
Searching for Differential Addition Chains

Daniel J. Bernstein, Jolijn Cottaar, Tanja Lange

ANTS XVI, 2024



2 Searching for Differential Addition Chains

Introduction
Let P be a point on an elliptic curve and n a positive integer.
Goal: Compute nP.

Normally we compute by double&add, for example for n = 29:

P→ 2P→ 3P→ 6P→ 7P→ 14P→ 28P→ 29P.

As an addition chain:
1,2,3,6,7,14,28,29.

These chains are used in elliptic-curve cryptography and isogeny-based
cryptography.



3 Searching for Differential Addition Chains

Introduction
An addition chain for an integer n is defined as a sequence of integers

1 = c0, c1, . . . , cr = n

such that, for each i ∈ {1, . . . , r}, there exist j, k ∈ {0, . . . , i − 1} such that ci = cj + ck.

An example for n = 29:
1,2,3,6,7,14,28,29.

Montgomery showed on Montgomery curves (of the form By = x3 + Ax2 + x) that
x((a + b)P) takes just 6 field multiplications (5 if P affine), given x(aP), x(bP) and
x((a− b)P), instead of 8 field multiplications for regular point addition.



4 Searching for Differential Addition Chains

Introduction
A di�erential addition chain for an integer n is defined as a sequence of integers

1 = c0, c1, . . . , cr = n

such that, for each i ∈ {1, . . . , r}, there exist j, k ∈ {0, . . . , i − 1} such that ci = cj + ck
and cj − ck ∈ {0, c0, c1, . . . , ci−1}.

An example for n = 29:
1,2,3,5,8,13,16,29

Saving of all intermediate results gives a Θ(log(n)) memory requirement.
Want 3-tuple of integers (c− b,b, c), no inputs permitted from outside.



5 Searching for Differential Addition Chains

Introduction
Continued-fraction tuples are formed as follows:

1,2,3

2,3,5

1,3,4

3,5,8

2,5,7

3,4,7

1,4,5

· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·

0

1

0

1

0

1

0

1

0

1

0

1

0

1



6 Searching for Differential Addition Chains

Introduction
A sequence of tuples ending at n = 29:

(1,2,3), (2,3,5), (3,5,8), (5,8,13), (8,13,21), (8,21,29)

Continued-fraction di�erential addition chain:

1,2,3,5,8,13,21,29

Which is encoded as 00001.



7 Searching for Differential Addition Chains

Existing algorithms: CFRC, SIBC and CTIDH

Existing algorithms to find continued-fraction differential addition chains:
• Montgomery’s CFRC algorithm [Mon92]: based on Euclid’s algorithm.
• SIBC [ACDR21]: Brute force search in the tuples tree.

I Tests all chain up to conjectured upper bound: 2 + b1.5 log2(n)c.
I Overshooting gets pruned.

• CTIDH [BBC+21]: Also a brute force search in the tuples tree.
I Increments the length of the chains considered.
I Chains that do not reach the target when doubling get pruned.



8 Searching for Differential Addition Chains

Pruning algorithm

We propose an improved version of the approach in CTIDH:
• Incrementing lengths being considered.
• Chains that overshoot the target are pruned.
• Chains that undershoot are pruned using the Fibonacci bound.



8 Searching for Differential Addition Chains

Pruning algorithm

Fibonacci upper bound:
A chain of length i, with tuple (ai,bi, ci):
• Length i + 1 will reach at most 2ci,
• length i + 2 will reach at most 3ci,
• length i + 3 will reach at most 5ci, etc.

I.e. when aiming for length r:
• cr ≤ n− 1 will undershoot,
• cr−1 ≤ b(n− 1)/2c will undershoot,
• cr−2 ≤ b(n− 1)/3c will undershoot, etc.



9 Searching for Differential Addition Chains

Meet-in-the-middle algorithm

1,2,3

· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·

· · ·
· · ·

· · ·
· · ·

· · ·
· · ·

· · ·
· · ·



9 Searching for Differential Addition Chains

Meet-in-the-middle algorithm

1,2,3 _, _,n



9 Searching for Differential Addition Chains

Meet-in-the-middle algorithm

1,2,3 _, _,n

1,n− 1,n
2,n− 2,n
3,n− 3,n

...

...

...

...

n−1
2 , n+1

2 ,n



9 Searching for Differential Addition Chains

Meet-in-the-middle algorithm

1,2,3 c− b,b, c



9 Searching for Differential Addition Chains

Meet-in-the-middle algorithm

1,2,3 c− b,b, c ...,pb + qc



10 Searching for Differential Addition Chains

Meet-in-the-middle algorithm

target Left
side

Right
side

Mod
comparisons

Final
checks chain



10 Searching for Differential Addition Chains

Meet-in-the-middle algorithm

n = 29 Left
side

Right
side

Mod
comparisons

Final
checks chain



10 Searching for Differential Addition Chains

Meet-in-the-middle algorithm

n = 29 Left
side

Right
side

Mod
comparisons

Final
checks chain

Create a list of continued-fraction tuples that adhere to:
• left-interval variant: final entry is in a certain interval based on the target.
• left-length variant: chains up to a certain length.

