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Definition

A homomorphism between two elliptic curves 𝐸 and 𝐸′ over 
a field 𝑘 is a morphism 𝜑: 𝐸 → 𝐸′ such that 𝜑 ∞ = ∞′.

An isogeny is a non-constant homomorphism. 𝐸

𝐸′𝜑

Example: let 𝐸: 𝑦2 = 𝑥3 + 1 and 𝐸′: 𝑦2 = 𝑥3 − 27, then

𝜑: 𝐸 → 𝐸′: ∞ ↦ ∞, 𝑥, 𝑦 ↦ ൞

𝑥3 + 4

𝑥2 , 𝑦
𝑥3 − 8

𝑥3  if 𝑥, 𝑦 ≠ 0, ±1 ,

∞ if not 

is an isogeny of degree 3.
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Definition

A homomorphism between two elliptic curves 𝐸 and 𝐸′ over 
a field 𝑘 is a morphism 𝜑: 𝐸 → 𝐸′ such that 𝜑 ∞ = ∞′.

An isogeny is a non-constant homomorphism. 𝐸

𝐸′𝜑

Quick facts:

➢ on ത𝑘-points, isogenies are surjective group homomorphisms with finite kernel, 

➢ # ker 𝜑 ≤ deg 𝜑, where equality holds if and only if 𝜑 is separable.

Cauchy—Schwarz inequality

For any pair of isogenies 𝜑1: 𝐸 → 𝐸′ and 𝜑2: 𝐸 → 𝐸′ we have:
 

deg 𝜑1 − 𝜑2 − deg 𝜑1 − deg 𝜑2 ≤ 2 deg 𝜑1 deg 𝜑2.

E.g., Hasse’s theorem for 𝑘 = 𝐅𝑞:  #𝐸 𝐅𝑞 − 𝑞 − 1 = deg Frob𝑞 − id − 𝑞 − 1 ≤ 2 𝑞.
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Corollary [JU18]

A degree-𝑑 isogeny 𝜑: 𝐸 → 𝐸′ is uniquely determined by the images of any 4𝑑 + 1 points.

Proof: ➢ Let 𝜑1 ≠ 𝜑2 be degree-𝑑 isogenies coinciding on ≥ 4𝑑 + 1 points.

➢ Then deg 𝜑1 − 𝜑2 ≥ #ker(𝜑1 − 𝜑2) ≥ 4𝑑 + 1, but by Cauchy—Schwarz: 

deg 𝜑1 − 𝜑2 − 𝑑 − 𝑑 ≤ 2 𝑑 ⋅ 𝑑          ⇒          deg 𝜑1 − 𝜑2 ≤ 4𝑑   ↯  

Isogeny interpolation problem

➢ Let 𝜑: 𝐸 → 𝐸′ be an unknown isogeny of (known) degree 𝑑.

➢ Let us be given a set {𝑃1, … , 𝑃𝑟} ⊂ 𝐸 generating a group of size at least 4𝑑 + 1,

     along with the image points 𝜑 𝑃𝑖 ∈ 𝐸′ for 𝑖 = 1, … , 𝑟.

➢ Given any 𝑄 ∈ 𝐸, compute 𝜑(𝑄).

Bound is sharp: 𝜑 and −𝜑 agree on 2 −1 ker 𝜑 .
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Theorem [CDM+24]

Assume 𝑘 = 𝐅𝑞 , write 𝐺 = ⟨𝑃1, … , 𝑃𝑟⟩, and assume gcd #𝐺, 𝑞 = 1. There is an algorithm 

for the isogeny interpolation problem, whose running time is polynomial in:

➢ the length of the input,

➢ the maximum of ℓ and the degree of the field of definition of 𝐸 ℓ Τ𝑒 2 ,

     over all prime powers ℓ𝑒 dividing #𝐺.

Isogeny interpolation problem

➢ Let 𝜑: 𝐸 → 𝐸′ be an unknown isogeny of (known) degree 𝑑.

➢ Let us be given a set {𝑃1, … , 𝑃𝑟} ⊂ 𝐸 generating a group of size at least 4𝑑 + 1,

     along with the image points 𝜑 𝑃𝑖 ∈ 𝐸′ for 𝑖 = 1, … , 𝑟.

