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Hypergeometric datum

A hypergeometric datum over Q of degree r is defined by two disjoint tuples

(α1, . . . , αr), (β1, . . . , βr) over Q ∩ [0, 1)

which are each balanced: the multiplicity of any reduced fraction depends only
on its denominator. For example

α = (14 ,
1
2 ,

1
2 ,

3
4), β = (13 ,

1
3 ,

2
3 ,

2
3).

This datum defines a family of hypergeometric motives Mα,β
z over z ∈ Q \ {0, 1},

and a family of degree r L-functions:

L(Mα,β
z , s) =

∏
p
Fp
(
p−s
)
=
∑
n≥1

an
ns

,

where Fp[t] = 1− apt + · · · ∈ Z[t] of degree at most r.
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Hypergeometric families in the wild

• Legendre Family: Et : y2 = x(1− x)(x − t)

H1(Et,Q) ' Mα,β
t where α = (12 ,

1
2), β = (1, 1)

• Dwork family: Xλ : x4 + y4 + z4 + w4 − 4λxyzw = 0 ⊂ P3

H2(Xλ,Q) = Pic(Xλ)⊕ Tλ (22 = 19 + 3)

Tλ ' Mα,β
λ4 where α = (14 ,

1
2 ,

3
4), β = (1, 1, 1)

This generalizes to the Dwork pencil for Calabi–Yau threefolds

x5 + y5 + z5 + w5 + v5 − 5λxyzwv = 0 ⊂ P4

• K3 family with Picard rank 16: Xλ : x3y + y4 + z4 + w4 − 12λxyzw = 0 ⊂ P3

H2(Xλ,Q) = Pic(Xλ)⊕ Tλ (22 = 16 + 4)

Tλ ' Mα,β
21036λ12 where α = ( 1

12 ,
1
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5
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5
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L-functions of hypergeometric motives

L
(
Mα,β
z , s

)
=
∏
p
Fp
(
p−s
)
=
∑
n≥1

an
ns

The primes p of bad reduction (i.e., deg Fp < r) have the following forms.

• p is wild if vp(γ) < 0 for some γ ∈ α ∪ β (e.g., 2 and 3 in our last example).
• p is tame if it is not wild, and either vp(z) 6= 0 or vp(z − 1) 6= 0.

These are the primes supporting the conductor N.
Completing the L-function gives

Λ(s) := Ns/2 · Γα,β(s) · L
(
Mα,β
z , s

)
We expect Λ to satisfy the functional equation

Λ(s) = ±Λ(w + 1− s)

To numerically study the analytic properties of Λ(s) and check its functional
equation one needs to know

an ≤ B, where B ∈ O(
√
N).
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The Good, the Tame and the Wild

L
(
Mα,β
z , s

)
=
∏
p
Fp
(
p−s
)
=
∑
n≥1

an
ns

= Lgood(s) · Ltame(s) · Lwild(s)

We do not yet have formulas for Fp at the wild primes.
There is a recipe for Fp at the tame primes.
For p, a good prime, i.e., neither wild nor tame, Fp(t) = det(1− tFrobp |Mα,β

z ), may
be recovered from a trace formula of the shape

Tr(Frobq) = Hq

(
α

β

∣∣∣z) :=
1

1− q

q−2∑
m=0

±pξ(m)

 r∏
j=1

(αj)
∗
m

(βj)
∗
m

 [z]m,

where [z] is the multiplicative lift of z mod p and (γ)∗m is a p-adic variant of the
Pochhammer symbol (γ)m = γ(γ + 1) · · · (γ +m− 1).
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Hypergeometric L-functions in average polynomial time

ap = Hp

(
α

β

∣∣∣z) :=
1

1− p

p−2∑
m=0

±pξ(m)

 r∏
j=1

(αj)
∗
m

(βj)
∗
m

 [z]m ∈ Z ∩ [−rpw/2, rpw/2],

where [z] is the multiplicative lift of z mod p and (γ)∗m is a p-adic variant of the
Pochhammer symbol (γ)m = γ(γ + 1) · · · (γ +m− 1).

Theorem (C–Kedlaya–Roe )
We exhibit an algorithm to compute ap (mod p) for all primes p ≤ X.
For fixed α, β, z, the complexity is O(X) modulo log factors.

This enables the computation of L-functions with motivic weight > 1!



