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Overview
e Elliptic curves E}. : y2 = 23 +k with j = 0 (“Mordell curves")
e A curve E; of rank at least 16

e 3-isogeny descent to 3-torsion in quadratic class group;
E;. has rank 16 under GRH

e Burgess bound with Booker and Trevino's constants
= F;. has rank 16 unconditionally

e Further records and challenges



Mordell curves. An elliptic curve E/Q has j =0 <
End(FE) = Z[u3] <= E can be written as the “Mordell curve”

Ek . y2 = ZE3 —|— k
for some k € Q*. Two such curves E;, E s are isomorphic <
K /k e (Q*)°, so we may assume k € Z and k is 6th power free.

Mordell's theorem (1922, same year as Mordell’'s conjecture):

For any elliptic curve E/Q, its set E(Q) of rational points
IS an abelian group of finite torsion and rank.

In particular this is true for £ = E.

So, what are the possible torsion groups E,(Q)tors and ranks?



Torsion in Mordell curves. As usual for such families, torsion
is much easier than rank. The only possible torsion in E.(Q):

e a 2-torsion point (—n,0) if k = n3
[quadratic twist of y2 = 23 + 1];

e 3-torsion points (0,+m) if k = m?
[cubic twists of Eq, which has both 2- and 3-torsion,
so also 6-torsion: (2,43)];

e 3-torsion points (12,4+36) on E_435
[Fermat cubic curve X3 +Y3 4+ 73 =0].

Otherwise E.(Q) has trivial torsion.

[Can you find k € Q(u3)* for which E,.(Q(u3)) has 7-torsion?
L ikewise 5-torsion on y2 = z3 4+ ax (j = 1728, CM by Z[i])
over Q(7).]



Ranks of Mordell curves. The possible Q-ranks of curves Fy
are much harder to understand than the torsion. For now,
large ranks are the topic of speculation and record-hunting,
not theorems.

NDE on nmbrthry, 6 Feb. 2016: Eq1gp has rank > 16 for

D = 72513834653847828539450325493 = 41p
where p = the prime 1768630113508483622913422573.

Proved by searching for points and finding a bunch that gen-
erate a rank-16 subgroup of E1gp(Q). (See paper for a list of
16 independent points.)

Expect rank = 16 exactly. How hard could that be to prove?



\repeat{HoOw hard is it to prove we have the right rank?}

Short of invoking BSD conj., all we know to do is compute
Selmer groups (descent); how hard is that?

Comparison with other families:

E with FEios = T # {0} (e.g. a record |T'| = 2 curve with
r = 20 from [NDE—KIlasgbrun, ANTS-14, 2020]): entirely fea-
sible to compute Selmer groups for isogeny ¢ | E — E/T’
(some nontrivial subgroup T/ C T) and its dual ¢ : E/T" — E.
For high-rank curves, the resulting rank bound usually matches
the rank of the known subgroup of E(Q), so we're done.

E unconstrained (e.g. the » = 28 curve of [NDE 2006]): need

2-torsion in class group of a large-disc. cubic extension F/Q

with Galois closure Q(FE[2]). Needs GRH for all unram. abelian

extensions of F', as in [Klagsbrun—Sherman—Weigandt 2019].
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So how hard is it to prove we have the right rank of £.7?

Our curves E; : y2 = z3 + k are intermediate: not as easy as
curves with nontrivial torsion 7', nor as intractable as uncon-
strained curves.

As with |T'| > 1 curves, we can use isogeny descents, here via
a 3-isogeny ¢ : B, — E_»7;. and its dual (see next slide).

As with unconstrained curves, the Selmer group involves tor-
sion in a class group, here 3-torsion in the class groups of the
quadratic fields Q(Wk) and its “mirror field’ QG/—3k). That's
still more accessible than a noncyclic cubic extension of huge
discriminant.



The 3-isogenies between E; and E_57;.

We can construct ¢ : B, — E_»7, from the CM of E. Fix a
cube root of unity p. Then EndQ E,. = Z|[p] with p acting by
(z,y) — (x,py). Hence /—3 = p — p is a 3-isogeny with kernel
{0, (0,Vk), (0, —Vk)}, the points P s.t. pP = pP.