➢ Given any 𝑄 ∈ 𝐸, compute 𝜑(𝑄).
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Theorem [CDM+24]

Assume 𝑘 = 𝐅𝑞 , write 𝐺 = ⟨𝑃1, … , 𝑃𝑟⟩, and assume gcd #𝐺, 𝑞 = 1. There is an algorithm 

for the isogeny interpolation problem, whose running time is polynomial in:

➢ the length of the input,

➢ the maximum of ℓ and the degree of the field of definition of 𝐸 ℓ Τ𝑒 2 ,

     over all prime powers ℓ𝑒 dividing #𝐺.

▪ polynomial time, but concrete runtime varies largely with parameters,

▪ supersingular: conditions on gcd(#𝐺, 𝑞) and 𝐸 ℓ Τ𝑒 2  are void,

▪ ordinary: condition on gcd #𝐺, 𝑞  likely removable via Dieudonné modules,

▪ much generalizes to p.p. abelian varieties of dim 𝑔 ≥ 1, or to arbitrary fields 

     supporting efficient arithmetic, but full extent not clear yet. 

Remarks:

1. Problem statement and main result



2. Context: post-quantum cryptography standardization
4/23

1994: “Polynomial-time algorithms for prime factorization and discrete logarithms on a 
quantum computer” by P. Shor [Sho94]

Main contending hard mathematical problems:

𝑣

finding short 
vectors in lattices

0 1 0 0 1 1 0

0 1 0 0 0 1 1

decoding for random 
linear codes

𝐸 𝐸′𝜑

finding isogenies 
between elliptic curves

solving non-linear 
systems of equations

ቐ
𝑓1 𝑠1, … , 𝑠𝑛 = 0

⋮
𝑓𝑚 𝑠1, … , 𝑠𝑛 = 0

2017: NIST initiates “standardization effort” for post-quantum key exchange and signatures

gradually growing concern

“noisy linear algebra”
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2020: Preliminary NIST standards: 

   LMS (stateful signatures)

   XMSS (stateful signatures)



#

2022: First main NIST standards: 

   Kyber (key encapsulation)

   Dilithium (signatures)

   Falcon (signatures)

   SPHINCS+ (signatures)

Moved to extra round of scrutiny:

        BIKE (key encapsulation)

        McEliece (key encapsulation)

        HQC (key encapsulation)

        SIKE (key encapsulation)

0 1 0 0 1 1 0

0 1 0 0 0 1 1



#



#

0 1 0 0 1 1 0

0 1 0 0 0 1 1

0 1 0 0 1 1 0

0 1 0 0 0 1 1

now broken [CD23,MMP+23,Rob23]

few months earlier [Beu22]

            Rainbow (signatures)ቐ
𝒇𝟏 𝒔𝟏, … , 𝒔𝒏 = 𝟎

⋮
𝒇𝒎 𝒔𝟏, … , 𝒔𝒏 = 𝟎

2023: New NIST call:
diversifying



The isogeny-finding problem:

 Input: two isogenous elliptic curves 𝐸, 𝐸′ over 𝐅𝑞

 Output: an isogeny 𝜑: 𝐸 → 𝐸′

3. Isogeny-based cryptography 1.x
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𝜑 ?

easily tested via point counting, in view of Tate’s isogeny theorem [Tat66]

e.g., as a composition of small-degree isogenies

𝐸 𝐸′



3. Isogeny-based cryptography 1.x
6/23

The isogeny-finding problem:

 Input: two isogenous elliptic curves 𝐸, 𝐸′ over 𝐅𝑞

 Output: an isogeny 𝜑: 𝐸 → 𝐸′

𝜑 ?𝐸 𝐸′

Best attacks in general:1, 2 ෨𝑂 𝑞 Τ1 4  classical and ෨𝑂 𝑞 Τ1 8  quantum [BJS14].

Main selling point: low bandwidth requirements (as in classical elliptic-curve cryptography) 

1 Large classes of elliptic curves admit more efficient attacks.
2 For exceptional classes of ordinary elliptic curves, the best-known complexity worsens to ෨𝑂 𝑞2/5 ; see talk Steven Galbraith. 



