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Abstract. For a non-CM elliptic curve E defined over a number field K,

the Galois action on its torsion points gives rise to a Galois representation

ρE : Gal(K/K) → GL2(Ẑ) that is unique up to isomorphism. A renowned

theorem of Serre says that the image of ρE is an open, and hence finite index,

subgroup of GL2(Ẑ). In an earlier work of the author, an algorithm was given

that computed the image of ρE up to conjugacy in GL2(Ẑ) in the special case
K = Q. A fundamental ingredient of this earlier work was the Kronecker–

Weber theorem whose conclusion fails for number fields K ̸= Q. We shall give

an overview of an analogous algorithm for a general number field and work out
the required group theory. We also give some bounds on the index in Serre’s

theorem for a typical elliptic curve over a fixed number field.

1. Introduction

1.1. Serre’s open image theorem. Let E be an elliptic curve defined over a
number field K. We denote its j-invariant by jE . For each integer N > 1, let
E[N ] be the N -torsion subgroup of E(K), where K is a fixed algebraic closure
of K. The group E[N ] is a free Z/NZ-module of rank 2. The absolute Galois
group GalK := Gal(K/K) acts on E[N ] and respects the group structure. We may
express this Galois action in terms of a representation ρE,N : GalK → Aut(E[N ]) ∼=
GL2(Z/NZ). By choosing compatible bases and taking the inverse limit, these
representations combine into a single Galois representation

ρE : GalK → GL2(Ẑ),

where Ẑ is the profinite completion of Z. The representation ρE is uniquely deter-
mined up to isomorphism and hence the image ρE(GalK) is uniquely determined

up to conjugacy in GL2(Ẑ). With respect to the profinite topologies, we find that
ρE is continuous and hence ρE(GalK) is a closed subgroup of the compact group

GL2(Ẑ).
In [Ser72], Serre proved the following theorem which says that, up to finite index,

the image of ρE is as large as possible when E is non-CM.

Theorem 1.1 (Serre’s open image theorem). Let E be a non-CM elliptic curve

defined over a number field K. Then ρE(GalK) is an open subgroup of GL2(Ẑ).
Equivalently, ρE(GalK) is a finite index subgroup of GL2(Ẑ).

Let E be a non-CM elliptic curve over a number field K. We will find it conve-
nient to instead work with the dual representation

ρ∗E : GalK → GL2(Ẑ)
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of ρE , i.e., ρ
∗
E(σ) is the transpose of ρE(σ

−1). Similarly, we can define ρ∗E,N for
each N ≥ 1.

Define the group GE := ρ∗E(GalK). The group GE is open in GL2(Ẑ) by The-

orem 1.1 and is uniquely determined up to conjugacy in GL2(Ẑ). Of course, com-
puting GE is equivalent to computing the image of ρE since ρE(GalK) = {At : A ∈
GE}. The group GE , when known, will have a simple description since it is open in

GL2(Ẑ), i.e., it is given by its level N and a set of generators for its image modulo
N in GL2(Z/NZ).

Unfortunately, Serre’s proof is ineffective in general. In the special case K = Q,
the author has recently given, and fully implemented, an algorithm to compute GE

up to conjugacy, see [Zyw22b]. The images for all non-CM elliptic curves over Q of
conductor at most 500000 are easily accessible via the LMFDB [LMFDB].

The goal of this article is to begin the study of how to compute the groups GE

for a general number K. A vital ingredient in the arguments of [Zyw22b] is that

the commutator subgroup of GE agrees with GE ∩SL2(Ẑ) when K = Q; this makes
use of the Kronecker–Weber theorem, cf. §2.1. When K ̸= Q, the commutator

subgroup of GE is often strictly smaller than GE ∩ SL2(Ẑ). Much of this paper is
dedicated to dealing with the new group theoretic complications that arise for this
reason.

Fix a number field K. We shall give an algorithm which defines a finite set JK ⊆
K and computes the group GE , up to conjugacy, for all non-CM elliptic curves E
over K whose j-invariant does not lie in JK and for which ρE,ℓ(GalK) ⊇ SL2(Z/ℓZ)
holds for primes ℓ > 19 (conjecturally the condition on the images of the ρE,ℓ can
be removed by making JK large enough, cf. Conjecture 2.11).

Our set JK and our algorithm will both depend only on a finite number of modu-
lar curves and morphisms which do not depend on K; these curves and morphisms
can thus be precomputed. Given any value in K, we will be able to determine
whether or not it lies in JK (explicitly giving the full set is much harder since its
finiteness makes use of Faltings’ theorem). The group theoretic aspects of the al-
gorithm have been fully implemented. The modular curve computations now seem
reasonable but have not been performed yet. Indeed, one of the main goals of this
work was to confirm there were not too many cases as to make the modular curve
computations infeasible.

1.2. Index bounds. For a non-CM E/K, the group det(GE) depends only on K,

cf. §2.1. Since [GL2(Ẑ) : GE ] = [Ẑ× : det(GE)] · [SL2(Ẑ) : GE ∩ SL2(Ẑ)], we will

thus focus on the index [SL2(Ẑ) : GE ∩ SL2(Ẑ)] when K is fixed.

Theorem 1.2. Let K be a number field. There is a finite set JK ⊆ K such that for
any non-CM elliptic curve E over K with jE /∈ JK and ρE,ℓ(GalK) ⊇ SL2(Z/ℓZ)
for all primes ℓ > 19, we have

[SL2(Ẑ) : GE ∩ SL2(Ẑ)] ≤



1382400,

677376 if K ̸⊇ Q(
√
−1,

√
2,
√
3,
√
5),

172800 if K ∩Q(
√
−1) = Q,

30000 if K ∩Q(
√
−1,

√
2,
√
3) = Q,

7200 if K ∩Q(
√
−1,

√
2,
√
3,
√
5,
√
7,
√
11) = Q,

1536 if K = Q.
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We will prove Theorem 1.2 in §2.3 where we reduce it to a direct calculation

involving a finite number of open subgroups of GL2(Ẑ) coming from our group
theoretic computations.

Remark 1.3.

(i) A well-known uniformity conjecture (Conjecture 2.11) would imply that
Theorem 1.2 still holds after removing the assumption on the images of the
ρE,ℓ.

(ii) The index [SL2(Ẑ) : GE ∩ SL2(Ẑ)] can become arbitrarily large as we vary
over all number fields K and all non-CM elliptic curves E/K. For example,
consider a fixed non-CM elliptic curve E/Q base extended byK := Q(E[2i])
with integers i ≥ 0. Theorem 1.2, along with Conjecture 2.11, shows that
large indices are rare when the number field K is fixed.

1.3. Notation. We now give some notation that will hold throughout. All profi-
nite groups will be viewed as topological groups with their profinite topology. In
particular, finite groups will have the discrete topology. For a topological group G,
we define its commutator subgroup [G,G] to be the smallest closed normal subgroup
of G for which G/[G,G] is abelian. Equivalently, [G,G] is the closed subgroup of
G generated by the set of commutators {ghg−1h−1 : g, h ∈ G}.

For each integer N > 1, we let ZN be the ring obtained by taking the inverse

limit of the Z/NeZ with e ≥ 1. Let Ẑ be the ring obtained taking the inverse
limit of Z/nZ over all positive integers n ordered by divisibility. With the profinite

topology, ZN and Ẑ are compact topological rings. We have natural isomorphisms

ZN =
∏

ℓ|N
Zℓ and Ẑ = ZN ×

∏
ℓ∤N

Zℓ =
∏

ℓ
Zℓ,

where the products are over primes ℓ. The symbol ℓ will always denote a rational
prime. Fix a positive integer n dividing a power ofN . For a subgroupG of GL2(ZN )

or GL2(Ẑ), let Gn ⊆ GL2(Zn) be the group that is the image of G under the n-adic
projection map. From context it should be clear when we have Gi with an index i
instead.

