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The Markoff Equation

x2+y2+22—xyz:0

» What are the positive integer solutions?
» (0,0,0) is the trivial solution
> (3,3,3) is also a solution

» All other solutions can be iteratively constructed from (3,3, 3).



The Markoff Equation: Finding Solutions

If (a, b, c) is a solution, then so are:

Vi(a, b,c) = (bc — a, b, c)
Va(a, b, c) = (a,ac — b, c)
V3(a, b,c) = (a,b,ab — ¢)

These are the Vietta involutions.
» Only fixed point is (0,0, 0).
» All solutions are obtainable via Vietta involutions.

» Solutions form an infinite 3-regular tree rooted at (3,3, 3).



The Markoff Tree
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The Markoff Graph modulo 5
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Current Progress on Connectivity

Conjecture (Baragar 1990)

The Markoff graph modulo p is connected for every prime p.
Equivalently, every solution to the Markoff equation in IF, lifts to Z.
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The BGS Argument: Overview

Bourgain, Gamburd, and Sarnak’s argument:

1. Consider an action fixing one coordinate:
roti(a) : (a, b, c) — (a, ¢, bc — a).

2. Calculate the rot; order of the orbit on a triple (a, b, ).
3. Classify triples by order, which determines connectivity to a
“large component.”

4. Count the "bad triples” which may not be connected to the
large component; all components have size divisible by p
[Chen], so there may not be enough.



The BGS Argument: Orbit Intersections

(b2, ) Maximal order: p+1

3 (3, b2,C2)



The BGS Argument: Component Sizes

rot1(a) = (a, ¢, ac — b)

Starting from (a, b, ¢), orbit of rot;(a) is

k k
L 41
<a, ax + —ax , ax T+ aX“l)

where a = x + x 1, and ord(x) | (p £ 1).
Is (a, b, ¢) connected to the large component? Based on the size of
the orbit:

> Exactly p+ 1: VYes.
> At least p%+5: Yes. Orbit contains a triple of order p + 1.

> At least p: Yes. Orbit contains a triple of larger order;
repeat.

» Otherwise: Maybe not. These are the “bad triples”; if there
are at least 4p of them, the BGS algorithm is inconclusive.



Algorithm Implementing BGS

For each d|(p+1) and d < Lp:
1. Calculate all elements x € IF:Z with order
ordy(x +x71) = [x| = d.
2. Let a=x + x . Pick the smaller of the two strategies:

2.1 Loop through (a, b) pairs and calculate valid c's. If
ord,(c) < L, then the triple (a, b, ¢) is bad.
2.2 For each coset of (x) pick a representative r and let

(r + r_l) .

Calculate some (fixed) number of valid ¢ values. If
max(ord,(b),ord,(c)) < L for them all, then all triples in the
orbit are bad. Otherwise they are all good.

_ox+xt
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3. Count the bad triples; if there are less than 4p of them, the
graph is connected. Otherwise, inconclusive.



Results: Connectivity

1. Algorithm implemented in Rust, available at
github.com /colbyaustinbrown/libbgs.

2. Graph is connected for all primes p < 1,000, 000.

3. Tested random sample of primes p < 50,000, 000; all graphs
connected for these, too.

4. Algorithm runs in o(p!™¢) time for all € > 0.



Results: Runtime
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Future Work

» Run algorithm on larger range of primes.
» Bound diameter of graphs.
» Conjecture: These graphs form a family of expanders.

» Generalize to other Markoff-like equations.
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Postscript: Representation of

Let [x||(p— 1) and p— 1 = pi* - - plr. Fix a Z-basis of F) of the
form {g;}"_,, where |gj| = p;’. Representation of y for
IX| = P piis:
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where 1p1+1(x) = x + X~ and E is the norm-1 elements of FZQ.



Postscript: Generating x values

Integer arrays are recursively propogated down a ‘“factor trie":
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Required Checks for Step 2.2

Postscript
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