3. Isogeny-based cryptography 1.x
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Flagship protocol until 2022: Supersingular Isogeny Key Encapsulation [JD11]

▪ Another quick fact: for any finite subgroup 𝐺 ⊂ 𝐸 there exists a separable isogeny

𝜑: 𝐸 → 𝐸′ with 𝐺 = ker(𝜑)

              and this isogeny is unique up to composition (on the right) with an isomorphism.

▪  Vélu’s formulas [Vél73] compute 𝜑 and 𝐸′, but only efficient when #𝐺 is smooth.  

∞′∞

𝐸 𝐸′

makes sense to 
write 𝐸′ = 𝐸/𝐺
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▪ Another quick fact: for any finite subgroup 𝐺 ⊂ 𝐸 there exists a separable isogeny

𝜑: 𝐸 → 𝐸′ with 𝐺 = ker(𝜑)

              and this isogeny is unique up to composition (on the right) with an isomorphism.

▪  Vélu’s formulas [Vél73] compute 𝜑 and 𝐸′, but only efficient when #𝐺 is smooth.  

𝐸 𝐸′

2𝑎

𝐸1

𝐸2 𝐸𝑎−2

𝐸𝑎−1

2

2 2

2

2

2
…



Τ𝐸 (𝐴 + 𝐵)
≅

≅

𝐸 𝐸𝐴 = 𝐸/𝐴

𝐸𝐵 = 𝐸/𝐵

𝜑𝐴

𝐸𝐴𝐵 = Τ𝐸𝐴 𝜑𝐴(𝐵)

𝐸𝐵𝐴 = Τ𝐸𝐵 𝜑𝐵(𝐴)

Constructive problem:
    allow Bob to determine 𝜑𝐴(𝐵) 
        without revealing 𝜑𝐴

… and likewise 
for Alice

𝜑𝐵

SIKE’s high-level idea: Alice and Bob choose secret subgroups 𝐴 ⊂ 𝐸 2𝑎 , 𝐵 ⊂ 𝐸[3𝑏]

3. Isogeny-based cryptography 1.x
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𝐸 𝐸𝐴 = 𝐸/𝐴

𝐸𝐵 = 𝐸/𝐵

𝜑𝐴

𝐸𝐵𝐴 ≅ 𝐸𝐴𝐵

𝜑𝐵

Solution [JD11]: Alice and Bob choose public bases 𝑃𝐴, 𝑄𝐴 ∈ 𝐸[2𝑎], 𝑃𝐵 , 𝑄𝐵 ∈ 𝐸[3𝑏]

𝐴 = ⟨𝑃𝐴 + 𝛼𝑄𝐴⟩

𝐵 = ⟨𝑃𝐵 + 𝛽𝑄𝐵⟩

Alice reveals
𝜑𝐴(𝑃𝐵), 𝜑𝐴(𝑄𝐵) 

Bob reveals
𝜑𝐵(𝑃𝐴), 𝜑𝐵(𝑄𝐴) 

allows Bob to compute
𝜑𝐴 𝐵 = ⟨𝜑𝐴 𝑃𝐵 + 𝛽𝜑𝐴 𝑄𝐵 ⟩  

allows Alice to compute 𝜑𝐵 𝐴 = ⟨𝜑𝐵 𝑃𝐴 + 𝛼𝜑𝐵 𝑄𝐴 ⟩  

3. Isogeny-based cryptography 1.x
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𝐸 𝐸𝐴 = 𝐸/𝐴

𝐸𝐵 = 𝐸/𝐵

𝜑𝐴

𝐸𝐵𝐴 ≅ 𝐸𝐴𝐵

𝜑𝐵

Solution [JD11]: Alice and Bob choose public bases 𝑃𝐴, 𝑄𝐴 ∈ 𝐸[2𝑎], 𝑃𝐵 , 𝑄𝐵 ∈ 𝐸[3𝑏]

𝐴 = ⟨𝑃𝐴 + 𝛼𝑄𝐴⟩

𝐵 = ⟨𝑃𝐵 + 𝛽𝑄𝐵⟩

Alice reveals
𝜑𝐴(𝑃𝐵), 𝜑𝐴(𝑄𝐵) 

Bob reveals
𝜑𝐵(𝑃𝐴), 𝜑𝐵(𝑄𝐴) 

3. Isogeny-based cryptography 1.x

Dramatically weakens the system!