The level of an open subgroup G of GL2(Ẑ) is the smallest positive integer n for

which G contains the kernel of the reduction modulo n homomorphism GL2(Ẑ) →
GL2(Z/nZ). The level of an open subgroup G of GL2(ZN ) is the smallest positive
integer n that divides some power of N and for which G contains the kernel of the
reduction modulo n homomorphism GL2(ZN ) → GL2(Z/nZ). Similarly, we can

define the level of open subgroups of SL2(Ẑ) and SL2(ZN ).
We shall viewQ and any other algebraic field extension ofQ that arise as subfields

of C (this is mainly to ensure easy comparison with the analytic theory when
working with modular curves).

1.4. Ideas underlying the algorithm. We now briefly give some ideas and mo-
tivation behind our algorithm to compute the groups GE . Full details will be
presented in §2 and this section will not be used later on.

Fix a number field K and let Kcyc ⊆ K be the cyclotomic extension of K. Let

χcyc : GalQ → Ẑ× be the cyclotomic character, cf. §2.1.

1.4.1. An alternate description of the image. Consider a non-CM elliptic curve E
over K. We shall give an expression for GE in terms of a triple (G, G, γE), see (1.1)
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below. This description of GE will reduce its computation to the computation of
the triple. The first step is to consider a larger group

GE ⊆ G ⊆ GL2(Ẑ)

called the agreeable closure of GE , cf. §4.1. This group G contains all the scalar

matrices of GL2(Ẑ) and satisfies [G,G] = [GE , GE ]. The group G also has the
advantage that its level is often significantly smaller than the level of GE . We have
inclusions

[G,G] = [GE , GE ] ⊆ GE ∩ SL2(Ẑ) ⊆ G ∩ SL2(Ẑ)
of open subgroups of SL2(Ẑ). When K = Q, we will always have GE ∩ SL2(Ẑ) =
[GE , GE ] = [G,G], cf. Lemma 2.1; this need not hold when K ̸= Q.

We now fix an open subgroup G of G for which G∩SL2(Ẑ) = GE ∩SL2(Ẑ). The
group G is normal in G with G/G a finite abelian group since G contains [G,G] and
is open in G. Let

αG,E : GalK
ρ∗
E−−→ GE ⊆ G → G/G

be the homomorphism obtained by composing ρ∗E with the obvious quotient map.

By Lemma 2.1, we have G∩SL2(Ẑ) = GE∩SL2(Ẑ) = ρ∗E(Gal(K/Kcyc)). There-
fore, αG,E factors as GalK → Gal(Kcyc/K) → G/G, where the first map is the
quotient map. There is thus a unique homomorphism

γE : χcyc(GalK) → G/G
that satisfies αG,E(σ) = γE(χcyc(σ))

−1 for all σ ∈ GalK .
We claim that

GE =
{
g ∈ G : det g ∈ χcyc(GalK), gG = γE(det g)

}
.(1.1)

Denote by HE the group on the right-hand side of (1.1). For any σ ∈ GalK , the
above definitions give ρ∗E(σ)G = γE(χcyc(σ))

−1. As observed in §2.1, we have
det ◦ρ∗E = χ−1

cyc and hence ρ∗E(σ)G = γE(det(ρ
∗
E(σ))) for all σ ∈ GalK . This proves

the inclusion GE ⊆ HE . Since GE ⊆ HE and HE ∩ SL2(Ẑ) = G ∩ SL2(Ẑ) =

GE ∩ SL2(Ẑ), to prove the claim it suffices to show that det(GE) ⊇ det(HE). The
claim thus follows since det(GE) = χcyc(GalK) ⊇ det(HE).

1.4.2. A computation perspective. Let E be a non-CM elliptic curve over K. For
simplicity, let us assume that ρE,ℓ(GalK) ⊇ SL2(Z/ℓZ) for all primes ℓ > 19. We
wish to use (1.1) to compute GE . We first need to find the agreeable closure G of
GE .

We will see in §2.3 that only finitely many G can occur as we vary over all
such elliptic curves E/K with our fixed number field K. Moreover, we shall prove
that there is a finite set JK ⊆ K, depending only on K, and a finite set of open

subgroups A1 of GL2(Ẑ) such that if jE /∈ JK , then G is conjugate in GL2(Ẑ) to
a unique group in A1. Our set A1 does not depend on K or the curve E/K and
has cardinality 11972. One of the main tasks of this paper is to explicitly compute
such a set A1.

We shall now impose the additional condition that jE /∈ JK and hence G is

conjugate in GL2(Ẑ) to a unique group in A1. The group G will in fact be conjugate

to the group G′ ∈ A1 with maximal index [GL2(Ẑ) : G′] so that GE is conjugate

in GL2(Ẑ) to a subgroup of G′. Whether GE is conjugate to a subgroup of G′ can

240125-Zywina Version 3 - Submitted to Algor. Num. Th. Symp.



OPEN IMAGE COMPUTATIONS FOR ELLIPTIC CURVES OVER NUMBER FIELDS 5

be readily determined after computing the modular curve XG′ and its morphism to
the j-line, cf. §2.2. Since A1 is finite, the curve XG′ and its morphism to the j-line
can be precomputed for all G′ ∈ A1. This gives the general idea of how to compute

G; it is only unique determined up to conjugacy in GL2(Ẑ) which is fine since the
group GE also has this property.

Now assume that we know the agreeable closure G of GE . For each subgroup

[G,G] ⊆ H ⊆ G∩SL2(Ẑ), choose an open subgroup G of G for which G∩SL2(Ẑ) = H
and define the character

αG,E : GalK
ρ∗
E−−→ G → G/G.

We will use modular curves and specializations to compute αG,E ; these modular
curves can also be precomputed.

Amongst all the G, we find one with maximal index [SL2(Ẑ) : G ∩ SL2(Ẑ)]
for which αG,E(Gal(K/Kcyc)) = 1; this group will satisfy G ∩ SL2(Ẑ) = GE ∩
SL2(Ẑ). Now that we have G, G and αG,E , we let γE : χcyc(GalK) → G/G be the
character for which αG,E(σ) = γE(χcyc(σ))

−1 for all σ ∈ GalK . So after conjugating

appropriately in GL2(Ẑ), we deduce that (1.1) holds with our computable G, G and
αG,E .

1.5. Acknowledgements. The computations in this paper were performed using
the Magma computer algebra system [BCP97]. Thanks to the referees for their
useful comments and suggestions.

2. Overview of ideas and group theoretic results

2.1. Cyclotomic and abelian extensions. Let χcyc : GalQ → Ẑ× be the cy-
clotomic character, i.e., the continuous homomorphism such that for every integer
n ≥ 1 and every n-th root of unity ζ ∈ Q we have σ(ζ) = ζχcyc(σ) mod n for all
σ ∈ GalQ.

Fix a number field K. We can identify K with a subfield of Q and take K = Q.
Let Kcyc be the cyclotomic extension of K in K. Let Kab be the maximal abelian
extension of K in K. We have an inclusion Kcyc ⊆ Kab. We have Kcyc ⊊ Kab

whenever K ̸= Q. The Kronecker–Weber theorem says that Qcyc = Qab.
Let E be a non-CM elliptic curve over K. Using the Weil pairing on E[n] for

n ≥ 1, one finds that det ◦ρ∗E = χ−1
cyc|GalK . In particular, det(GE) = χcyc(GalK) is

an open subgroup of Ẑ× that depends only on K.

Lemma 2.1.

(i) We have ρ∗E(GalKcyc) = GE ∩ SL2(Ẑ) and ρ∗E(GalKab) = [GE , GE ].

(ii) We have an inclusion [GE , GE ] ⊆ GE ∩ SL2(Ẑ).
(iii) If K = Q, then [GE , GE ] = GE ∩ SL2(Ẑ).

Proof. We have ρ∗E(Gal(K/Kab)) = [GE , GE ] since Gal(K/Kab) is the commutator

subgroup of GalK . Since χ−1
cyc = det ◦ρ∗E , we have ρ∗E(Gal(K/Kcyc)) = GE∩SL2(Ẑ).

