An Almost Linear Time Algorithm Testing Whether the Markoff Graph Modulo *p* is Connected

> Colby Austin Brown University of California, Davis

colbyabrown@math.ucdavis.edu github.com/colbyaustinbrown/libbgs

The Markoff Equation

$$x^2 + y^2 + z^2 - xyz = 0$$

- What are the positive integer solutions?
- ▶ (0,0,0) is the trivial solution
- \blacktriangleright (3,3,3) is also a solution
- All other solutions can be iteratively constructed from (3, 3, 3).

The Markoff Equation: Finding Solutions

If (a, b, c) is a solution, then so are:

$$V_1(a, b, c) = (bc - a, b, c)$$

 $V_2(a, b, c) = (a, ac - b, c)$
 $V_3(a, b, c) = (a, b, ab - c)$

These are the Vietta involutions.

- Only fixed point is (0,0,0).
- All solutions are obtainable via Vietta involutions.
- Solutions form an infinite 3-regular tree rooted at (3,3,3).

The Markoff Tree

The Markoff Graph modulo 5

Current Progress on Connectivity

Conjecture (Baragar 1990)

The Markoff graph modulo p is connected for every prime p. Equivalently, every solution to the Markoff equation in \mathbb{F}_p lifts to \mathbb{Z} .

This project to date

¹De Courcy-Ireland and Lee ²Eddy, Fuchs, Litman, Martin, Tripeny, and Vanyo

The BGS Argument: Overview

Bourgain, Gamburd, and Sarnak's argument:

1. Consider an action fixing one coordinate:

$$\mathsf{rot}_1(a): (a, b, c) \mapsto (a, c, bc - a).$$

- 2. Calculate the rot_1 order of the orbit on a triple (a, b, c).
- 3. Classify triples by order, which determines connectivity to a "large component."
- Count the "bad triples" which may not be connected to the large component; all components have size divisible by p [Chen], so there may not be enough.

The BGS Argument: Orbit Intersections

The BGS Argument: Component Sizes

 $\mathsf{rot}_1(a) = (a, c, ac - b)$

Starting from (a, b, c), orbit of $rot_1(a)$ is

$$\left(\mathbf{a}, \ \alpha \chi^{\ell} + \frac{k}{\alpha \chi^{\ell}}, \ \alpha \chi^{\ell+1} + \frac{k}{\alpha \chi^{\ell+1}}\right)$$

where $a = \chi + \chi^{-1}$, and $\operatorname{ord}(\chi) \mid (p \pm 1)$. Is (a, b, c) connected to the large component? Based on the size of the orbit:

- **Exactly** $p \pm 1$: Yes.
- At least $p^{\frac{1}{2}+\delta}$: Yes. Orbit contains a triple of order $p \pm 1$.
- At least p^ε: Yes. Orbit contains a triple of larger order; repeat.
- Otherwise: Maybe not. These are the "bad triples"; if there are at least 4p of them, the BGS algorithm is inconclusive.

Algorithm Implementing BGS

For each $d|(p \pm 1)$ and $d < L_p$:

1. Calculate all elements $\chi \in \mathbb{F}_{p^2}^{\times}$ with order $\operatorname{ord}_p(\chi + \chi^{-1}) = |\chi| = d$.

2. Let $a = \chi + \chi^{-1}$. Pick the smaller of the two strategies:

- 2.1 Loop through (a, b) pairs and calculate valid *c*'s. If $\operatorname{ord}_{p}(c) < L$, then the triple (a, b, c) is **bad**.
- 2.2 For each coset of $\langle \chi \rangle$ pick a representative r and let

$$b = \frac{\chi + \chi^{-1}}{\chi - \chi^{-1}} \left(r + r^{-1} \right).$$

Calculate some (fixed) number of valid c values. If $\max(\operatorname{ord}_p(b), \operatorname{ord}_p(c)) < L$ for them all, then **all** triples in the orbit are bad. Otherwise they are all good.

3. Count the bad triples; if there are less than 4*p* of them, the graph is connected. Otherwise, inconclusive.

Results: Connectivity

- Algorithm implemented in Rust, available at github.com/colbyaustinbrown/libbgs.
- 2. Graph is connected for all primes p < 1,000,000.
- 3. Tested random sample of primes p < 50,000,000; all graphs connected for these, too.
- 4. Algorithm runs in $o(p^{1+\epsilon})$ time for all $\epsilon > 0$.

Results: Runtime

Measured on 11th Gen Intel Core i5-11320H processor.

Future Work

- Run algorithm on larger range of primes.
- Bound diameter of graphs.
- Conjecture: These graphs form a family of expanders.
- Generalize to other Markoff-like equations.

Thank you!

And special thanks to:

- My advisor Elena Fuchs;
- Matt Littman, Matthew DeCourcey-Ireland, Daniel Martin, Peter Sarnak, Joe Silverman;
- The referees for their very helpful feedback;
- The Organizers;
- Mom and Dad.

Postscript: Representation of χ

Let $|\chi||(p-1)$ and $p-1 = p_1^{t_1} \cdots p_n^{t_n}$. Fix a \mathbb{Z} -basis of \mathbb{F}_p^{\times} of the form $\{g_i\}_{i=1}^n$, where $|g_i| = p_i^{t_i}$. Representation of χ for $|\chi| = p_n^{d_n} \cdots p_n^{d_n}$ is:

$$u_{p-1} \colon \mathbb{F}_p^{\times} \to \bigoplus_{i=1}^n \mathbb{Z}/p_i^{t_i}\mathbb{Z}$$

$$\prod_{i=1}^n g_i^{r_i} \mapsto (r_1, \dots, r_n).$$

where $\psi_{p\pm 1}(\chi) = \chi + \chi^{-1}$ and *E* is the norm-1 elements of $\mathbb{F}_{p^2}^{\times}$.

Postscript: Generating χ values

Integer arrays are recursively propogated down a "factor trie":

The factor trie for n = 60.

Postscript: Required Checks for Step 2.2

Bibliography

- Jean Bourgain, Alexander Gamburd, and Peter Sarnak. "Markoff Surfaces and Strong Approximation: 1". 2016. arXiv: 1607.01530 [math.NT].
- [2] William Chen. "Nonabelian level structures, Nielsen equivalence, and Markoff triples". In: Annals of Mathematics (forthcoming).
- [3] Matthew De Courcy-Ireland and Seugjae Lee. "Experiments with the Markoff Surface". In: *Experimental mathematics* 31.3 (2022), pp. 814–829.
- [4] Jillian Eddy et al. "Connectivity of Markoff Mod-P Graphs and Maximal Divisors". 2023. arXiv: 2308.07579 [math.NT].