▪ compute 𝜑𝐴 𝑃𝐴 , 𝜑𝐴 𝑄𝐴 using 
isogeny interpolation

▪ find 𝛼 as an (easy) discrete log.  

8/23



“The number of curves of genus two with elliptic differentials” by E. Kani [Kan97]

Lemma. Consider a commuting diagram of isogenies:

with deg 𝛼 = deg 𝛾 and deg 𝛽 = deg deg 𝛿 coprime. Then the map

is a deg 𝛼 + deg 𝛽 , deg 𝛼 + deg 𝛽 -isogeny of p.p. abelian surfaces with kernel 

𝛼 𝑃 , 𝛽 𝑃 𝑃 ∈ 𝐸1 deg 𝛼 + deg 𝛽 .

𝐸1 𝐸3

𝐸2 𝐸4

𝛽

𝛼 𝛾

𝛿

4. Isogeny interpolation: balanced case
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with deg 𝛼 = deg 𝛾 and deg 𝛽 = deg deg 𝛿 coprime. Then the map
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“isogeny diamonds”



“The number of curves of genus two with elliptic differentials” by E. Kani [Kan97]

Lemma. Consider a commuting diagram of isogenies:

with deg 𝛼 = deg 𝛾 and deg 𝛽 = deg 𝛿 coprime. Then the map

is a deg 𝛼 + deg 𝛽 , deg 𝛼 + deg 𝛽 -isogeny of p.p. abelian surfaces with kernel 

𝛼 𝑃 , 𝛽 𝑃 𝑃 ∈ 𝐸1 deg 𝛼 + deg 𝛽 .

Φ ∶ 𝐸2 × 𝐸3 𝐸1 × 𝐸4

ො𝛼 መ𝛽
− 𝛿 𝛾

𝐸1 𝐸3

𝐸2 𝐸4

𝛽

𝛼 𝛾

𝛿

𝐸𝑖 𝐸𝑗

4. Isogeny interpolation: balanced case
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Special first case:  gcd 𝑁, 𝑑 = 1 and 𝑁 > 𝑑 
       𝑁 − 𝑑 = 𝑥2 is square

Consider the isogeny diamond

𝐸 𝐸′

𝐸 𝐸′

𝜑

[𝑥] [𝑥]

𝜑

Note: deg 𝜑 + deg 𝑥 = 𝑑 + 𝑥2 = 𝑁.

𝐸 𝐸′
𝜑

𝑃1
′ = 𝜑 𝑃1 , 𝑃2

′ = 𝜑(𝑃2) 𝑃1, 𝑃2 

𝐸′ 𝐸

(𝑥𝑃1, 𝑃1
′)

(𝑥𝑃2, 𝑃2
′)

4. Isogeny interpolation: balanced case

Φ : 𝐸 × 𝐸′    𝐸 × 𝐸′

[𝑥] ො𝜑

−𝜑 [𝑥]

Kani’s lemma:

is an (𝑁, 𝑁)-isogeny with kernel

𝑥𝑃, 𝜑 𝑃 𝑃 ∈ 𝐸 𝑁 .

completely known!

Assume 𝐺 = 𝐸 𝑁 = ⟨𝑃1, 𝑃2⟩ with 𝑁2 ≥ 4𝑑 + 1.