Hypergeometric L-functions in average polynomial time, II
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α
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Amortization over primes

ap = Hp

(
α

β

∣∣∣z) :=
1

1− p

p−2∑
m=0

±pξ(m)

 r∏
j=1

(αj)
∗
m

(βj)
∗
m

 [z]m,

where [z] is the multiplicative lift of z mod p and (γ)∗m is a p-adic variant of the
Pochhammer symbol (γ)m = γ(γ + 1) · · · (γ +m− 1).

The implementations in Magma and Sage compute ap one p at a time. Since the
sum is over O(p) terms, computing all prime Dirichlet coefficients up to X
requires O(X2) (modulo log factors) arithmetic operations.

The shape of the formula makes it feasible to amortize this complexity over p,
and thus requiring O(X) (modulo log factors) arithmetic operations.



Timings: working (mod p1), degree = 4,weight = 1



Timings: working (mod p3), degree = 6,weight = 5



Amortization (mod p) vs (mod pe)

ap = Tr(Frobp) = Hp

(
α

β

∣∣∣z) :=
1

1− p

p−2∑
m=0

±pξ(m)

 r∏
j=1

(αj)
∗
m

(βj)
∗
m

 [z]m,

where [z] is the multiplicative lift of z mod p, and

(γ)∗m := Γp

({
γ +

m
1− p

})
/Γp({γ}) with {x} := x − bxc

is the p-adic variant of the Pochhammer symbol.

Recall Γp(x + 1)/Γp(x) =

−x x ∈ Z×
p

−1 x ∈ pZp
and observe m

1−p = m (mod p).

Ignoring the “discontinuities” that Γp and {•} introduce, computing ap (mod p) in
spirit boils down to computing something like

∑p−1
k=0 k! mod p.

One cannot ignore these issues, and that is the problem we solved in 14.
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Remainder trees

The key is to reduce the problem to subproblems of the following form: given a
square matrix M(x) over Z[x], compute

M(0) · · ·M(κ(p)− 1) (mod p)
for all primes p in some arithmetic progression.

Example

If M(m) =
(
g(m) 0
g(m) f (m)

)
, then 1 +

∑N−1
k=0

∏k
m=0

f (m)
g(m) =

S2,1
S1,1 where S =

∏N
m=0M(m).

We use a very similar matrix in 14 to compute ap (mod p).

This paradigm excludes the possibility of computing expressions involving p.

Generic prime (Harvey)
One can sometimes circumvent this issue by having M(x,P) ∈ Z[x,P]/(Pe),
where P is specialized to p at the end.
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Amortization (mod p) vs (mod pe)
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To compute ap (mod pe) we need to handle increments by 1
1−p = 1+ p+ p2 + · · · .
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Decoupling 1 and p/(1− p) increments

Idea
Decouple the effect of shifting the argument of Γp by a 1 and p/(1− p) ∈ pZp.

Γp(γ + k+ k p
1−p)

Γp(γ)
=

Γp(γ + k p
1−p)

Γp(γ)
·
Γp(γ + k+ k p

1−p)

Γp(γ + k p
1−p)

Lemma
One can compute ci(p) for all p < X in O(X) (modulo log factors) such that

Γp(γ + k p
1−p)

Γp(γ)
=

e−1∑
i=0

ci(p)
(
k p
1−p

)i
(mod pe) ∀k.

Lemma

There exists f ∈ Z[y]/(ye) such that Γp(γ+k+y)
Γp(γ+y) =

∏k
j=1 f (y + j) mod pe for k small.

We end up working in Z[y]/(ye) where y will be replaced at the end by p
1−p .
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Remainder trees redux (extremely oversimplified)

ap = Tr(Frobp) = Hp

(
α

β

∣∣∣z) :=
1

1− p

p−2∑
m=0

±pξ(m)

 r∏
j=1

(αj)
∗
m

(βj)
∗
m

 [z]m

We set a product
M(1) · · ·M(k) =

(
∆ 0

Σ Π

)
,

a block matrix of e× e matrices such that

• ∆ is a scalar matrix
• ∆−1Σ “records”

∑k−1
m=0 (mod pe)

• ∆−1Π “records” pξ(k)
(∏r

j=1
(αj)

∗
k

(βj)
∗
k

)
[z]k.

Slightly more precisely,
(c0 · · · ce−1) ·∆−1Σ · (1p/(1− p) · · · (p/(1− p))e−1)T =

k−1∑
m=0

(mod pe)