The inclusion [GE , GE ] ⊆ GE ∩ SL2(Ẑ) thus follows from Kcyc ⊆ Kab. We have
equality when K = Q since Qcyc = Qab. □

Example 2.2. Consider any number field K ̸= Q. The main result of [Zyw10]

implies that for a “random” elliptic curve E/K, we have GE ⊇ SL2(Ẑ). For such
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an elliptic curve E/K, we have

[GE , GE ] ⊊ SL2(Ẑ) = GE ∩ SL2(Ẑ),

where [GE , GE ] ̸= SL2(Ẑ) can be shown by noting that the commutator subgroup
of GL2(Z/2Z) is a proper subgroup of SL2(Z/2Z).

Now suppose that K = Q. Since [GE , GE ] = GE ∩ SL2(Ẑ) by Lemma 2.1(iii)

and [GE , GE ] ⊊ SL2(Ẑ), we find that GE ̸⊇ SL2(Ẑ). That ρE : GalQ → GL2(Ẑ) is
never surjective was first observed by Serre, cf. Proposition 22 of [Ser72].

2.2. Modular curves. Let G be an open subgroup of GL2(Ẑ) that contains −I.
We define KG to be the unique subfield of Qcyc for which χcyc(Gal(Q/KG)) =
det(G); it is a number field due to the openness of G.

Associated to G, there is a modular curve XG; it is a smooth projective and
geometrically irreducible curve defined over KG that comes with a morphism

πG : XG → P1
KG

= A1
KG

∪ {∞}.

We define the genus of the group G to be the genus of the curve XG. For our
applications, the following property of these curves are key.

Proposition 2.3. For any number field K ⊆ Q and non-CM elliptic curve E/K,

ρ∗E(GalK) is conjugate in GL2(Ẑ) to a subgroup of G if and only if K ⊇ KG and
jE ∈ πG(XG(K)).

Remark 2.4. Modular curves are fully discussed in §3 of [Zyw22b] with the ad-

ditional assumption det(G) = Ẑ× (equivalently, KG = Q). We now make some
remarks indicating that everything in §3 of [Zyw22b] carries over straightforwardly
to the general setting. Let N be a positive integer divisible by the level of G and let
G ⊆ GL2(Z/NZ) be the image of G modulo N . With notation as in [Zyw22b, §3],
we define XG to be the smooth, projective and geometrically irreducible curve

over KG whose function field is FG
N ; this field indeed has transcendence degree 1

over Q and the number field KG is the algebraical closure of Q in FG
N . The field

KG(XG) = FG
N consists of modular functions of level N and contains the modular

j-invariant j. The inclusion of function fields KG(XG) ⊇ KG(j) induces a dom-
inant morphism πG : XG → P1

KG
= SpecKG[j] ∪ {∞} = A1

KG
∪ {∞} of curves

over KG. Since det(GE) = χcyc(GalK), we have det(GE) ⊆ det(G) if and only if
K ⊇ KG. Proposition 2.3 is proved in the same manner as [Zyw22b, Proposition
6.4] by working over KG instead of Q.

Let ΓG be the congruence subgroup consisting of matrices in SL2(Z) whose image
modulo N lies in G. With our implicit embeddingKG ⊆ C, there is an isomorphism
of smooth compact Riemann surfaces between XG(C) and XΓG

:= ΓG\H∗, where
H∗ is the extended complex upper half-plane and ΓG acts on it by linear fractional
transformations (as noted in §3.3 of [Zyw22b], they have the same function field).
In particular, the genus of ΓG, i.e., the genus of XΓG

, agrees with the genus of G.

There are many approaches to computing models of XG. In §5 of [Zyw22b], we
give an algorithm for computing a model of XG using modular forms under the

assumption det(G) = Ẑ×. This assumption is not needed with the only change
being that the spaces of modular forms Mk,G that arise in [Zyw22b] are now vector
spaces over KG instead of Q. For our exposition below, we will take it for granted
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that one can always compute a model of XG in terms of modular forms/functions.
With respect to such a model, one can also compute the morphism πG.

2.3. The agreeable closure. Our initial strategy for computing the group GE is
to instead compute a larger group that has the same commutator subgroup. We
first define the class of groups we will consider.

We say that a subgroup G of GL2(Ẑ) is agreeable if it is open, contains all the

scalar matrices in GL2(Ẑ), and each prime dividing the level of G also divides

the level of [G,G] ⊆ SL2(Ẑ). This definition uses that [G,G] is open in SL2(Ẑ),
cf. Lemma 3.3. For any open subgroup G of GL2(Ẑ), there is a unique minimal

agreeable subgroup G of GL2(Ẑ) that satisfies G ⊆ G, cf. §4.1. We call G the
agreeable closure of G. We have [G,G] = [G,G], cf. Lemma 4.1.

Let A′
1 be the set of subgroups of GL2(Ẑ) that are agreeable and have genus at

most 1. The set A′
1 is stable under conjugation by GL2(Ẑ). Let A1 be a set of

representatives of the GL2(Ẑ)-conjugacy classes of A′
1.

Theorem 2.5. The set A1 is finite and computable. For all G ∈ A1, the level of

[G,G] ⊆ SL2(Ẑ) is not divisible by any prime ℓ > 19.

Theorem 2.5, along with the other theorems in §2.3, will be proved in §5. The
groups in A1, up to conjugacy, can be found in the public repository [Zyw24]. The
set A1 has cardinality 11972. The number of groups G ∈ A1 in terms of their genus

and the index [Ẑ× : det(G)] is given in Table 1. The largest integer that occurs as
the level of a group in A1 is 1176.

1 2 22 23 24

genus 0 418 1490 1319 417 38
genus 1 1078 3383 2897 868 64

Table 1. Number of groups G in A1 broken up by the genus and

the index of det(G) in Ẑ×.

Let A′
2 be the set of agreeable subgroups G ⊆ GL2(Ẑ) such that the following

hold:

• G has genus at least 2 and every agreeable group G ⊊ G′ ⊆ GL2(Ẑ) has
genus at most 1,

• the level of G is not divisible by any prime ℓ > 19.

The setA′
2 is stable under conjugation by GL2(Ẑ). LetA2 be a set of representatives

of the GL2(Ẑ)-conjugacy classes of A′
2.

Theorem 2.6.

(i) The set A2 is finite and computable.

(ii) Take any agreeable subgroup G of GL2(Ẑ) with genus at least 2 that satisfies

Gℓ ⊇ SL2(Zℓ) for all ℓ > 19. Then G is conjugate in GL2(Ẑ) to a subgroup
of some group in A2.

For each number field K, let JK be the intersection of K with the subset⋃
G∈A2, KG⊆K

πG(XG(K))
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of K ∪ {∞}. The set JK is finite by Theorem 2.6(i) and Faltings’ theorem.

Theorem 2.7. Let K be a number field and let E/K be a non-CM elliptic curve
with jE /∈ JK that satisfies ρE,ℓ(GalK) ⊇ SL2(Z/ℓZ) for all primes ℓ > 19. Take

a group G ∈ A1 with maximal index [GL2(Ẑ) : G] for which KG ⊆ K and jE ∈
πG(XG(K)). Then G and the agreeable closure of GE are conjugate in GL2(Ẑ).

Since the sets A1 and A2 are both finite, we can compute a model for the curve
XG and compute the morphism πG, with respect to this model, for each group
G ∈ A1 ∪ A2.

We can effectively determine whether a number in K lies in the set JK by using
explicit models of the curves XG for G ∈ A2. Using explicit models of XG, with
G ∈ A1, Theorem 2.7 lets us compute the agreeable closure of GE , up to conjugacy,
for all elliptic curves E/K satisfying the assumptions of the theorem.