10/23



Algorithm (requires 𝑁 smooth): 

➢ using higher-dimensional analogs of Vélu’s formulae, compute the (𝑁, 𝑁)-isogeny

           from its kernel,

(e.g., if 𝑁 = 2𝑎, decompose into Richelot isogenies)

𝐻1

𝐻2

𝐻𝑎−1

(2,2)

(2,2)

(2,2)

(2,2)

(2,2)

Φ ∶

4. Isogeny interpolation: balanced case

𝐸′ 𝐸

(𝑥𝑃1, 𝑃1
′)

(𝑥𝑃2, 𝑃2
′)

𝐸′ 𝐸

[𝑥] ො𝜑

−𝜑 [𝑥]
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Algorithm (requires 𝑁 smooth): 

➢ using higher-dimensional analogs of Vélu’s formulae, compute the (𝑁, 𝑁)-isogeny

           from its kernel,

➢ compute −Φ 𝑄, ∞ = (−𝑥𝑄, 𝜑 𝑄 ),

➢ extract 𝜑 𝑄  as the second component.

Φ ∶

4. Isogeny interpolation: balanced case

𝐸′ 𝐸

(𝑥𝑃1, 𝑃1
′)

(𝑥𝑃2, 𝑃2
′)

𝐸′ 𝐸

[𝑥] ො𝜑

−𝜑 [𝑥]
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Next case:  gcd 𝑁, 𝑑 = 1 and 𝑁 > 𝑑
       𝑁 − 𝑑 = 𝑥1

2 + 𝑥2
2 is sum of two squares

Same, but use

(higher-dimensional variant of Kani’s lemma).

𝐸 𝐸′
𝜑

𝑃1
′ = 𝜑 𝑃1 , 𝑃2

′ = 𝜑(𝑃2) 𝑃1, 𝑃2 

4. Isogeny interpolation: balanced case

Φ : 𝐸2 × 𝐸′2              𝐸2 × 𝐸′2

[𝑥1] [𝑥2] ො𝜑 0

[−𝑥2] [𝑥1] 0 ො𝜑

−𝜑 0 [𝑥1] [−𝑥2]

0 −𝜑 [𝑥2] [𝑥1]

Assume 𝐺 = 𝐸 𝑁 = ⟨𝑃1, 𝑃2⟩ with 𝑁2 ≥ 4𝑑 + 1.

12/23



Next case:  gcd 𝑁, 𝑑 = 1 and 𝑁 > 𝑑
       𝑁 − 𝑑 = 𝑥1

2 + 𝑥2
2 + 𝑥3

2 + 𝑥4
2 via Lagrange’s four-square theorem

Now work on 𝐸4 × 𝐸′4
 and use

                 (Zarhin’s trick)

𝐸 𝐸′
𝜑

𝑃1
′ = 𝜑 𝑃1 , 𝑃2

′ = 𝜑(𝑃2) 𝑃1, 𝑃2 

4. Isogeny interpolation: balanced case

[𝑥1] [−𝑥2] [−𝑥3] [−𝑥4] ො𝜑 0 0 0
[𝑥2] [𝑥1] [𝑥4] [−𝑥3] 0 ො𝜑 0 0
[𝑥3] [−𝑥4] [𝑥1] [𝑥2] 0 0 ො𝜑 0

[𝑥4] [𝑥3] [−𝑥2] [𝑥1] 0 0 0 ො𝜑
−𝜑 0 0 0 [𝑥1] [𝑥2] [𝑥3] [𝑥4]

0 −𝜑 0 0 [−𝑥2] [𝑥1] [−𝑥4] [𝑥3]

0 0 −𝜑 0 [−𝑥3] [𝑥4] [𝑥1] [−𝑥2]
0 0 0 −𝜑 [−𝑥4] [−𝑥3] [𝑥2] [𝑥1]

Assume 𝐺 = 𝐸 𝑁 = ⟨𝑃1, 𝑃2⟩ with 𝑁2 ≥ 4𝑑 + 1.
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Near-general case:  gcd 𝑁, 𝑑 = 1 
                𝑁 − 𝑑 = 𝑥1

2 + ⋯ + 𝑥𝑟
2 is sum of 𝑟 = 1,2,4 squares

𝐸 𝐸′
𝜑

𝑃1
′ = 𝜑 𝑃1 , 𝑃2

′ = 𝜑(𝑃2) 𝑃1, 𝑃2 

4. Isogeny interpolation: balanced case

Assume 𝐺 = 𝐸 𝑁 = ⟨𝑃1, 𝑃2⟩ with 𝑁2 ≥ 4𝑑 + 1.

