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Introduction
Let P be a point on an elliptic curve and n a positive integer.
Goal: Compute nP.

Normally we compute by double&add, for example for n = 29:

P→ 2P→ 3P→ 6P→ 7P→ 14P→ 28P→ 29P.

As an addition chain:
1,2,3,6,7,14,28,29.

These chains are used in elliptic-curve cryptography and isogeny-based
cryptography.
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Introduction
An addition chain for an integer n is defined as a sequence of integers

1 = c0, c1, . . . , cr = n

such that, for each i ∈ {1, . . . , r}, there exist j, k ∈ {0, . . . , i − 1} such that ci = cj + ck.

An example for n = 29:
1,2,3,6,7,14,28,29.

Montgomery showed on Montgomery curves (of the form By = x3 + Ax2 + x) that
x((a + b)P) takes just 6 field multiplications (5 if P affine), given x(aP), x(bP) and
x((a− b)P), instead of 8 field multiplications for regular point addition.
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Introduction
A di�erential addition chain for an integer n is defined as a sequence of integers

1 = c0, c1, . . . , cr = n

such that, for each i ∈ {1, . . . , r}, there exist j, k ∈ {0, . . . , i − 1} such that ci = cj + ck
and cj − ck ∈ {0, c0, c1, . . . , ci−1}.

An example for n = 29:
1,2,3,5,8,13,16,29

Saving of all intermediate results gives a Θ(log(n)) memory requirement.
Want 3-tuple of integers (c− b,b, c), no inputs permitted from outside.
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Introduction
Continued-fraction tuples are formed as follows:
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Introduction
A sequence of tuples ending at n = 29:

(1,2,3), (2,3,5), (3,5,8), (5,8,13), (8,13,21), (8,21,29)

Continued-fraction di�erential addition chain:

1,2,3,5,8,13,21,29

Which is encoded as 00001.
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Existing algorithms: CFRC, SIBC and CTIDH

Existing algorithms to find continued-fraction differential addition chains:
• Montgomery’s CFRC algorithm [Mon92]: based on Euclid’s algorithm.
• SIBC [ACDR21]: Brute force search in the tuples tree.

I Tests all chain up to conjectured upper bound: 2 + b1.5 log2(n)c.
I Overshooting gets pruned.

• CTIDH [BBC+21]: Also a brute force search in the tuples tree.
I Increments the length of the chains considered.
I Chains that do not reach the target when doubling get pruned.
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Pruning algorithm

We propose an improved version of the approach in CTIDH:
• Incrementing lengths being considered.
• Chains that overshoot the target are pruned.
• Chains that undershoot are pruned using the Fibonacci bound.
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Pruning algorithm

Fibonacci upper bound:
A chain of length i, with tuple (ai,bi, ci):
• Length i + 1 will reach at most 2ci,
• length i + 2 will reach at most 3ci,
• length i + 3 will reach at most 5ci, etc.

I.e. when aiming for length r:
• cr ≤ n− 1 will undershoot,
• cr−1 ≤ b(n− 1)/2c will undershoot,
• cr−2 ≤ b(n− 1)/3c will undershoot, etc.
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Meet-in-the-middle algorithm
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Meet-in-the-middle algorithm

1,2,3 _, _,n
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Meet-in-the-middle algorithm

1,2,3 _, _,n

1,n− 1,n
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Meet-in-the-middle algorithm

1,2,3 c− b,b, c
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Meet-in-the-middle algorithm

1,2,3 c− b,b, c ...,pb + qc
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Meet-in-the-middle algorithm

target Left
side

Right
side

Mod
comparisons

Final
checks chain
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Meet-in-the-middle algorithm

n = 29 Left
side

Right
side

Mod
comparisons

Final
checks chain
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Meet-in-the-middle algorithm

n = 29 Left
side

Right
side

Mod
comparisons

Final
checks chain

Create a list of continued-fraction tuples that adhere to:
• left-interval variant: final entry is in a certain interval based on the target.
• left-length variant: chains up to a certain length.

We find the following chains (for left-interval variant):

1,2,3,5,8,11 1,2,3,4,7,10
1,2,3,5,7,9,11 1,2,3,4,5,6,11
1,2,3,4,7,11
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Meet-in-the-middle algorithm

n = 29 Left
side

Right
side

Mod
comparisons

Final
checks chain

c− b,b, c

b + c

2c− b

b + 2c
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Meet-in-the-middle algorithm

n = 29 Left
side

Right
side

Mod
comparisons

Final
checks chain

Let m =
⌊
n1/3⌋ = 3. We create the following dictionary with (b mod m, c mod m):

(0,2) : 1,2,3,5,7,9,11; 1,2,3,4,5,6,11
(1,1) : 1,2,3,4,7,10
(1,2) : 1,2,3,4,7,11
(2,2) : 1,2,3,5,8,11
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Meet-in-the-middle algorithm

n = 29 Left
side

Right
side

Mod
comparisons

Final
checks chain

Now we test our found right-side chains to check if

(p · b mod m) + (q · c mod m) = n mod m.
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Meet-in-the-middle algorithm

n = 29 Left
side

Right
side

Mod
comparisons

Final
checks chain

Example with the chain b + c (so p = 1, q = 1) for 29 mod 3 = 2:
We run over possible b and check if there is a (b mod 3, c mod 3) which hold:

b = 0 mod 3→ 1 · 0 + 1 · (c mod 3) = 2 mod 3→ c = 2 mod 3→ (0,2) X

b = 1 mod 3→ 1 · 1 + 1 · (c mod 3) = 2 mod 3→ c = 1 mod 3→ (1,1) X

b = 2 mod 3→ 1 · 2 + 1 · (c mod 3) = 2 mod 3→ c = 0 mod 3→ (2,0)
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Meet-in-the-middle algorithm

n = 29 Left
side

Right
side

Mod
comparisons

Final
checks chain

In total we get:

. . ., c : ...,9,11; ...,6,11; ...,7,11; ...,8,11

. . .,b + c : ...,9,11; ...,6,11; ...,7,10

. . .,b + 2c : ...,7,11

. . .,2b + c : ...,9,11; ...,6,11

. . .,3b + c : ...,9,11; ...,6,11; ...,7,11; ...,8,11

. . .,2c− b : ...,8,11
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Meet-in-the-middle algorithm

n = 29 Left
side

Right
side

Mod
comparisons

Final
checks chain

Test our found right-side chains to check if:

p · b + q · c = n

Thus only having to do 15 full checks instead of 30 orginally.
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Meet-in-the-middle algorithm

n = 29 Left
side

Right
side

Mod
comparisons

Final
checks chain

1,2,3,4,7,11 and c− b,b, c,b + c,b + 2c combine to the continued-fraction chain

1,2,3,4,7,11,18,29.

1,2,3,5,7,9,11 and c − b,b, c,b + c,2b + c also reach 29 but the continued-fraction
chain

1,2,3,5,7,9,11,20,29

is one step longer.
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Other considered chains
1. ’ladder’: Standard ladder
2. ’prac’: Montgomery’s PRAC algorithm [Mon92] for all ρ, this generates a

differential addition-subtraction chain (usually not a continued-fraction
differential addition chain).
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Results
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prac
cfrc
sibc
ctidh
prune
mitm
mitm2
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Results
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