Proof of Theorem 1.2. Consider a number field K. Take any non-CM elliptic curve
E/K with jE /∈ JK that satisfies ρE,ℓ(GalK) ⊇ SL2(Zℓ) for ℓ > 19. By Theorem 2.7,
there is a group G ∈ A1 that is conjugate to the agreeable closure of GE . There is
no harm in conjugating GE so that GE ⊆ G. We have [G,G] = [GE , GE ] since G is

the agreeable closure of GE . Therefore, [G,G] ⊆ GE ∩SL2(Ẑ) by Lemma 2.1(ii). In
particular, we have

[SL2(Ẑ) : GE ∩ SL2(Ẑ)] ≤ [SL2(Ẑ) : [G,G]].

The group Ẑ×/ det(G) is an elementary 2-group since Ẑ×I ⊆ G. Therefore, the
number field KG is the compositum of quadratic extensions of Q. We have KG ⊆ K
since χcyc(GalK) = det(GE) ⊆ det(G).

For the finite number of groups G ∈ A1, one can compute the index [SL2(Ẑ) :
[G,G]] and the number field KG ; this data can be found in [Zyw24]. All but the
last inequality in Theorem 1.2 follow from a direct inspection of this data.

Suppose K = Q. Only groups G ∈ A1 with det(G) = Ẑ× will arise. After
possibly increasing the finite set JK , we need only consider those groups G for
which XG(Q) is infinite. Since G is agreeable, Theorem 2.5 implies that the level of

G is not divisible by any prime ℓ > 19. Therefore, G is conjugate in GL2(Ẑ) to one
of the groups in the finite set A from Theorem 1.9 of [Zyw22b] with XG(Q) infinite
(see also Remark 4.2). The groups G in this finite set A have been computed and

for each group we have also computed [SL2(Ẑ) : [G,G]]; this data can be found in
the repository [Zyw22c] for the paper [Zyw22b]. The largest integer that occurs as

[SL2(Ẑ) : [G,G]], as we vary over all G ∈ A , is 1536. Another proof of the bound
1536 can be found in [Zyw15]. □

2.4. Some abelian quotients. Fix an agreeable subgroup G of GL2(Ẑ). Consider
any non-CM elliptic curve E over a number field K for which the agreeable closure
of GE is G. We have [GE , GE ] = [G,G] so GE is a normal subgroup of G and G/GE

is abelian. Moreover, G/GE is a finite abelian group since GE is open in G by
Theorem 1.1.

There may be infinitely many open subgroups G of G with [G,G] ⊆ G. In order
to make future computations easier, we will want to work with groups G with small

level and small index [Ẑ× : det(G)]. The following theorem, which we prove in §4.4,
promises a finite collection of nice subgroups G ⊆ G that will be suitable for our
applications.
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Theorem 2.8. Let N be the least common multiple of the levels of G and [G,G].
Then there is a computable finite set SG of open subgroups of G such that:

• For every group G ∈ SG, we have [G,G] ⊆ G ∩ SL2(Ẑ) ⊆ G ∩ SL2(Ẑ).
• For every group G ∈ SG, the level of G divides some power of 2 times N .

• For every group G ∈ SG, [Ẑ× : det(G)] is a power of 2.

• For every group [G,G] ⊆W ⊆ G ∩ SL2(Ẑ), we have G ∩ SL2(Ẑ) =W for a
unique G ∈ SG.

2.5. Some abelian representations. Throughout this section we fix an agreeable

subgroup G of GL2(Ẑ) and a finite set of open subgroups SG of G as in Theorem 2.8.
Fix an integer N ≥ 3 that is divisible by the level of [G,G], the level of G, and the
level of each G ∈ SG .

Define the open subvariety UG := π−1
G (P1

KG
− {0, 1728,∞}) of XG . The Weier-

strass equation

y2 = x3 − 27 · j(j − 1728) · x+ 54 · j(j − 1728)2,(2.1)

with j = πG , defines an elliptic scheme EG over UG . For a number field K ⊇ KG
and point u ∈ UG(K), the fiber of EG over u is the elliptic curve EG,u over K given
by (2.1) with j replaced by πG(u) ∈ K − {0, 1728}; it has j-invariant πG(u).

Let G be the image of G modulo N . As in [Zyw22b, §6.3.1], we have a surjective
and continuous representation

ϱ∗EG ,N : π1(UG , η) → G ⊆ GL2(Z/NZ),

where η is a particular geometric generic point of UG and π1 denotes the étale
fundamental group (the only difference being to base extend by KG first). The
representation ϱ∗E can be constructed in a similar fashion to our adelic representa-
tions for elliptic curves; the N -torsion subscheme EG [N ] can be viewed as a lisse
sheaf on UG that gives rise to the representation. For any number field K ⊇ KG

and point u ∈ UG(K), the specialization of ϱ∗EG ,N at u defines a representation

GalK → G ⊆ GL2(Ẑ) that is isomorphic to ρ∗(EG)u,N
.

Now take any group G ∈ SG and let G be the image of G modulo N . Since the
level of G divides N by our choice of N , reduction modulo N induces an isomor-
phism G/G ∼−→ G/G that we will view as an equality. Define the homomorphism

αG : π1(UG) → G/G

by composing ϱ∗EG ,N with the quotient map G → G/G = G/G; we may suppress the

point η since G/G is abelian.

Proposition 2.9. The homomorphism αG is computable, i.e., one can compute a
model of UG and an étale cover Y → UG corresponding to αG along with the action
of G/G on Y . In particular, for any number field K ⊇ KG and point u ∈ UG(K),
one can compute the specialization GalK → G/G of αG at u.

Proof. This follows from the same argument as in [Zyw22b, §11] except working
over KG. A slight difference to keep in mind is that the field of constants KG in
KG(UG) will not be algebraically closed in the function field of Y when det(G) is a
proper subgroup of det(G); in [Zyw22b], we only considered cases where det(G) =
det(G). □
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2.5.1. A description of GE. Now consider any non-CM elliptic curve E defined over

a number field K for which the agreeable closure is conjugate to G in GL2(Ẑ).
By Proposition 2.3, we have jE = πG(u) for some point u ∈ UG(K). The elliptic

curve E is a quadratic twist of E′ := (EG)u by a character χ : GalK → {±1} since
E is non-CM and the two elliptic curves have the same j-invariant. For each group
G ∈ SG , let

αG,E : GalK → G/G

be the homomorphism that is the product of χ and the specialization of αG at u.

Proposition 2.10.

(i) There is a unique group G ∈ SG such that αG,E(GalKcyc) = 1 and G ∩
SL2(Ẑ) is minimal with respect to inclusion.

(ii) Take G ∈ SG as in (i). The groups GE and

HE := {g ∈ G : det g ∈ χcyc(GalK), gG = γE(det g)}

are conjugate in GL2(Ẑ), where γE : χcyc(GalK) → G/G is the unique ho-
momorphism satisfying αG,E(σ) = γE(χcyc(σ)

−1) for all σ ∈ GalK .

Proof. The specialization of ϱ∗EG ,N at u is a representation GalK → G ⊆ GL2(Z/NZ)
isomorphic to ρ∗(EG)u,N

= ρ∗E′,N . So by replacing ρ∗E′,N with an isomorphic represen-

tation, we may assume that it is the specialization of ϱ∗EG ,N at u. In particular, we

have ρ∗E′,N (GalK) ⊆ G. We also have ρ∗E′(GalK) ⊆ G since the level of G divides N .

Since E is the quadratic twist of E′ by χ, we may assume that ρ∗E = χ·ρ∗E′ and hence

also ρ∗E,N = χ · ρ∗E′,N . In particular, ρ∗E,N (GalK) ⊆ G and GE = ρ∗E(GalK) ⊆ G
since −I ∈ G.