Approach: proceed as if we would know the images of  
1

𝑁
𝑃1, 

1

𝑁
𝑃2 ∈ 𝐸[𝑁2].

𝐴

=

𝐸𝑟 × 𝐸′𝑟

𝐴
Φ?

we no longer know ker Φ…

14/23



Near-general case:  gcd 𝑁, 𝑑 = 1 
                𝑁 − 𝑑 = 𝑥1

2 + ⋯ + 𝑥𝑟
2 is sum of 𝑟 = 1,2,4 squares

𝐸 𝐸′
𝜑

𝑃1
′ = 𝜑 𝑃1 , 𝑃2

′ = 𝜑(𝑃2) 𝑃1, 𝑃2 

4. Isogeny interpolation: balanced case

Assume 𝐺 = 𝐸 𝑁 = ⟨𝑃1, 𝑃2⟩ with 𝑁2 ≥ 4𝑑 + 1.

Approach: proceed as if we would know the images of  
1

𝑁
𝑃1, 

1

𝑁
𝑃2 ∈ 𝐸[𝑁2].

𝐴

=

𝐸𝑟 × 𝐸′𝑟

𝐴
Φ1

but we do know 𝑁(ker Φ)!

𝑋
Φ2

we also know 𝑁(ker Φ)
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Near-general case:  gcd 𝑁, 𝑑 = 1 
                𝑁 − 𝑑 = 𝑥1

2 + ⋯ + 𝑥𝑟
2 is sum of 𝑟 = 1,2,4 squares

𝐸 𝐸′
𝜑

𝑃1
′ = 𝜑 𝑃1 , 𝑃2

′ = 𝜑(𝑃2) 𝑃1, 𝑃2 

4. Isogeny interpolation: balanced case

Assume 𝐺 = 𝐸 𝑁 = ⟨𝑃1, 𝑃2⟩ with 𝑁2 ≥ 4𝑑 + 1.

Approach: proceed as if we would know the images of  
1

𝑁
𝑃1, 

1

𝑁
𝑃2 ∈ 𝐸[𝑁2].

𝐴

=

𝐸𝑟 × 𝐸′𝑟

𝐴
Φ1

𝑋
Φ2

so we recover Φ as Φ2 ∘ Φ1 
(gluing in the middle is subtle)
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𝑃2
′𝜑 𝑃2 = 𝜇 + 𝜆𝑃1

′

Approach:
▪ extend to bases 𝑃1, 𝑃2 ∈ 𝐸[𝑁] and 𝑃1

′, 𝑃2
′ ∈ 𝐸′ 𝑁 ,
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𝐸 𝐸′
𝜑

𝑃1
′ = 𝜑(𝑃1)𝑃1

𝑃2

5. Isogeny interpolation: glimpse at the general case

E.g., assume 𝐺 = ⟨𝑃1⟩ cyclic of order 𝑁 ≥ 4𝑑 + 1.



𝑃2
′𝜑 𝑃2 = 𝜇 + 𝜆𝑃1

′

Approach:
▪ extend to bases 𝑃1, 𝑃2 ∈ 𝐸[𝑁] and 𝑃1

′, 𝑃2
′ ∈ 𝐸′ 𝑁 ,

▪ use identity 𝑒𝑁 𝜑 𝑃1 , 𝜑 𝑃2 = 𝑒𝑁 𝑃1
′, 𝜑 𝑃2 = 𝑒𝑁 𝑃1, 𝑃2

𝑑  to determine 𝜇,

15/23
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𝑃2
′𝜑 𝑃2 = 𝜇 + 𝜆𝑃1

′

Approach:
▪ extend to bases 𝑃1, 𝑃2 ∈ 𝐸[𝑁] and 𝑃1

′, 𝑃2
′ ∈ 𝐸′ 𝑁 ,

▪ use identity 𝑒𝑁 𝜑 𝑃1 , 𝜑 𝑃2 = 𝑒𝑁 𝑃1
′, 𝜑 𝑃2 = 𝑒𝑁 𝑃1, 𝑃2

𝑑  to determine 𝜇,

▪ compose with 𝜓: 𝐸′ → 𝐸′/⟨𝑃1
′⟩,

▪ apply (slight generalization of) previous algorithm to 𝐺 = 𝐸[𝑁] and 𝜓 ∘ 𝜑. 
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𝐸 𝐸′
𝜑

𝑃1
′ = 𝜑(𝑃1)𝑃1

𝑃2

𝜓
Τ𝐸′ ⟨𝑃1

′⟩

∞

𝜇𝜓 𝑃2
′

5. Isogeny interpolation: glimpse at the general case

E.g., assume 𝐺 = ⟨𝑃1⟩ cyclic of order 𝑁 ≥ 4𝑑 + 1.