This isogeny is defined only over the CM field Q(p) = Q(+/—3),
but with rational =z and y/v/—3. So, we get a 3-isogeny ¢
defined over Q from E, to its quadratic twist by Q(1v/—3),
which is E_»7.. EXplicitly,

3+ 4k (23— 8k)y>
2 ’ )

$3

¢(z,y) = <

The action of Z[p] on E_»7; then gives us ¢, with kernel

{0, (0,/—27k), (0, —/—27k)}.

[Yes, this generalizes to other CM curves.]



The - and ¢p-descents. Our D is 1 mod 4, so the curves
E, and E_»7; (with k = 16D as before) have good reduction
at 2; e.g. E;. has model

23 =y? 4y -

D—1 14++D 1—+vD
4 > )<y+ > )

The factors y+ (1 +£+/D)/2 of 23 are Weil functions. Choosing

++/D, get homomorphism § : E165p(Q) — Q(/D)*/(Q(K/D)*)3
taking («,y) [other than 0 and (0, —(1 + +/D)/2)] to the class

of y 4+ (1 + v D)/2, with ker(6) = @(E_27,(Q)).

.

This connects the Selmer group for E.(Q)/¢(E_>71(Q)) with
Hp[3], where Hp is the class group of Q(v/D).

Likewise the Selmer group that contains E_57.(Q)/¢(EL(Q))
involves H_3p[3].



The - and p-descents, cont’d.

Since D is squarefree (and also 1 mod 4 but # 1), The only
other contribution to the Selmer groups is U/U3 where U =
unit group of Q(/D). Therefore

T(Ek) < dimz/3z HD[3] —+ dimz/3Z H—3D[3] + 1.
Using the known subgroup = Z16 of E.(Q) we find

dimg 37 Hp[3] > 7, dimy 37 H_3p[3] = 8.

These are the current records for the 3-rank of a real and
imaginary quadratic field respectively. Also, 3-rank 8 with
13D| < 3515 compares favorably with the Cohen-Lenstra pro-
portion of about 3704

(This use of high r(E;) to find high 3-ranks is already in
[Quer 1987], when the records were 12 =5 + 6 4+ 1.)



3-torsion in Hp and H_3p. Since

’I“(Ek) < dimz/3z HD[3] —+ dimz/3z H—3D[3] + 1,

r(E) = 16 would follow from
. ? . ?
dimz 3z Hp(3] =7, dimz,3z H_3pl[3] =8,

?
and these two “="" are equivalent by the reflection theorem
[Scholz 1932].

Magma soon computes

Hoap = (2/22)2 x| (2/32)8| x (2/776812) x (Z/139939Z).

GRH
Hp = (Z/27)° x|(Z/3Z)7|.

What would it take to remove one of these GRH assumptions?
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From (H—3D)O to H_3p

Consider H_3p, and denote by (H_3p)g the known subgroup
(Z/27)2 x (Z/3Z)3 x (Z/77681Z) x (Z/139939Z). Actually a
known homomorphism from (H_3p)g to H_3p, but we soon
prove unconditionally that it's injective. It is surjectivity that's
hard: how to prove we've found all of H_3p?

Enough to prove |H_3p| = |[(H_3p)o|-

By Legendre |H_3p| is a multiple of |(H_3p)g|. Moreover, we
have all of H_3p[2] by genus theory, and H_3pl4] = H_3pl[2]
using [Rédei 1934], so [H_3p : (H_3p)p] is odd.

Thus we need only show |H_3p| < 3|(H_3p)ol-
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Bounding |H_3p|. Dirichlet’s class number formula gives

v3D 3D &
H_apl = 2P L1, xap) = V22 3 Xapt)

n=1 n

where x5 = (—£). So we expect L(1,x3p) = 1.921597...
and need only show L(1,x5p) < 5.764.

It's easy enough to numerically compute Z,{le x3p(n)/n for N
large enough to get quite close to 1.921597.... But how to
prove that the remainder

@)

X3p(n)

R(xzp, N) = 3 =32
n=N-+41

is less than about 3.87
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Bounding R(x3p, N).

Start by writing R(x3p, V) :=>>2 yX3p(n)/n in terms of
S(z) = ) x3p(n)

1<n<z
via “partial summation” / integration by parts:
oo 1
Jyga 3 4@ = sy = [,
Now |S(z) — S(IV)| <z — N (because each |x3p(n)| < 1), and
S(z)—S(N) < v/3Dlog 3D (Pélya—Vinogradov 1918, with small
<-constant). So, enough to take N <« D/2|og D, as usual for
unconditional computations of class groups etc. But for our

D ~ 7-1028 that's N ~ 10® — not happening (at least not
anytime soon).

