Computation of classical and v -adic *L*-series of t -motives

Xavier Caruso Quentin Gazda University of Bordeaux École Polytechnique

16th Algorithmic Number Theory Symposium

Setting

- \mathbb{F}_q a finite field with q elements
- $A = \mathbb{F}_q[t]$
- $K = \mathbb{F}_q(t)$
- p, v place, i.e.
	- \geq an irreducible polynomial
	- \geq or ∞
- A_n the completion of A at p K_p the completion of K at p C_p the completion of \bar{K}_p at p

Uniformization of "tori"

Let Λ be a discrete A-submodule of C_{∞} Then $C_{\infty}/\Lambda \longrightarrow C_{\infty}$ exp^Λ ∼

Drinfeld modules

A Drinfeld module is a morphism of rings

$$
\phi: A \longrightarrow K\{\tau\} \longrightarrow \phi_a
$$
skew polynomials

$$
\tau c = c^q \tau
$$

L-series

a-torsion:

 $\left\{ x \in \overline{K}, \phi_{a}(x) = 0 \right\}$ It is a free module over A/a with an action of $G_K = Gal(\bar{K}/K)$ Tate module: $\mathcal{T}_{p}(\phi) = \varprojlim_{n} \phi[p^{n}]$ It is a free module over A_n with an action of G_K local factors: $P_{\mathfrak{p}}(\phi;T)=\det\left(\textrm{id}-T^{\textrm{deg}\, \mathfrak{p}}\ \mathsf{Frob}_{\mathfrak{p}}^{-1}\ \middle|\ \mathcal{T}_{\ell}(\phi)^{I_{K_{\mathfrak{p}}}}\right)$ $P_{\mathfrak{p}}(\phi;T,s)=\det\left(\textrm{id}\stackrel{\triangle}{\to}T^{\textrm{deg}\, \mathfrak{p}}\; \mathsf{Frob}_{\mathfrak{p}}^{-1}\left|\right. T_{\ell}(\phi)(s)^{I_{K_{\mathfrak{p}}}}\right)$ Carlitz twist

 L -series:

$$
L(\phi; T) = \prod_{\mathfrak{p} \neq \infty} P_{\mathfrak{p}}(\phi; T)^{-1} \in K[[T]] \subset K_{\infty}[[T]]
$$

$$
L_{\mathsf{v}}(\phi; T) = \prod P_{\mathfrak{p}}(\phi; T)^{-1} \in K[[T]] \subset K_{\mathsf{v}}[[T]]
$$

t-motives

From now on, $K = \mathbb{F}_q(\theta)$ Let $\phi: A \rightarrow K\{\tau\}$ The motive $M(\phi)$ of ϕ is $K\{\tau\}$ with \triangleright action of A: $a \cdot m = m\phi_a$ \triangleright action of K: $\lambda \bullet m = \lambda m$ \triangleright action of τ : $\tau_{M(\phi)} = \tau m$ It is a finite free module over $A \otimes K \simeq K[t] = \mathbb{F}_{q}(\theta)[t]$

Proposition (étale realization) $\mathcal{T}_{\mathfrak{p}}(\phi)=\left(\mathsf{M}(\phi)^\vee\otimes_{\mathsf{A}\otimes\mathsf{K}}(\mathsf{A}_{\mathfrak{p}}\otimes\bar{\mathsf{K}})\right)^{\tau=1}$

Definition

A t-motive is a finite free $K[t]$ -module M endowed with $\tau_M: \tau^*M\left[\frac{1}{t-\theta}\right] \stackrel{\sim}{\longrightarrow} M\left[\frac{1}{t-\theta}\right]$ τ : $K[t] \rightarrow K[t]$ $\sum c_i t^i \mapsto \sum c_i^q$ $t_i^q t_i^q$ $\tau^{\star}{\cal M}={\cal K}[t]\otimes_{\tau,{\cal K}[t]}{\cal M}$ Definition (Tate module) $\mathcal{T}_{\mathfrak{p}}(M) = \big(\mathsf{M} \otimes_{\mathcal{A} \otimes \mathcal{K}} (\mathcal{A}_{\mathfrak{p}} \otimes \bar{\mathcal{K}})\big)^{\tau=1}$

L-series of t-motives

$$
\text{Take module: } \qquad T_{\mathfrak{p}}(M) = \left(M \otimes_{A \otimes K} (A_{\mathfrak{p}} \otimes \overline{K}) \right)^{\tau=1}
$$

local factors:
$$
P_{\mathfrak{p}}(\phi; T) = \det \left(\mathrm{id} - T^{\deg \mathfrak{p}} \operatorname{Frob}_{\mathfrak{p}}^{-1} \middle| T_{\ell}(\phi)^{I_{K_{\mathfrak{p}}}} \right)
$$

$$
P_{\mathfrak{p}}(M; T, s) = \det \left(\mathrm{id} - T^{\deg \mathfrak{p}} \operatorname{Frob}_{\mathfrak{p}}^{-1} \middle| T_{\ell}(M)(s)^{I_{K_{\mathfrak{p}}}} \right)
$$

$$
= \det \left(\mathrm{id} - T^{\deg \mathfrak{p}} \operatorname{Frob}_{\mathfrak{p}}^{-1} \middle| T_{\ell}(M(s))^{I_{K_{\mathfrak{p}}}} \right)
$$