𝜑 𝑃2 = 𝜇 + 𝜆𝑃1
′

note: 𝑁2 ≥ 4𝑁𝑑 + 𝑁 ≥ 4𝑁𝑑 + 1 = 4deg 𝜓 ∘ 𝜑 + 1



What does it mean to represent / output a degree-𝑑 isogeny 𝜑: 𝐸 → 𝐸′?

➢ As a rational map ?

Object of size 𝑂 (log 𝑞) 𝑑 .

Feasible only if 𝑑 is smooth write 𝜑 as a composition of small-degree isogenies.

𝜑 ∶ 𝑥, 𝑦 ↦
𝑥3 + 𝑥2 + 𝑥 + 2

𝑥 − 5 2 , 𝑦
𝑥3 − 4𝑥2 + 2

𝑥 − 5 3E.g.,

pre-2022: default understanding of isogeny representation

6. Isogeny representations
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What does it mean to represent / output a degree-𝑑 isogeny 𝜑: 𝐸 → 𝐸′?

➢ Via its kernel 𝐺 ?

If the points in 𝐺 are defined over 𝐅𝑞𝑓: object of size 𝑂((log 𝑞)𝑓).

Requires conversion to be useful (e.g., to rational map via Vélu, needs smoothness).

➢ For certain isogenies: via its kernel ideal 𝐼𝜑 (via Deuring correspondence) ?

Requires sufficient knowledge of the endomorphism ring.

Requires conversion to be useful; ideal can often be smoothened, e.g., via [KLP+14].

𝜑

𝐸 𝐸′

6. Isogeny representations

𝜑 =
1

deg 𝜓
⋅ 𝜓 ∘ ( 𝜓 ∘ 𝜑)
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What does it mean to represent / output a degree-𝑑 isogeny 𝜑: 𝐸 → 𝐸′?

➢ Via interpolation data !

Two caveats: 

▪ interpolation data must be provided,

▪ efficiency strongly depends on parameters (ideally want dim 2 and 𝑁 = 2𝑎). 

2022

6. Isogeny representations

𝑃1
𝑃2

𝑃3

𝑃4
𝑃5

𝑃6

𝑃7 𝑃8

𝑃9
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7. Isogeny-based cryptography 2.0
19/23

Example application: a signature scheme [Ler23].

𝐸 𝐸𝐴

𝜏sk

𝑃, 𝑄 ∈ 𝐸𝐴 ℓ

Sign:

➢ compute 𝑅 = 𝑃 + H 𝐸𝐴, message ⋅ 𝑄,

➢ using knowledge of End(𝐸𝐴), provide interpolation data for 𝜑: 𝐸𝐴 → 𝐸𝐴/⟨𝑅⟩.

Verify:

➢ compute 𝑅 = 𝑃 + H 𝐸𝐴, message ⋅ 𝑄,

➢ check that 𝜑 𝑅 = ∞ using isogeny interpolation.

large prime

this is the signature



7. Isogeny-based cryptography 2.0
20/23

Mother(s) of applications: HD variants [BDD+24,DF24,DLR+24,NO24] of SQIsign [DKL+20].

Original: respond with smoothening of 𝜑 ∘ 𝜏sk ∘ 𝜓 ∶ 𝐸com → 𝐸ch through “generalized [KLP+14]”.

𝐸 𝐸𝐴

𝜏sk

𝐸com

𝜓

𝐸ch

𝜑

response

ad-hoc security assumption

slow and hard to scale

very compact signature scheme (on par with ECC),
 submitted to renewed NIST competition



7. Isogeny-based cryptography 2.0
20/23

Mother(s) of applications: HD variants [BDD+24,DF24,DLR+24,NO24] of SQIsign [DKL+20].

