' \subseteq T$) and its dual $\hat{\varphi}: E/T' \to E$. For high-rank curves, the resulting rank bound usually matches the rank of the known subgroup of $E(Q)$, so we're done.

E unconstrained (e.g. the $r = 28$ curve of [NDE 2006]): need 2-torsion in class group of a large-disc. cubic extension F/Q with Galois closure $Q(E[2])$. Needs GRH for all unram. abelian extensions of F , as in [Klagsbrun–Sherman–Weigandt 2019].

So how hard is it to prove we have the right rank of E_k ?

Our curves $E_k : y^2 = x^3 + k$ are intermediate: not as easy as curves with nontrivial torsion T , nor as intractable as unconstrained curves.

As with $|T| > 1$ curves, we can use isogeny descents, here via a 3-isogeny $\varphi : E_k \to E_{-27k}$ and its dual (see next slide).

As with unconstrained curves, the Selmer group involves torsion in a class group, here 3-torsion in the class groups of the quadratic fields $\mathbf{Q}(\sqrt{k})$ and its "mirror field" $\mathbf{Q}(\sqrt{k})$ ∪µ
′⁄ √ $\overline{-3k})$. That's still more accessible than a noncyclic cubic extension of huge discriminant.

The 3-isogenies between E_k and E_{-27k} .

We can construct $\varphi : E_k \to E_{-27k}$ from the CM of E . Fix a cube root of unity ρ . Then $\operatorname{\mathsf{End}}_{\bar{\mathbf{Q}}} E_k = \mathbf{Z}[\rho]$ with ρ acting by $(x, y) \mapsto (x, \rho y)$. Hence $\sqrt{-3} = \rho - \overline{\rho}$ is a 3-isogeny with kernel $\{0, (0,\sqrt{k}), (0,-\sqrt{k})\}$, the points P s.t. $\rho P = \overline{\rho} P$. $\overline{}$ $\overline{\$

This isogeny is defined only over the CM field $\mathbf{Q}(\rho)=\mathbf{Q}(\rho)$ √ −3), but with rational x and $y/\sqrt{-3}$. So, we get a 3-isogeny φ defined over ${\bf Q}$ from E_k to its quadratic twist by ${\bf Q}(\sqrt{-3})$, ∣∪∣
⁄ which is E_{-27k} . Explicitly,

$$
\phi(x, y) = \left(\frac{x^3 + 4k}{x^2}, \frac{(x^3 - 8k)y}{x^3}\right)
$$

The action of $\mathbf{Z}[\rho]$ on E_{-27k} then gives us $\hat{\varphi}$, with kernel $\{0, (0, \sqrt{-27k}), (0, -\sqrt{-27k})\}.$

[Yes, this generalizes to other CM curves.]

.

The φ - and $\hat{\varphi}$ -descents. Our D is 1 mod 4, so the curves E_k and E_{-27k} (with $k = 16D$ as before) have good reduction at 2; e.g. E_k has model

$$
x^{3} = y^{2} + y - \frac{D - 1}{4} = \left(y + \frac{1 + \sqrt{D}}{2}\right)\left(y + \frac{1 - \sqrt{D}}{2}\right).
$$

The factors $y + (1 \pm$ $\overline{D})/2$ of $x^{\bf 3}$ are Weil functions. Choosing $+\sqrt{D}$, get homomorphism $\delta: E_{16D}({\bf Q}) \to {\bf Q}(\sqrt{D})^\times / ({\bf Q}(\sqrt{D})^\times)^3$ σ / σ taking (x, y) [other than 0 and $(0, -(1 + \sqrt{D})/2)$] to the class of $y + (1 + \sqrt{D})/2$, with ker(δ) = $\hat{\varphi}(E_{-27k}(\mathbf{Q}))$.

This connects the Selmer group for $E_k(\mathbf{Q})/\hat{\varphi}(E_{-27k}(\mathbf{Q}))$ with $H_D[3]$, where H_D is the class group of $\mathrm{Q}(\sqrt{D}).$

Likewise the Selmer group that contains $E_{-27k}(\mathbf{Q})/\varphi(E_k(\mathbf{Q}))$ involves $H_{-3D}[3]$.

The φ - and $\hat{\varphi}$ -descents, cont'd.

Since D is squarefree (and also 1 mod 4 but \neq 1), The only other contribution to the Selmer groups is U/U^3 where $U=\emptyset$ unit group of $\mathbf{Q}(\sqrt{D})$. Therefore ∣ון
∕ י

 $r(E_k) \le \text{dim}_{\mathbf{Z}/3\mathbf{Z}} H_D[3] + \text{dim}_{\mathbf{Z}/3\mathbf{Z}} H_{-3D}[3] + 1.$ Using the known subgroup $\cong {\bf Z}^{16}$ of $E_k({\bf Q})$ we find

dim_{Z/3Z} $H_D[3] \ge 7$, dim_{Z/3Z} $H_{-3D}[3] \ge 8$.

