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The Markoff Equation

x2 + y2 + z2 − xyz = 0
▶ What are the positive integer solutions?

▶ (0, 0, 0) is the trivial solution

▶ (3, 3, 3) is also a solution

▶ All other solutions can be iteratively constructed from (3, 3, 3).



The Markoff Equation: Finding Solutions

If (a, b, c) is a solution, then so are:

V1(a, b, c) = (bc − a, b, c)

V2(a, b, c) = (a, ac − b, c)

V3(a, b, c) = (a, b, ab − c)

These are the Vietta involutions.

▶ Only fixed point is (0, 0, 0).

▶ All solutions are obtainable via Vietta involutions.

▶ Solutions form an infinite 3-regular tree rooted at (3, 3, 3).



The Markoff Tree
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Figure: The Markoff tree G×.



The Markoff Graph modulo 5
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Figure: The Markoff graph G×
5 .



Current Progress on Connectivity

Conjecture (Baragar 1990)

The Markoff graph modulo p is connected for every prime p.
Equivalently, every solution to the Markoff equation in Fp lifts to Z.
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This project to date

1De Courcy-Ireland and Lee
2Eddy, Fuchs, Litman, Martin, Tripeny, and Vanyo



The BGS Argument: Overview

Bourgain, Gamburd, and Sarnak’s argument:

1. Consider an action fixing one coordinate:

rot1(a) : (a, b, c) 7→ (a, c, bc − a).

2. Calculate the rot1 order of the orbit on a triple (a, b, c).

3. Classify triples by order, which determines connectivity to a
“large component.”

4. Count the “bad triples” which may not be connected to the
large component; all components have size divisible by p
[Chen], so there may not be enough.



The BGS Argument: Orbit Intersections
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The BGS Argument: Component Sizes

rot1(a) = (a, c , ac − b)

Starting from (a, b, c), orbit of rot1(a) is(
a, αχℓ +

k

αχℓ
, αχℓ+1 +

k

αχℓ+1

)
where a = χ+ χ−1, and ord(χ) | (p ± 1).
Is (a, b, c) connected to the large component? Based on the size of
the orbit:

▶ Exactly p ± 1: Yes.

▶ At least p
1
2
+δ: Yes. Orbit contains a triple of order p ± 1.

▶ At least pϵ: Yes. Orbit contains a triple of larger order;
repeat.

▶ Otherwise: Maybe not. These are the “bad triples”; if there
are at least 4p of them, the BGS algorithm is inconclusive.



Algorithm Implementing BGS

For each d |(p ± 1) and d < Lp:

1. Calculate all elements χ ∈ F×
p2

with order

ordp(χ+ χ−1) = |χ| = d .

2. Let a = χ+ χ−1. Pick the smaller of the two strategies:

2.1 Loop through (a, b) pairs and calculate valid c ’s. If
ordp(c) < L, then the triple (a, b, c) is bad.

2.2 For each coset of ⟨χ⟩ pick a representative r and let

b =
χ+ χ−1

χ− χ−1

(
r + r−1

)
.

Calculate some (fixed) number of valid c values. If
max(ordp(b), ordp(c)) < L for them all, then all triples in the
orbit are bad. Otherwise they are all good.

3. Count the bad triples; if there are less than 4p of them, the
graph is connected. Otherwise, inconclusive.



Results: Connectivity

1. Algorithm implemented in Rust, available at
github.com/colbyaustinbrown/libbgs.

2. Graph is connected for all primes p < 1, 000, 000.

3. Tested random sample of primes p < 50, 000, 000; all graphs
connected for these, too.

4. Algorithm runs in o(p1+ϵ) time for all ϵ > 0.



Results: Runtime
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Future Work

▶ Run algorithm on larger range of primes.

▶ Bound diameter of graphs.

▶ Conjecture: These graphs form a family of expanders.

▶ Generalize to other Markoff-like equations.
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Postscript: Representation of χ

Let |χ||(p − 1) and p − 1 = pt11 · · · ptnn . Fix a Z-basis of F×
p of the

form {gi}ni=1, where |gi | = ptii . Representation of χ for
|χ| = pdnn · · · pdnn is:

ιp−1 : F×
p →

n⊕
i=1

Z/ptii Z

n∏
i=1

g ri
i 7→ (r1, . . . , rn).

Z/pZ

F×
p

(⊕n
i=1 Z/p

ti
i Z

)
⨿
(⊕m

i=1 Z/q
si
i Z

)
E

ψp−1

ιp−1

ψp+1

ιp+1

where ψp±1(χ) = χ+ χ−1 and E is the norm-1 elements of F×
p2
.



Postscript: Generating χ values

Integer arrays are recursively propogated down a “factor trie”:
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Postscript: Required Checks for Step 2.2
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