Computation of classical and *v*-adic *L*-series of *t*-motives

Xavier Caruso University of Bordeaux Quentin Gazda École Polytechnique

16th Algorithmic Number Theory Symposium

Setting

 \mathbb{F}_q a finite field with q elements

 $A = \mathbb{F}_q[t]$

- $K = \mathbb{F}_q(t)$
- p, v place, *i.e.*
 - ≻ an irreducible polynomial
 - \succ or ∞
- $\begin{array}{ll} A_{\mathfrak{p}} & \text{the completion of } A \text{ at } \mathfrak{p} \\ K_{\mathfrak{p}} & \text{the completion of } K \text{ at } \mathfrak{p} \\ C_{\mathfrak{p}} & \text{the completion of } \bar{K}_{\mathfrak{p}} \text{ at } \mathfrak{p} \end{array}$

Uniformization of "tori"

Let Λ be a discrete A-submodule of C_{∞} Then $C_{\infty}/\Lambda \xrightarrow{\exp_{\Lambda}} C_{\infty}$

Drinfeld modules

A Drinfeld module is a morphism of rings

$$\phi : A \longrightarrow K\{\tau\}$$

$$a \longmapsto \phi_a$$
skew polynomials
$$\tau c = c^q \tau$$

L-series

a-torsion:

 $\phi[a] = \{ x \in \bar{K}, \phi_a(x) = 0 \}$ It is a free module over A/a with an action of $G_K = \text{Gal}(\bar{K}/K)$

Tate module:

local factors:

It is a free module over
$$A_p$$
 with an action of G_K
 $P_p(\phi; T) = \det (id - T^{\deg p} \operatorname{Frob}_p^{-1} | T_\ell(\phi)^{I_{K_p}})$
 $P_p(\phi; \overline{T}, s) = \det (id \stackrel{K_p}{\longrightarrow} T^{\deg p} \operatorname{Frob}_p^{-1} | T_\ell(\phi)(s)^{I_{K_p}})$
 ℓ is a finite place different from p Carlitz twist

L-series:

$$L(\phi; T) = \prod_{\mathfrak{p} \neq \infty} P_{\mathfrak{p}}(\phi; T)^{-1} \quad \in K[[T]] \subset K_{\infty}[[T]]$$
$$L_{\mathfrak{p}}(\phi; T) = \prod_{\mathfrak{p} \neq \infty} P_{\mathfrak{p}}(\phi; T)^{-1} \in K[[T]] \subset K_{\mathfrak{p}}[[T]]$$

 $T_{\mathfrak{p}}(\phi) = \lim_{n \to \infty} \phi[\mathfrak{p}^n]$

t-motives

From now on, $K = \mathbb{F}_q(\theta)$ Let $\phi : A \to K\{\tau\}$ The motive $M(\phi)$ of ϕ is $K\{\tau\}$ with > action of A: $a \bullet m = m\phi_a$ > action of K: $\lambda \bullet m = \lambda m$ > action of τ : $\tau_{M(\phi)} = \tau m$ It is a finite free module over $A \otimes K \simeq K[t] = \mathbb{F}_q(\theta)[t]$

 $\begin{aligned} & \textbf{Proposition} \text{ (\acute{e}tale realization)} \\ & \mathcal{T}_{\mathfrak{p}}(\phi) = \left(\mathsf{M}(\phi)^{\vee} \otimes_{\mathcal{A} \otimes \mathcal{K}} (\mathcal{A}_{\mathfrak{p}} \otimes \bar{\mathcal{K}})\right)^{\tau=1} \end{aligned}$

Definition

A *t*-motive is a finite free K[t]-module M endowed with $\tau_M: \tau^* M\left[\frac{1}{1-\alpha}\right] \xrightarrow{\sim} M\left[\frac{1}{1-\alpha}\right]$ $\tau: K[t] \rightarrow K[t]$ $\sum c_i t^i \mapsto \sum c_i^q t^i$ $\tau^{\star}M = K[t] \otimes_{\tau,K[t]} M$ **Definition** (Tate module) $T_{n}(M) = (M \otimes_{\mathcal{A} \otimes \mathcal{K}} (\mathcal{A}_{n} \otimes \bar{\mathcal{K}}))^{\tau=1}$

L-series of *t*-motives

local factors:

$$\begin{aligned} P_{\mathfrak{p}}(\phi; T) &= \det \left(\mathrm{id} - T^{\deg \mathfrak{p}} \operatorname{Frob}_{\mathfrak{p}}^{-1} \mid T_{\ell}(\phi)^{I_{\kappa_{\mathfrak{p}}}} \right) \\ P_{\mathfrak{p}}(M; T, s) &= \det \left(\mathrm{id} - T^{\deg \mathfrak{p}} \operatorname{Frob}_{\mathfrak{p}}^{-1} \mid T_{\ell}(M)(s)^{I_{\kappa_{\mathfrak{p}}}} \right) \\ &= \det \left(\mathrm{id} - T^{\deg \mathfrak{p}} \operatorname{Frob}_{\mathfrak{p}}^{-1} \mid T_{\ell}(M(s))^{I_{\kappa_{\mathfrak{p}}}} \right) \end{aligned}$$

$$L(M; T) = \prod_{\mathfrak{p} \neq \infty} P_{\mathfrak{p}}(M; T)^{-1} \quad \in K[[T]] \subset K_{\infty}[[T]]$$
$$L_{\nu}(M; T) = \prod_{\mathfrak{p} \neq \nu, \infty} P_{\mathfrak{p}}(M; T)^{-1} \quad \in K[[T]] \subset K_{\nu}[[T]]$$