We find the following chains (for left-interval variant):

1,2,3,5,8,11 1,2,3,4,7,10
1,2,3,5,7,9,11 1,2,3,4,5,6,11
1,2,3,4,7,11



10 Searching for Differential Addition Chains

Meet-in-the-middle algorithm

n = 29 Left
side

Right
side

Mod
comparisons

Final
checks chain

c− b,b, c

b + c

2c− b

b + 2c

2b + c

3c− b 8

3c− 2b 8

2b + 3c 8
b + 3c 8

3b + 2c 8

3b + c

0

1

0

1

0

1

0

1
0

1



10 Searching for Differential Addition Chains

Meet-in-the-middle algorithm

n = 29 Left
side

Right
side

Mod
comparisons

Final
checks chain

Let m =
⌊
n1/3⌋ = 3. We create the following dictionary with (b mod m, c mod m):

(0,2) : 1,2,3,5,7,9,11; 1,2,3,4,5,6,11
(1,1) : 1,2,3,4,7,10
(1,2) : 1,2,3,4,7,11
(2,2) : 1,2,3,5,8,11



10 Searching for Differential Addition Chains

Meet-in-the-middle algorithm

n = 29 Left
side

Right
side

Mod
comparisons

Final
checks chain

Now we test our found right-side chains to check if

(p · b mod m) + (q · c mod m) = n mod m.



10 Searching for Differential Addition Chains

Meet-in-the-middle algorithm

n = 29 Left
side

Right
side

Mod
comparisons

Final
checks chain

Example with the chain b + c (so p = 1, q = 1) for 29 mod 3 = 2:
We run over possible b and check if there is a (b mod 3, c mod 3) which hold:

b = 0 mod 3→ 1 · 0 + 1 · (c mod 3) = 2 mod 3→ c = 2 mod 3→ (0,2) X

b = 1 mod 3→ 1 · 1 + 1 · (c mod 3) = 2 mod 3→ c = 1 mod 3→ (1,1) X

b = 2 mod 3→ 1 · 2 + 1 · (c mod 3) = 2 mod 3→ c = 0 mod 3→ (2,0)



10 Searching for Differential Addition Chains

Meet-in-the-middle algorithm

n = 29 Left
side

Right
side

Mod
comparisons

Final
checks chain

In total we get:

. . ., c : ...,9,11; ...,6,11; ...,7,11; ...,8,11

. . .,b + c : ...,9,11; ...,6,11; ...,7,10

. . .,b + 2c : ...,7,11

. . .,2b + c : ...,9,11; ...,6,11

. . .,3b + c : ...,9,11; ...,6,11; ...,7,11; ...,8,11

. . .,2c− b : ...,8,11



10 Searching for Differential Addition Chains

Meet-in-the-middle algorithm

n = 29 Left
side

Right
side

Mod
comparisons

Final
checks chain

Test our found right-side chains to check if:

p · b + q · c = n

Thus only having to do 15 full checks instead of 30 orginally.



10 Searching for Differential Addition Chains

Meet-in-the-middle algorithm

n = 29 Left
side

Right
side

Mod
comparisons

Final
checks chain

1,2,3,4,7,11 and c− b,b, c,b + c,b + 2c combine to the continued-fraction chain

1,2,3,4,7,11,18,29.

1,2,3,5,7,9,11 and c − b,b, c,b + c,2b + c also reach 29 but the continued-fraction
chain

1,2,3,5,7,9,11,20,29

is one step longer.



11 Searching for Differential Addition Chains

Other considered chains
1. ’ladder’: Standard ladder
2. ’prac’: Montgomery’s PRAC algorithm [Mon92] for all ρ, this generates a

differential addition-subtraction chain (usually not a continued-fraction
differential addition chain).



12 Searching for Differential Addition Chains

Results

100 101 102 103 104 105 106 107 108 109
1.00
1.05
1.10
1.15
1.20
1.25
1.30
1.35
1.40
1.45
1.50
1.55
1.60
1.65
1.70
1.75
1.80
1.85
1.90
1.95
2.00
2.05
2.10

runningavgadditions / log2(p)
ladder
prac
cfrc
sibc
ctidh
prune
mitm
mitm2



13 Searching for Differential Addition Chains

Results

100 101 102 103 104 105 106 107 108 109
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.1

log2(1+runningavgnodes) / log2(p)
ladder
prac
cfrc
sibc
ctidh
prune
mitm
mitm2



14 Searching for Differential Addition Chains

References I

Gora Adj, Jesús-Javier Chi-Domínguez, and Francisco Rodríguez-Henríquez.
SIBC Python library.
https://github.com/JJChiDguez/sibc/, 2021.

Gustavo Banegas, Daniel J. Bernstein, Fabio Campos, Tung Chou, Tanja Lange,
Michael Meyer, Benjamin Smith, and Jana Sotáková.
CTIDH: faster constant-time CSIDH.
IACR Transactions on Cryptographic Hardware and Embedded Systems,
2021(4):351–387, 2021.
https://tches.iacr.org/index.php/TCHES/article/view/9069.

Peter L. Montgomery.
Evaluating recurrences of form xm+n = f (xm, xn, xm−n) via Lucas chains, 1992.

https://github.com/JJChiDguez/sibc/
https://tches.iacr.org/index.php/TCHES/article/view/9069