O

(5@) ~ S(N) %
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The Burgess bound.

We expect S(z) — S(N) < (z — N)I/2+o(1) once z — N <« ¢
(any n > 0), but nothing like that is known unconditionally.

But we could use any improvement over trivial |S(x) —S(N)| <
r — N with = — N significantly smaller than DY/2 . .

Burgess (1962) supplied such a bound on short character sums

H
Sy(N, H) := S(N + H) = S(N) = > x(N +h)
h=1
for nontrivial characters y of prime modulus p:

1r 1t B
Sy(N,H) < (logp)Y/"H “Tp4

for each r=12,3,4,.... Thusn>1/4 = S, (N,p") = o(p"):
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1 r+1

If H=p" then Sy (N, H) < (log p)l/THl_FpA'rQ yields
Sy (N, H) < prTo) where g, = (1 - 1) 4 - +21-
r 4r
Plot of 31=1/2, |8 =1/2+3/16|, 83 =21n/3+1/9,
.y Boo =1

1A Boo
Bs
/ Bz
12 Zl B,

A\

> T'l 15
0 1/4 1/2 3/4 1



Burgess is better than Pdlya—Vinogradov (i.e. 8 < 1/2) for
n < (2r + 1)/4r, and better than trivial (i.e. 8 < n) for n >
(r+1)/4r. These are 5/8 and 3/8 for r = 2.

The modulus 3D of x5z is not quite prime, but 3D = 123p.
We split the sum into ¢(123) = 80 AP’'s, each of which is
+S, (N', H/123) for x = (-/p), and apply Burgess to each S,.

The upper bound on |R(xsp, V)| is < (logp)1/2p3/16N—1/2,
so we need N > p3/8to(1)  The pl/8 saving is enough to make
this practical — provided the «-constant is small enough to
make the >-constant tolerable!

So what are these constants?

Burgess's proof is entirely effective (clever use of Weil's bounds
on complete character sums) but rather complicated . ..
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The Burgess—Booker—Trevino bounds.

Fortunately Booker (2006) already worked out numerical bounds
in a very similar context. For r = 2,

Sy (N, H)| < 1.8221p°/*6(logp 4 8.9077) 1 /4 H1/2

once p > 1029 (which our p is, > 1.7 - 1027).

This requires H < 2,/p. Booker used a better (but slower to
compute) approximation to L(1,x) than just a partial sum so
that the remainder involves only H < 2,/p. We fill in H > 2,/p
using the weaker but uniform bound from Trevifio (2015):

for any p > 10" and all N, H. We conclude that

8.10°
R CN)| < 0.4.
| R(x3p, V)| TN +
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Computational conclusion.
We took N = 243 < 1013; this makes |R(x3p, N)| < 3.1.

We computed Z;’Ll x3p(n)/n numerically twice: first in float-
ing point (large n to small), then as 271 "N v, (n)|2°1/n]
summing in 64-bit integer arithmetic. Either way it took < 24
hours on 16 processors, and the sum is within 10~ % of the
expected value 1.92... of L(1,x).

Combining everything we find that [H_3p : (H_3p)g] < 3; since
that index is known to be odd, it equals 1 and we are done. U
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Further records and challenges.

As ¢- and p-descents related r(FE,) to Hi[3] and H_3.[3], a
2-descent relates r(FE)) to the 2-rank of the “pure cubic field”
Q(k1/3). We thus get the current record of > 15 for this
2-rank, but here we prove rank exactly 15 only under GRH.

Our Ei1gp and E_43op are not the highest-rank Mordell curves
known: E; and E_»7;. have rank at least 17 for

k = —908800736629952526116772283643363
—2195745961 - 413891567044514092637633.

[The relevant 3-ranks are still 7 and 8 due to bad reduction
at 2; likewise no new 2-rank record for Q(k1/3).] Rank equals
17 under GRH, but not unconditionally while Burgess is limited
to prime (and nearly-prime) moduli. It's been 60+ years since
[Burgess 1962]. ..
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THE ENTD

THANK YOU

P.S. The j = 1728 curve y2 = 23 — (1 + 2¢)z has 5-torsion at
(z,y) = (1,1 —4) [in ker(2 —14)];

The j = 0 curve y2 = z3 — 6%(5 + p) has 7-torsion at (z,y) =
(12(1 + 2p), 108p) [in ker(2 — p)].
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