Now take any G ∈ SG . The homomorphism αG,E agrees with the composi-

tion of ρ∗E,N : GalK → G with the quotient map G → G/G = G/G. Therefore,

αG,E(GalKcyc) is equal to the image of ρ∗E(GalKcyc) = GE ∩ SL2(Ẑ) in G/G, where
we have used Lemma 2.1(i). So αG,E(GalKcyc) = 1 if and only if GE∩SL2(Ẑ) ⊆ G∩
SL2(Ẑ). Thus to prove (i), it suffices to show that [G,G] ⊆ GE∩SL2(Ẑ) ⊆ G∩SL2(Ẑ)
since any such group is of the form G ∩ SL2(Ẑ) for a unique G ∈ SG . The group
G is the agreeable closure of GE since it is conjugate to the agreeable closure and

GE ⊆ G. Therefore, [GE , GE ] = [G,G] and hence [G,G] ⊆ GE∩SL2(Ẑ) ⊆ G∩SL2(Ẑ)
by Lemma 2.1(ii).

We may now suppose that G is chosen as in (i). We have just shown that

G ∩ SL2(Ẑ) = GE ∩ SL2(Ẑ). We have already made choices so that GE ⊆ G. For
each g ∈ GE , we have det g ∈ det(GE) = χcyc(GalK). Note that the existence

and uniqueness of γE is clear since χcyc induces an isomorphism Gal(Kcyc/K)
∼−→

χcyc(GalK).
We claim that gG = γE(det g) for all g ∈ GE . Take any σ ∈ GalK . From our

identification G/G = G/G, ρ∗E,N (σ) · G and ρ∗E(σ) · G represent the same coset.

Therefore, ρ∗E(σ) · G = αG,E(σ) = γE(χcyc(σ)
−1). Since det ◦ρ∗E = χ−1

cyc|GalK , we
have ρ∗E(σ) ·G = γE(det ρ

∗
E(σ)). The claim follows since σ was an arbitrary element

of GalK .
Using the claim, we have now shown that GE ⊆ HE . Taking determinants gives

χcyc(GalK) = det(GE) ⊆ det(HE) ⊆ χcyc(GalK) and hence det(GE) = det(HE).
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We also have

HE ∩ SL2(Ẑ) = {g ∈ G : g ∈ SL2(Ẑ), gG = G} = G ∩ SL2(Ẑ) = GE ∩ SL2(Ẑ).

Therefore, GE = HE since GE is a subgroup of HE with the same determinant and

the same intersection with SL2(Ẑ). □

2.6. Computing the Galois image for most elliptic curves. For our algo-
rithm, we first shall perform some one-time precomputations. For each group
G ∈ A1 ∪ A2, we can compute a model for the curve XG and, with respect to
this model, compute the morphism πG . For each G ∈ A1, we can compute a set
SG as in Theorem 2.8. For each G ∈ A1 and G ∈ SG , we can compute αG as in
Proposition 2.9.

Fix an explicit non-CM elliptic curve E defined over a number field K for which
jE /∈ JK and ρE,ℓ(GalK) ⊇ SL2(Z/ℓZ) for all primes ℓ > 19. Note that the condi-
tion jE /∈ JK can be checked since the morphisms πG with G ∈ A2 are computed
already. We will discuss the conditions on the ρE,ℓ in §2.7. We can also compute

the open group χcyc(GalK) ⊆ Ẑ×.
Using Theorem 2.7 and our precomputed modular curves, we can find a group

G ∈ A1 that is conjugate in GL2(Ẑ) to the agreeable closure of GE = ρ∗E(GalK).
Choose a point u ∈ UG(K) for which πG(u) = jE . Let E

′ be the elliptic curve over
K defined by the equation (2.1) with j replaced by jE . The curve E is a quadratic
twist of E′ by a computable character χ : GalK → {±1} since E is non-CM and
jE′ = jE .

Take any group G ∈ SG . We define αE,G : GalK → G/G to be product of χ
and the specialization of αG at u; this is computable by using our precomputed
αG. We can find the group G ∈ SG that satisfies Proposition 2.10(i); for the rest
of the section, we work with this fixed group G. There is a unique computable
homomorphism γE : χcyc(GalK) → G/G satisfying αG,E(σ) = γE(χcyc(σ)

−1) for all
σ ∈ GalK .

From G, G, χcyc(GalK) and γE , Proposition 2.10(ii) gives an explicit subgroup

HE of GL2(Ẑ) that is conjugate to GE . This is the desired explicit computation of
GE up to conjugacy.

2.7. Loose ends 1: images modulo ℓ and uniformity. Consider a non-CM
elliptic curve E over a number field K. A consequence of Theorem 1.1, and also
one of the ingredients of its proof, is that ρE,ℓ(GalK) ⊇ SL2(Z/ℓZ) for all primes ℓ >
cE,K , where cE,K is a positive integer which we take to be minimal. In the caseK =
Q, Serre asked whether cE,Q can be bounded independent of E, see [Ser72, §4.3]
and the final remarks of [Ser81] where he asks if cE,Q ≤ 37. We formulate this as a
conjecture over a general number field.

Conjecture 2.11 (Serre uniformity problem). For any number field K, the fol-
lowing equivalent conditions hold:

(a) There is a constant cK such that for any prime ℓ > cK and any non-CM
elliptic curves E/K, we have ρE,ℓ(GalK) ⊇ SL2(Z/ℓZ).

(b) There is a finite set JK ⊆ K such that for any prime ℓ > 19 and any non-
CM elliptic curve E/K with jE /∈ JK , we have ρE,ℓ(GalK) ⊇ SL2(Z/ℓZ).

It is an important problem to determine the finite set of primes ℓ > 19 for which
ρE,ℓ(GalK) ̸⊇ SL2(Z/ℓZ). For a fixed prime ℓ > 19, there are fast probabilistic
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methods of Sutherland [Sut16] to identify the image of ρE,ℓ up to a notion of local
conjugacy. Note that whenever the algorithm of [Sut16] predicts ρE,ℓ(GalK) ⊇
SL2(Z/ℓZ), the result is guaranteed to be correct.

There are various bounds for cE,K in the literature. For example, in [Kaw03] one
finds an explicit upper bound for cE,K ; however, it is too large for use in practice.
Bounds for cE,K assuming GRH, like suggested in [LV14], should do better.

In the case K = Q, [Zyw22a] gives an efficient algorithm that computes a rela-
tively small finite set of primes S for which ρE,ℓ(GalQ) ⊇ SL2(Z/ℓZ) for all ℓ > 19
with ℓ /∈ S (one can then quickly address any primes in S). An analogous algorithm
over a general number field should be worked out.

Proof of the equivalence in Conjecture 2.11. Take any prime ℓ > 19 and any non-
CM elliptic curve E/K. Since SL2(Z/ℓZ) is equal to its own commutator subgroup,
see Lemma 3.2(i), we have ρE,ℓ(GalK) ⊇ SL2(Z/ℓZ) if and only if ±ρE,ℓ(GalK) ⊇
SL2(Z/ℓZ). Since±ρE,ℓ(GalK), up to conjugacy, does not change if we replace E/K
by a quadratic twist and E is non-CM, we find that the condition ρE,ℓ(GalK) ⊇
SL2(Z/ℓZ) depends only on jE , K and ℓ. Therefore, condition (b) implies (a) since
for each j ∈ JK that is the j-invariant of a non-CM elliptic curve E/K, we can
conclude by Theorem 1.1.

We now assume that (a) holds for some constant cK . Suppose that we have
ρE,ℓ(GalK) ̸⊇ SL2(Z/ℓZ) for some non-CM elliptic curve E/K and prime ℓ > 19.

We have 19 < ℓ < cK . Let G be the open subgroup of GL2(Ẑ) of level ℓ whose image
modulo ℓ is the transpose of ±ρE,ℓ(GalK) (and hence does not contain SL2(Z/ℓZ)).
Using the classification in [CP03] and ℓ > 19, the genus of XG is at least 2. We
have jE ∈ πG(XG(K)) by Proposition 2.3. Therefore, (b) holds since only finitely
many groups G arise and XG(K) is finite by Faltings’ theorem. □

2.8. Loose ends 2: exceptional images. In general, computing GE for an ar-
bitrary non-CM elliptic curve E over a number field is still an extremely difficult

problem. The fundamental reason being that every open subgroup of GL2(Ẑ) will
occur as such an image (to prove this one need only show that GL2(Ẑ) occurs, see
[Zyw10]).