These are the current records for the 3-rank of a real and imaginary quadratic field respectively. Also, 3-rank 8 with $|3D| < 3^{61.5}$ compares favorably with the Cohen-Lenstra proportion of about 3⁻⁶⁴.

(This use of high $r(E_k)$ to find high 3-ranks is already in [Quer 1987], when the records were $12 = 5 + 6 + 1.$)

3-torsion in H_D and H_{-3D} . Since

 $r(E_k) \le \text{dim}_{\mathbf{Z}/3\mathbf{Z}} H_D[3] + \text{dim}_{\mathbf{Z}/3\mathbf{Z}} H_{-3D}[3] + 1,$ $r(E_k) = 16$ would follow from

dim_{Z/3Z} $H_D[3] \stackrel{?}{=} 7$, dim_{Z/3Z} $H_{-3D}[3] \stackrel{?}{=} 8$,

and these two " $\frac{?}{=}$ " are equivalent by the reflection theorem [Scholz 1932].

Magma soon computes

$$
H_{-3D} \stackrel{\text{GRH}}{=} (\mathbf{Z}/2\mathbf{Z})^2 \times \underbrace{(\mathbf{Z}/3\mathbf{Z})^8}_{\text{GRH}} \times (\mathbf{Z}/77681\mathbf{Z}) \times (\mathbf{Z}/139939\mathbf{Z}),
$$

$$
H_D \stackrel{\text{GRH}}{=} (\mathbf{Z}/2\mathbf{Z})^2 \times \underbrace{(\mathbf{Z}/3\mathbf{Z})^7}_{\text{GRH}}.
$$

What would it take to remove one of these GRH assumptions?

From $(H_{-3D})_0$ to H_{-3D}

Consider H_{-3D} , and denote by $(H_{-3D})_0$ the known subgroup $(Z/2Z)^2 \times (Z/3Z)^8 \times (Z/77681Z) \times (Z/139939Z)$. Actually a known homomorphism from $(H_{-3D})_0$ to H_{-3D} , but we soon prove unconditionally that it's injective. It is surjectivity that's hard: how to prove we've found all of H_{-3D} ?

Enough to prove $|H_{-3D}| = |(H_{-3D})_0|$.

By Legendre $|H_{-3D}|$ $|$ is a multiple of $|(H_{-3D})_0|$. Moreover, we have all of $H_{-3D}[2]$ by genus theory, and $H_{-3D}[4] = H_{-3D}[2]$ using [Rédei 1934], so $[H_{-3D} : (H_{-3D})_0]$ is odd.

Thus we need only show $|H_{-3D}| < 3 |(H_{-3D})_0|$.

Bounding $|H_{-3D}|$. Dirichlet's class number formula gives

$$
|H_{-3D}| = \frac{\sqrt{3D}}{\pi}L(1, \chi_{3D}) = \frac{\sqrt{3D}}{\pi} \sum_{n=1}^{\infty} \frac{\chi_{3D}(n)}{n}
$$

where $\chi_{3D}=(\frac{-3D}{4})$ $\frac{3D}{2}$). So we expect $L(1,\chi_{3D})=1.921597\ldots$ and need only show $L(1, \chi_{3D})$ < 5.764.

It's easy enough to numerically compute $\sum_{n=1}^N \chi_{3D}(n)/n$ for N large enough to get quite close to 1.921597.... But how to prove that the remainder

$$
R(\chi_{3D}, N) := \sum_{n=N+1}^{\infty} \frac{\chi_{3D}(n)}{n}
$$

is less than about 3.8?

Bounding $R(\chi_{3D}, N)$.

Start by writing $R(\chi_{\text{3}D},N) \vcentcolon= \sum_{n>N}^{\infty} \chi_{\text{3}D}(n)/n$ in terms of

$$
S(x) := \sum_{1 \le n \le x} \chi_{3D}(n)
$$

via "partial summation" / integration by parts:

$$
\int_{N+\frac{1}{2}}^{\infty} \frac{1}{x} d(S(x) - S(N)) = \int_{N+\frac{1}{2}}^{\infty} (S(x) - S(N)) \frac{dx}{x^2}.
$$

Now $|S(x) - S(N)| \le x - N$ (because each $|\chi_{3D}(n)| \le 1$); and $S(x)\!-\!S(N)\ll \sqrt{3D}\log 3D$ (Pólya–Vinogradov 1918, with small \ll -constant). So, enough to take $N \ll D^{1/2}$ log D, as usual for unconditional computations of class groups etc. But for our $D \sim 7 \cdot 10^{28}$ that's $N \sim 10^{16}$ — not happening (at least not anytime soon).

The Burgess bound.

We expect $S(x)-S(N)\ll (x-N)^{1/2+o(1)}$ once $x-N\ll q^{\eta}$ (any $\eta > 0$), but nothing like that is known unconditionally.