L-series:
$$
L(M; T) = \prod_{\mathfrak{p} \neq \infty} P_{\mathfrak{p}}(M; T)^{-1} \in K[[T]] \subset K_{\infty}[[T]]
$$

$$
L_{\nu}(M; T) = \prod_{\mathfrak{p} \neq \nu, \infty} P_{\mathfrak{p}}(M; T)^{-1} \in K[[T]] \subset K_{\nu}[[T]]
$$

Models of t-motives

Let (M, τ_M) be a *t*-motive Recall that it is a finite free module over $A \otimes K = \mathbb{F}_q(\theta)[t]$ Set $R = \mathbb{F}_q[\theta]$ We will work over the tensor product $A \otimes R$; note that it is $\mathbb{F}_q[\theta, t]$ A model of M is a finitely generated $(A \otimes R)$ -submodule $N \subset M$ such that

$$
\tau_M(\tau^{\star}N)\subset N\big[\tfrac{1}{t-\theta}\big]
$$

Theorem

(i) There exists a unique *maximal* model of M, denoted by M_{\odot} It is finite free over $A \otimes R$

(ii)
$$
P_{\mathfrak{p}}(M; T) = det_{A[\frac{1}{\mathfrak{p}(t)}]}(id - T\tau_M | M_{\mathcal{O}}[\frac{1}{\mathfrak{p}(t)}]/\mathfrak{p}(\theta))
$$

Anderson's formula

Define $\Omega_R^1 = k[\theta] \!\cdot\! d\theta$ and the Cartier operator $C: \quad \Omega_R^1 \longrightarrow \Omega_R^1$ $\sum_i a_i \theta^i d\theta \longmapsto \sum_i a_{qi+q-1} \theta^i d\theta$

Let (M, τ_M) be a *t*-motive and M_{\odot} be its maximal model Set $M_{\mathcal O}^{\star} = \mathsf{Hom}_{A\otimes R}\big(M_{\mathcal O},A\otimes\Omega^1_R\big)$

Theorem (Anderson, Böckle) $L(M; T) = det_{K_{\infty}} (id - T\tau_M^{\star} | M_O^{\star} \otimes_A K_{\infty})$ $L_{\mathrm{v}}(M; \, \mathcal{T})=\det_{A_{\mathrm{v}}}\left(\mathrm{id}-\, \mathcal{T}\tau_{M}^{\star}\, \right| M_{\mathcal{O}}^{\star}\bigl[\frac{1}{\mathrm{v}(\mathfrak{c})}\bigr]$ $\frac{1}{\mathrm{v}(\theta)}\big]\otimes_{\mathcal{A}} A_{\mathrm{v}}\big)$

 $nq-1$ dθ \mapsto θ $n-1$ dθ

$$
M_{\mathcal{O}} \xrightarrow{\tau_M^*(f)} A \otimes \Omega_R^1
$$

\n
$$
M_{\mathcal{O}} \xrightarrow{f} A \otimes \Omega_R^1
$$

\n
$$
M_{\mathcal{O}} \xrightarrow{f} A \otimes \Omega_R^1
$$

The spaces are not finite free! Extreme care is needed to define the determinants

First algorithm: computation of the maximal model

Input: a *t*-motive (M, τ_M)

Output: its maximal model M_{\odot}

The general strategy is similar to Round 2 algorithm: we maximize prime by prime, $i.e.$ place by place

A key ingredient is the notion of discriminant of a model; it controls the progression of the algorithm and will eventually ensure termination

$$
\Delta_N(\theta) = \text{Fitting} \left(\text{coker } \tau^* N \left[\frac{1}{t - \theta} \right] \xrightarrow{\tau_M} N \left[\frac{1}{t - \theta} \right] \right)
$$

A difficulty is that $A \otimes R = \mathbb{F}_q[\theta, t]$ is not a Dedekind domain

Second algorithm: computation of the L-series

Input: a model N of a t -motive a (finite) place v , a target precision Output: $\det_{A_v} (\mathrm{id} - \mathcal{T} \tau_M^{\star} \,|\, N^{\star} \big[\frac{1}{v(t)}\big]$ $\frac{1}{\nu(\theta)} \big] \otimes_A A_{\nu}$ it is the l -series if N is maximal

The main ingredient is the construction of an explicit basis of $N^*\left[\frac{1}{\sqrt{N}}\right]$ $\frac{1}{\mathsf{v}(\theta)}\big]\otimes_{\mathcal{A}}\mathcal{A}_{\mathsf{v}}$ in which the matrix of τ_M^\star has a very convenient shape

Theorem The algorithm exhibits quasi-linear complexity in the precision!

Consequences

Theorem

For any place v, the L-series $L_v(M;T) \in A_v[[T]]$ has infinite radius of convergence In particular, it can be evaluated at $T = 1$

Theorem

For any finite place v of degree d , and any positive integer c .

$$
s \equiv s' \pmod{q^c(q^d-1)}
$$

\n
$$
\implies L_v(M; T, s) \equiv L_v(M; T, s') \pmod{v^{q^c}}
$$

Conjecture

The order of vanishing at $T=1$ of $L_v(M;T)/P_v(M;T)$ is independant of the finite place v

for your attention