For a fixed number field K, and assuming Conjecture 2.11 for simplicity, we have
shown how to compute GE for all non-CM elliptic curves E/K whose j-invariant lies
away from some finite subset of K. What makes this proposed algorithm especially
practical is that one need only compute a finite number of modular curves and this
can be done ahead of time.

For non-CM elliptic curves over K with one of the excluded j-invariants, a sim-
ilar approach works but requires more modular curves computations or ad hoc
computations. For how we dealt with this in the K = Q case, see §10.2 and §12.3
of [Zyw22b].

3. Basic group theory

In this section, we collect some basic group theory facts that will be used in our
arguments.

3.1. Goursat’s lemma.

Lemma 3.1 (Goursat’s lemma, [Rib76, Lemma 5.2.1]). Let G1 and G2 be two
groups and let H be a subgroup of G1×G2 so that the projection maps p1 : H → G1
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and p2 : H → G2 are surjective. Let B1 and B2 be the normal subgroups of G1

and G2, respectively, for which ker(p2) = B1 × {1} and ker(p1) = {1} × B2. Then
the image of H in (G1 × G2)/(B1 × B2) = G1/B1 × G2/B2 is the graph of an

isomorphism G1/B1
∼−→ G2/B2.

3.2. Commutator subgroups.

Lemma 3.2. [Zyw22b, Lemma 7.7]

(i) The commutator subgroup of SL2(Zℓ) is equal to SL2(Zℓ) for all ℓ > 3.
(ii) The commutator subgroup of GL2(Zℓ) is equal to SL2(Zℓ) for all ℓ ≥ 3.
(iii) The commutator subgroup of SL2(Z3) has level 3 and index 3.

Lemma 3.3. [Zyw22b, Lemma 7.10] Let G be an open subgroup of GL2(Ẑ) or

SL2(Ẑ). Then the commutator subgroup [G,G] is an open subgroup of SL2(Ẑ).

Lemma 3.4. Take any prime ℓ ≥ 3.

(i) There is a unique closed normal subgroupWℓ of SL2(Zℓ) for which SL2(Zℓ)/Wℓ

is a simple group.
(ii) Suppose ℓ > 3. Then the group Wℓ consists of the matrices in SL2(Zℓ)

whose image modulo ℓ are ±I. We have SL2(Zℓ)/Wℓ
∼= SL2(Fℓ)/{±I}.

(iii) The group W3 is the commutator subgroup of SL2(Z3) and SL2(Z3)/W3 is
cyclic of order 3.

Proof. Let Q be a finite simple group that is a quotient of SL2(Zℓ) by a closed
normal subgroup.

Suppose ℓ > 3. The simple group Q is nonabelian by Lemma 3.2(i). Since pro-ℓ
groups are prosolvable and Q is simple and nonabelian, we find that any continuous
surjective homomorphism SL2(Zℓ) ↠ Q factors through SL2(Z/ℓZ)/{±I} ↠ Q.
The lemma is immediate in this case since SL2(Z/ℓZ)/{±I} is simple.

The group SL2(Z3) is prosolvable since pro-3 groups are prosolvable and SL2(Z/3Z)
is solvable. Therefore, Q is a cyclic group of prime order. The lemma for ℓ = 3
follows since SL2(Z3)/[SL2(Z3),SL2(Z3)] ∼= Z/3Z by Lemma 3.2(iii). □

Lemma 3.5. Let G be an open subgroup of GL2(Ẑ) or SL2(Ẑ). Take any prime
ℓ > 5. Then Gℓ ⊇ SL2(Zℓ) if and only if ℓ does not divide the level of [G,G].

Proof. First suppose that ℓ does not divide the level of [G,G] ⊆ SL2(Ẑ). Then
Gℓ ⊇ [G,G]ℓ ⊇ SL2(Zℓ).

Now suppose that Gℓ ⊇ SL2(Zℓ). Define G′ = [G,G]; it is an open subgroup of

SL2(Ẑ) by Lemma 3.3. We have G′
ℓ = [Gℓ, Gℓ] ⊇ SL2(Zℓ) by Lemma 3.2(i). The

level of [G′, G′] divides the level of the larger group [G,G]. So after replacing G by

G′, we may assume that G ⊆ SL2(Ẑ) and that Gℓ = SL2(Zℓ). Let H be the image
of G under the projection map to

∏
p ̸=ℓ SL2(Zp). We may view G as a subgroup of

H ×SL2(Zℓ) for which the projections to the factors H and SL2(Zℓ) are surjective.
By Goursat’s lemma (Lemma 3.1), we have B1×B2 ⊆ G and H/B1

∼= SL2(Zℓ)/B2,
where B1 and B2 are certain normal subgroup of H and SL2(Zℓ), respectively. In
our case, the groups B1 and B2 are also closed.

Suppose thatB2 ̸= SL2(Zℓ). By Lemma 3.4, the simple groupQ := SL2(Fℓ)/{±I}
is isomorphic to a quotient of SL2(Zℓ)/B2

∼= H/B1. Therefore, Q is a quotient of
Hp for some prime p ̸= ℓ, where Hp is a closed subgroup of GL2(Zp). The group Q
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is not isomorphic to either of the groups SL2(Fp)/{±I} or A5 by cardinality con-
siderations. However, this contradicts the computation of the sets “Occ(GL2(Zℓ))”
in [Ser98, IV §3.4].

Therefore, B2 = SL2(Zℓ) and hence also B1 = H. From the inclusions H ×
SL2(Zℓ) ⊇ G ⊇ B1 × B2, we deduce that G = H × SL2(Zℓ). Therefore, [G,G] =
[H,H]×SL2(Zℓ) by Lemma 3.2(i) and hence ℓ does not divide the level of [G,G]. □

Lemma 3.6. Fix a prime ℓ ≥ 5 and let G be a closed subgroup of GL2(Zℓ). Then
G ⊇ SL2(Zℓ) if and only if the image of G modulo ℓ contains SL2(Z/ℓZ).

Proof. After replacing G by [G,G], and using Lemma 3.2(i), we may assume that
G ⊆ SL2(Zℓ). The lemma now follows from [Ser98, IV §3.4 Lemma 3]. □

3.3. Determining the level of groups. The following lemmas give cases where
we can show that a subgroup of GL2(ZN ) is open and also give a bound on its level.

Lemma 3.7. [Zyw22b, Lemma 7.6] Fix an integer N > 1 with N ̸≡ 2 (mod 4).
Let G be a subgroup of GL2(ZN ) for which G ∩ SL2(ZN ) is an open subgroup of
SL2(ZN ) whose level divides N . Define N1 := N if N is odd and N1 := 2N if N is
even. Then Z×

N ·G is an open subgroup of GL2(ZN ) whose level divides N1.

Lemma 3.8. Fix an integer N > 1 with N ̸≡ 2 (mod 4). For each prime ℓ dividing
N , define the integer

Nℓ := ℓeℓ
∏

p|N, p2≡1 mod ℓ

p,

where ℓeℓ is the largest power of ℓ dividing N . Note that Nℓ is a divisor of N .
Let G be an open subgroup of GL2(ZN ) whose level divides N . Let G be a maximal

open subgroup of G whose level does not divide N . Then for some prime ℓ|N , the
images of G and G modulo Nℓℓ are distinct subgroups of GL2(Z/NℓℓZ).