But we could use any improvement over trivial $|S(x) - S(N)| \le$ $x - N$ with $x - N$ significantly smaller than $D^{1/2}$...

Burgess (1962) supplied such a bound on short character sums

$$
S_{\chi}(N, H) := S(N + H) - S(N) = \sum_{h=1}^{H} \chi(N + h)
$$

for nontrivial characters χ of prime modulus p :

$$
S_{\chi}(N, H) \ll_r (\log p)^{1/r} H^{1 - \frac{1}{r}} p^{\frac{r+1}{4r^2}}
$$

for each $r = 2, 3, 4, \ldots$ Thus $\eta > 1/4 \Longrightarrow S_{\chi}(N, p^{\eta}) = o(p^{\eta})$:

Burgess is better than Pólya–Vinogradov (i.e. $\beta_r < 1/2$) for $\eta < (2r+1)/4r$, and better than trivial (i.e. $\beta_r < \eta$) for $\eta >$ $(r + 1)/4r$. These are 5/8 and 3/8 for $r = 2$.

The modulus 3D of χ_{3D} is not quite prime, but 3D = 123p. We split the sum into $\phi(123) = 80$ AP's, each of which is $\pm S_{\chi}(N', H/123)$ for $\chi = (\cdot/p)$, and apply Burgess to each S_{χ} .

The upper bound on $|R(\chi_{3D}, N)|$ is $\ll (\log p)^{1/2} p^{3/16} N^{-1/2}$, so we need $N \gg p^{3/8+o(1)}$. The $p^{1/8}$ saving is enough to make this practical — provided the \ll -constant is small enough to make the ≫-constant tolerable!

So what are these constants?

Burgess's proof is entirely effective (clever use of Weil's bounds on complete character sums) but rather complicated . . .

The Burgess–Booker–Treviño bounds.

Fortunately Booker (2006) already worked out numerical bounds in a very similar context. For $r = 2$,

$$
|S_{\chi}(N, H)| \le 1.8221 p^{3/16} (\log p + 8.9077)^{1/4} H^{1/2}
$$

once $p > 10^{20}$ (which our p is, $> 1.7 \cdot 10^{27}$).

This requires $H < 2\sqrt{p}$. Booker used a better (but slower to compute) approximation to $L(1, \chi)$ than just a partial sum so that the remainder involves only $H < 2\sqrt{p}$. We fill in $H > 2\sqrt{p}$ using the weaker but uniform bound from Treviño (2015):

$$
|S_{\chi}(N, H)| \leq 2.74 \, p^{3/16} (\log p)^{1/2} H^{1/2}
$$

for any $p > 10^7$ and all N, H. We conclude that

$$
|R(\chi_{3D}, N)| < \frac{8 \cdot 10^6}{\sqrt{N}} + 0.4 \, .
$$

Computational conclusion.

We took $N = 2^{43} < 10^{13}$; this makes $|R(\chi_{3D}, N)| < 3.1$.

We computed $\sum_{n=1}^{N} \chi_{3D}(n)/n$ numerically twice: first in floating point (large n to small), then as $2^{-61}\sum_{n=1}^{N}\chi_{3D}(n) \lfloor 2^{61}/n \rfloor$ summing in 64-bit integer arithmetic. Either way it took $<$ 24 hours on 16 processors, and the sum is within 10^{-6} of the expected value 1.92... of $L(1, \chi)$.

Combining everything we find that $[H_{-3D}:(H_{-3D})_0]<3$; since that index is known to be odd, it equals 1 and we are done. \square

Further records and challenges.

As $\widehat{\varphi}$ - and φ -descents related $r(E_k)$ to $H_k[3]$ and $H_{-3k}[3]$, a 2-descent relates $r(E_k)$ to the 2-rank of the "pure cubic field" $\mathrm{Q}(k^{1/3})$. We thus get the current record of \geq 15 for this 2-rank, but here we prove rank exactly 15 only under GRH.

Our E_{16D} and E_{-432D} are not the highest-rank Mordell curves known: E_k and E_{-27k} have rank at least 17 for

- $k = -908800736629952526116772283648363$
	- $=$ -2195745961 · 413891567044514092637683.

[The relevant 3-ranks are still 7 and 8 due to bad reduction at 2; likewise no new 2-rank record for $\mathrm{Q}(k^{1/3}).$ Rank equals 17 under GRH, but not unconditionally while Burgess is limited to prime (and nearly-prime) moduli. It's been $60+$ years since [Burgess 1962]. . .

T HE EN D

THANK VOU

P.S. The $j = 1728$ curve $y^2 = x^3 - (1 + 2i)x$ has 5-torsion at $(x, y) = (1, 1 - i)$ [in ker $(2 - i)$];

The $j = 0$ curve $y^2 = x^3 - 6^4(5 + \rho)$ has 7-torsion at $(x, y) = 0$ $(12(1+2\rho), 108\rho)$ [in ker $(2-\rho)$].