Models of *t*-motives

Let (M, τ_M) be a *t*-motive Recall that it is a finite free module over $A \otimes K = \mathbb{F}_q(\theta)[t]$ Set $R = \mathbb{F}_q[\theta]$

We will work over the tensor product $A\otimes R$; note that it is $\mathbb{F}_q[heta,t]$

A model of *M* is a finitely generated $(A \otimes R)$ -submodule $N \subset M$ such that $\tau_M(\tau^*N) \subset N[\frac{1}{t-\theta}]$

Theorem

(i) There exists a unique *maximal* model of *M*, denoted by $M_{\mathcal{O}}$ It is finite free over $A \otimes R$

(ii)
$$P_{\mathfrak{p}}(M; T) = \det_{\mathcal{A}[\frac{1}{\mathfrak{p}(t)}]} \left(\operatorname{id} - T\tau_{M} \mid M_{\mathcal{O}}[\frac{1}{\mathfrak{p}(t)}]/\mathfrak{p}(\theta) \right)$$

Anderson's formula

Define $\Omega_R^1 = k[\theta] \cdot d\theta$ and the Cartier operator $C: \quad \Omega_R^1 \longrightarrow \Omega_R^1$ $\sum_i a_i \theta^i d\theta \longmapsto \sum_i a_{qi+q-1} \theta^i d\theta$

Let (M, τ_M) be a *t*-motive and $M_{\mathcal{O}}$ be its maximal model Set $M_{\mathcal{O}}^{\star} = \operatorname{Hom}_{A \otimes R}(M_{\mathcal{O}}, A \otimes \Omega_R^1)$

Theorem (Anderson, Böckle) $L(M; T) = \det_{K_{\infty}} \left(\operatorname{id} - T\tau_{M}^{\star} \mid M_{\mathcal{O}}^{\star} \otimes_{A} K_{\infty} \right)$ $L_{v}(M; T) = \det_{A_{v}} \left(\operatorname{id} - T\tau_{M}^{\star} \mid M_{\mathcal{O}}^{\star} \left[\frac{1}{v(\theta)} \right] \otimes_{A} A_{v} \right)$

 $\theta^{nq-1}d\theta \mapsto \theta^{n-1}d\theta$

$$\begin{array}{ccc} M_{\mathcal{O}} & \xrightarrow{\tau_{\mathcal{M}}^{\star}(f)} & A \otimes \Omega_{R}^{1} \\ & & \uparrow^{\mathrm{id}} \otimes C \\ & & \uparrow^{\mathrm{id}} \otimes C \\ M_{\mathcal{O}} & \xrightarrow{f} & A \otimes \Omega_{R}^{1} \end{array}$$

The spaces are not finite free! Extreme care is needed to define the determinants First algorithm: computation of the maximal model

Input: a *t*-motive (M, τ_M) Output: its maximal model M_O

The general strategy is similar to *Round 2* algorithm: we maximize prime by prime, *i.e.* place by place

A key ingredient is the notion of discriminant of a model; it controls the progression of the algorithm and will eventually ensure termination

$$\Delta_{N}(\theta) = \mathsf{Fitting}\Big(\mathsf{coker}\; \tau^{\star} N\big[\tfrac{1}{t-\theta}\big] \stackrel{\tau_{M}}{\longrightarrow} N\big[\tfrac{1}{t-\theta}\big]\Big)$$

A difficulty is that $A \otimes R = \mathbb{F}_q[\theta, t]$ is not a Dedekind domain

Second algorithm: computation of the L-series

Input:a model N of a t-motive
a (finite) place v, a target precisionOutput:det_{A_v} (id - $T\tau_M^* | N^*[\frac{1}{v(\theta)}] \otimes_A A_v)$ it is the L-series if N is maximal

The main ingredient is the construction of an explicit basis of $N^* \begin{bmatrix} 1 \\ \nu(\theta) \end{bmatrix} \otimes_A A_\nu$ in which the matrix of τ_M^* has a very convenient shape

Theorem The algorithm exhibits quasi-linear complexity in the precision!

Consequences

Theorem

For any place v, the L-series $L_v(M; T) \in A_v[[T]]$ has infinite radius of convergence In particular, it can be evaluated at T = 1

Theorem

For any finite place v of degree d, and any positive integer c:

Conjecture

The order of vanishing at T=1 of $L_v(M; T)/P_v(M; T)$ is independent of the finite place v

for your attention