Proof. Suppose that G is a maximal open subgroup of G such that G and G have the
same image in GL2(Z/NℓℓZ) for all primes ℓ|N . Take any ℓ|N . Since the level of G
divides N , we find that the image of G in GL2(Z/NℓℓZ) contains all the matrices
that are congruent to I modulo Nℓ. By [Zyw22b, Lemma 7.2], we deduce that G
has level dividing N . □

4. Agreeable groups

4.1. Agreeable groups. Recall that a subgroup G of GL2(Ẑ) is agreeable if it is

open, contains all the scalar matrices in GL2(Ẑ), and each prime dividing the level
of G also divides the level of [G,G].

Let G be an open subgroup of GL2(Ẑ) and let M be the product of the primes

that divide the level of [G,G] ⊆ SL2(Ẑ). We define the agreeable closure of G to be
the group

G := (Z×
MGM )×

∏
ℓ∤M

GL2(Zℓ).(4.1)

We now give some basic properties of G.

Lemma 4.1.

(i) We have G ⊆ G and [G,G] = [G,G].
(ii) The group G is the minimal agreeable subgroup of GL2(Ẑ) that contains G.

In particular, G is agreeable if and only if G = G.
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(iii) IfM ′ is the level of [G,G] ⊆ GL2(Ẑ), then the level of G divides 2 lcm(M ′, 4).

Proof. The inclusion G ⊆ G is clear since GM ⊆ Z×
MGM . The integer M is even

since the commutator subgroup of GL2(Ẑ), and hence also of G, has level divisible
by 2. Since M is even, we have [GL2(Zℓ),GL2(Zℓ)] = SL2(Zℓ) for all ℓ ∤ M ,
cf. Lemma 3.2(ii). Therefore, [G,G] = [GM , GM ] ×

∏
ℓ∤M SL2(Zℓ) = [G,G]M ×∏

ℓ∤M SL2(Zℓ) = [G,G], where the last equality uses that M has the same prime

divisors as the level of [G,G]. This proves (i).
Since [G,G] = [G,G], the integerM is also the product of the primes dividing the

level of [G,G]. From the definition of the group G, it contains the scalars of GL2(Ẑ)
and each prime dividing the level of G must divide M . Therefore, G is agreeable.

Take any agreeable subgroup B of GL2(Ẑ) with G ⊆ B. Let N be the product
of the primes that divide the level of [B,B]. We have [G,G] ⊆ [B,B], so N divides
M . Since B is agreeable and N |M , we have B = BM ×

∏
ℓ∤M GL2(Zℓ). We have

GM = Z×
MGM ⊆ BM since B contains the scalars and G ⊆ B. Therefore, G ⊆ B.

Part (ii) now follows.

The level of H := G∩SL2(Ẑ) dividesM ′ since H ⊇ [G,G]. Note thatM andM ′

have the same prime divisors. Lemma 3.7 implies that Z×
MHM is an open subgroup

of GL2(ZM ) whose level divides 2 lcm(M ′, 4). Part (iii) follows since G contains
(Z×

MHM )×
∏

ℓ∤M GL2(Zℓ). □

Remark 4.2. In [Zyw22b], we gave a different definition of an agreeable subgroup G

that insisted on the extra assumption det(G) = Ẑ×. Consider any open subgroup

G of GL2(Ẑ) for which det(G) = Ẑ×. In the notation of [Zyw22b], the group G
is agreeable if and only G equals (4.1), cf. §8.3 of [Zyw22b] where the agreeable
closure is constructed. In particular, the notions of agreeable in this work and in
[Zyw22b] are the same for groups with full determinant.

4.2. Maximal agreeable subgroups. Fix an agreeable subgroup G of GL2(Ẑ).
Let M be the product of the primes that divide the level of [G,G]. In this section,
we shall describe the maximal agreeable (proper) subgroups of G. We start by
giving some obvious maximal agreeable subgroups.

Lemma 4.3.

(i) Let B be a maximal (proper) open subgroup of GM satisfying B ⊇ Z×
MI.

Then G := B ×
∏

ℓ∤M GL2(Zℓ) is a maximal agreeable subgroup of G.
(ii) For a prime p ∤M , let B be a maximal (proper) open subgroup of GL2(Zp)

that satisfies B ⊇ Z×
p I and B ̸⊇ SL2(Zp). Then G := GM×B×

∏
ℓ∤pM GL2(Zℓ)

is a maximal agreeable subgroup of G.
(iii) If 3 ∤ M , then G := GM × (Z×

3 SL2(Z3)) ×
∏

ℓ∤3M GL2(Zℓ) is a maximal

agreeable subgroup of G.

Proof. Since G is agreeable, we have G = GM ×
∏

ℓ∤M GL2(Zℓ). In all the cases, the

group G is open, contains Ẑ×I and satisfies G ⊆ G. Let N be the product of the

primes dividing the level of [G,G] ⊆ SL2(Ẑ). We have M |N since G ⊆ G. We have
N = M , N = pM and N = 3M in parts (i), (ii) and (iii), respectively; in part
(iii), we use Lemma 3.2(iii). In all the cases, every prime dividing the level of G
also divides N . Thus G is agreeable. In all the cases, one readily sees that G is a
maximal subgroup of G. □
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After setting some more notations, we will describe the maximal agreeable sub-
groups of G that are not covered by Lemma 4.3.

Fix a prime p ∈ {3, 5}. Let Sp and Ap be the symmetric and alternating
groups, respectively, on p letters. By Lemma 3.4, there is a unique closed nor-
mal subgroup Wp of SL2(Zp) for which SL2(Zp)/Wp is a finite simple group.
The group SL2(Zp)/Wp is isomorphic to Ap (recall the exceptional isomorphism
PSL2(F5)/{±I} ∼= A5). The group Wp is also normal in GL2(Zp). Let

ψp : GL2(Zp) → GL2(Zp)/(Z×
p Wp) ∼= Sp

be the homomorphism obtained by composing the quotient map with a choice
of isomorphism (the existence of this isomorphism is a direct computation and
requires p ∈ {3, 5}). The group ψp(SL2(Zp)) is equal to the alternating group Ap.
Using the uniqueness of Wp, we find that a closed subgroup B of GL2(Zp) satisfies
B ⊇ SL2(Zp) if and only if ψp(B) ⊇ Ap.

Lemma 4.4. Let G be a maximal agreeable subgroup of G that is not one of the
groups described in Lemma 4.3.

(i) There is a unique prime p ∈ {3, 5} such that p ∤ M and p divides the level
of [G,G]. We have G = GMp ×

∏
ℓ∤Mp GL2(Zℓ).

(ii) We have Z×
p SL2(Zp) ⊆ Gp ⊆ GL2(Zp). If p = 3, then Gp = GL2(Zp).

(iii) There is a homomorphism φ : GM → Sp such that φ(GM ) = ψp(Gp) and

GMp = {(g1, g2) ∈ GM ×Gp : φ(g1) = ψp(g2)}.

Proof. Since G is a maximal agreeable subgroup of G, our assumption that G is
not one of the groups from Lemma 4.3 implies that the following hold:

• GM = GM ,
• Gℓ ⊇ SL2(Zℓ) for all primes ℓ ∤M ,
• if 3 ∤M , then G3 = GL2(Z3).

Since M is even and G ⊇ Ẑ×I, we have Z×
ℓ SL2(Zℓ) ⊆ Gℓ ⊆ GL2(Zℓ) for all ℓ ∤M .

In particular, (ii) will follow once we prove (i).
Since Gℓ ⊇ SL2(Zℓ) for all ℓ ∤ M , Lemma 3.5 implies that the level of [G,G] is

not divisible by any prime ℓ ∤ M with ℓ > 5. Since M is even and [G,G] ⊆ [G,G],
we deduce that the product of the primes dividing the level of [G,G] is Mm for a
unique m|15. We have m > 1 since G is a proper subgroup of G and GM = GM .
Let p ∈ {3, 5} be the largest prime dividing m.