Original: respond with smoothening of 𝜑 ∘ 𝜏sk ∘ 𝜓 ∶ 𝐸com → 𝐸ch through “generalized [KLP+14]”.

𝐸 𝐸𝐴

𝜏sk

𝐸com

𝜓

𝐸ch

𝜑

response

HD: respond with interpolation data for random bounded-degree isogeny 𝜎: 𝐸com → 𝐸ch.

ad-hoc security assumption

slow and hard to scale

very compact signature scheme (on par with ECC),
 submitted to renewed NIST competition



The Nakagawa-Onuki trick [NO23] :

𝐸

𝐹

𝜓 deg 𝜓 = 𝑞?

7. Isogeny-based cryptography 2.0
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𝐸

𝐹

𝜓

old method: compute 𝐼𝜓 of norm 𝑞, smoothen using [KLP+14] 

2𝑎

7. Isogeny-based cryptography 2.0

The Nakagawa-Onuki trick [NO23] :
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𝐸

𝐸

trick: generate 𝜃 ∈ End(𝐸) of degree 𝑞(2𝑎 − 𝑞)

𝜃

𝐹

𝜓

𝐹′

𝜓’

𝜑′

𝜑

7. Isogeny-based cryptography 2.0

The Nakagawa-Onuki trick [NO23] :
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𝐸

𝐸𝐹

𝜓

𝐹′

𝜓′

𝜑

𝜑′

Φ ∶ 𝐸 × 𝐸 𝐹 × 𝐹′

𝜓 ො𝜑

− 𝜑′ 𝜓′

Kani:

has kernel 𝜓(𝑃), 𝜑 𝑃 𝑃 ∈ 𝐹 2𝑎

𝑞𝑄, 𝜃 𝑄 𝑄 ∈ 𝐸 2𝑎

=

known!

recover 𝐹 and 
interpolation 

data for 𝜓

(Generalizes from endomorphism factorization to isogeny factorization.)

7. Isogeny-based cryptography 2.0

The Nakagawa—Onuki trick [NO23] :
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Clapoti [PR23]: converting an ideal 𝐼 into an isogeny without smoothening.

7. Isogeny-based cryptography 2.0
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𝐸 𝐸𝐼
𝐼



Clapoti [PR23]: converting an ideal 𝐼 into an isogeny without smoothening.

𝐸 𝐸𝐼
𝐼1

𝐸

𝐼2
𝑛 𝐼1 + 𝑛 𝐼2 = 2𝑎

𝐼1 ∼ 𝐼2 ∼ 𝐼
𝜃

𝐹

7. Isogeny-based cryptography 2.0
22/23

Φ ∶ 𝐸 × 𝐸 𝐹 × 𝐸𝐼

Likewise, compute isogeny

and extract 𝐸𝐼 and interpolation data for 𝜑𝐼1
, then convert into interpolation data for 𝜑𝐼 .    

with kernel 𝑛 𝐼2 ⋅ 𝑄, 𝜃 𝑄 𝑄 ∈ 𝐸 2𝑎



8. Non-cryptographic applications
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Other applications [Rob22,KR24]:

▪  computing End(𝐸) for ordinary 𝐸/𝐅𝑞 in polytime, given factorization of ΔFrob𝑞
,

▪  point counting on 𝐸/𝐅𝑝𝑛  in time 𝑂(𝑛2 ⋅ poly(log 𝑝)),

▪  unconditional ෨𝑂(ℓ3)-algorithm for computing modular polynomial Φℓ(𝑋, 𝑌).

idea:  provide interpolation data for hypothetical 
Frob𝑞−𝜆

𝑚
∈ End(𝐸)   

run interpolation to check if this is indeed an endomorphism

study how Kani’s endomorphism acts on differentials on 𝐸 × 𝐸

see next talk by Sabrina Kunzweiler!

idea:  provide interpolation data for the Verschiebung on 𝐸

extract how the Verschiebung acts on on differentials on 𝐸
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