We can view GMp as a subgroup of GM ×Gp. The projection homomorphisms
φ1 : GMp → GM and φ2 : GMp → Gp are surjective. Let B1 and B2 be the normal
subgroups of GM and Gp, respectively, for which ker(φ2) = B1×{I} and ker(φ1) =
{I} × B2. Note that GMp contains B1 × B2. We have Z×

MI ⊆ B1 and Z×
p I ⊆ B2

since G contains all the scalars of GL2(Ẑ). By Goursat’s lemma (Lemma 3.1), the
image of GMp in (GM ×Gp)/(B1×B2) = GM/B1×Gp/B2 is the graph of a group

isomorphism f : GM/B1
∼−→ Gp/B2.

• First consider the case where B2 ̸⊇ SL2(Zp) and hence ψp(B2) ̸⊇ Ap. In particu-
lar, ψp(B2) is a normal subgroup of ψp(Gp) ∈ {Ap,Sp} that does not contain Ap.
Therefore, ψp(B2) = 1; equivalently, B2 ⊆ Z×

p Wp. Define the homomorphism

φ : GM → GM/B1
f−→ Gp/B2 → Gp/(Z×

p Wp) ↪→ GL2(Zp)/(Z×
p Wp)

∼−→ Sp,
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where the last isomorphism with Sp is the same as that in our definition of ψp. We
have φ(GM ) = ψp(Gp) ⊇ Ap and inclusions

GMp = {(g1, g2) ∈ GM ×Gp : f(g1B1) = g2B2}
⊆ {(g1, g2) ∈ GM ×Gp : φ(g1) = ψp(g2)} =: C.

Define the open subgroup G′ := C ×
∏

ℓ∤Mp GL2(Zℓ) of GL2(Ẑ).
We claim that G′ is agreeable and satisfies G ⊆ G′ ⊊ G. We certainly have G ⊆

G′ since GMp ⊆ C. We have G′ ⊊ G since C ⊊ GM ×Gp ⊆ GM ×GL2(Zp) = GMp,
where the strict inclusion uses that ψp is non-trivial on Gp and the last equality
uses that p does not divide the level of G. The inclusion G′ ⊆ G implies that
[G′, G′] ⊆ [G,G] and hence the level of [G′, G′] is divisible by every prime dividing
M . Since M is even, we have [G′, G′] = [C,C]×

∏
ℓ∤Mp SL2(Zℓ) by Lemma 3.2(ii).

So the level of [G′, G′] is not divisible by any primes ℓ ∤ Mp. Using that ψp(Gp ∩
SL2(Zp)) = ψp(SL2(Zp)) = Ap, one finds that the level of C∩SL2(ZMp), and hence
also of [C,C], is divisible by p. Combining everything together, we deduce that the
product of primes that divide the level of [G′, G′] is Mp. Observe that the level of

G′ is divisible only by primes dividingMp. Since G contains the scalars of GL2(Ẑ),
we have Z×

Mp = Z×
M × Z×

p ⊆ B1 × B2 ⊆ GMp ⊆ C. Therefore, G′ contains all the

scalars of GL2(Ẑ). We have now verified that G′ is agreeable.
Since G is a maximal agreeable subgroup of G, the previous claim implies that

G′ = G. The lemma is now immediate in this case from our definition of G′.
• Now consider the case where B2 ⊇ SL2(Zp). We will prove that this case cannot
occur.

We claim that [GMp, GMp] = [GM , GM ] × SL2(Zp). It suffices to show that
[GMp, GMp] ⊇ {I} × SL2(Zp). Take any g1, g2 ∈ Gp with det(g1) = det(g2).
Since B2 ⊇ SL2(Zp), g1 and g2 lie in the same coset of Gp/B2. So there is an
a ∈ GM such that (a, g1) and (a, g2) both lies in GMp. Taking the commutator

of these elements, we find that (I, g1g2g
−1
1 g−1

2 ) lies in [GMp, GMp]. Therefore,
[GMp, GMp] ⊇ {I} × C, where C ⊆ SL2(Zp) is the closed group generated by the

set {g1g2g−1
1 g−1

2 : g1, g2 ∈ Gp,det(g1) = det(g2)}. It thus suffices to show that
C = SL2(Zp). When p = 5, we have C = SL2(Zp) by Lemma 3.2(i). So assume
that p = 3. Since C contains the commutator subgroup of SL2(Z3), the group C
has level 1 or 3 by Lemma 3.2(iii). A simple computation shows that the image of
C modulo 3 is SL2(Z/3Z) and hence C = SL2(Z3). This completes the proof of the
claim.

Suppose that m = p. The product of the primes dividing the level of [G,G] is
Mm = Mp. By the above claim, we deduce that [G,G] = [GM , GM ] × SL2(Zp) ×∏

ℓ∤Mp SL2(Zℓ) which contradicts that p divides the level of [G,G].

Therefore, m = 15 and p = 5. We can view [G15M , G15M ] as a subgroup of
[G5M , G5M ] × [G3, G3] whose projection to each factor is surjective. By Gour-
sat’s lemma (Lemma 3.1), there are normal subgroups B′

1 and B′
2 of [G5M , G5M ]

and [G3, G3], respectively, so that the image of [G15M , G15m] in [G5M , G5M ]/B′
1 ×

[G3, G3]/B
′
2 is the graph of an isomorphism. The group G3 = GL2(Z3) is prosolv-

able (since GL2(Z/3Z) is solvable) and SL2(Z5) is equal to its own commutator
subgroup by Lemma 3.2(i), so we must have {I} × SL2(Z5) ⊆ B′

1. From this we
deduce that the level of [G15M , G15M ] ⊆ SL2(Z15M ) is not divisible by 5 which con-
tradicts that m = 15. We conclude that the case B2 ⊇ SL2(Zp) does not occur. □
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4.3. Special subgroups. Let G be an open subgroup of GL2(Ẑ) that contains the
scalars Ẑ×I. Fix an open group W of SL2(Ẑ) that satisfies

[G,G] ⊆W ⊆ G ∩ SL2(Ẑ).

The group W is normal in G and G/W is abelian since [G,G] ⊆W ⊆ G.
Given an open subgroup U of det(G), the following theorem gives a criterion that

determines whether there exists an open subgroup G of G for which G∩SL2(Ẑ) =W
and det(G) = U . Let N be the least common multiple of the levels of G and W in

GL2(Ẑ) and SL2(Ẑ), respectively. Define N1 := N if N is odd and N1 := lcm(N, 8)
if N is even.

Theorem 4.5. Let U be an open subgroup of det(G) ⊆ Ẑ× and let S := UN [2∞] be
the 2-power torsion subgroup of UN ⊆ Z×

N . Then the following are equivalent:

(a) There is an open subgroup G ⊆ G with G ∩ SL2(Ẑ) =W and det(G) = U .
(b) There is a homomorphism β : S → GN/WN such that det(β(a)) = a for all

a ∈ S.
(c) There is a homomorphism β : S → G(N1)/W (N1) such that det(β(a)) ≡ a

(mod N1) for all a ∈ S.

Moreover, if a group G as in (a) exists, then there is such a group whose level

divides a power of 2 times the least common multiple of N and the level of U ⊆ Ẑ×.

Proof. Define U ′ = UN ×
∏

ℓ∤N Z×
ℓ . We have U ⊆ U ′ ⊆ det(G). Note that the

conditions (b) and (c) depend only on UN = U ′
N . If there is an open subgroup

G′ ⊆ G satisfying G′ ∩ SL2(Ẑ) = W and det(G′) = U ′, then the group G := {g ∈
G′ : det(g) ∈ U} will satisfy (a). Also if the level of G′ divides an integer m, then
the level of G will divide the least common multiple of m and the level of U . So
without loss of generality, we may assume that U = UN ×

∏
ℓ∤N Z×

ℓ .

We first assume there is a homomorphism β : S → GN/WN as in (b). Recall
that for odd ℓ, Z×

ℓ = C(1 + ℓZℓ) for a finite cyclic group C of order ℓ − 1 and

1 + ℓZℓ
∼= Zℓ. We have Z×

2 = ±(1 + 8Z2) and 1 + 8Z2
∼= Z2. Since UN is an open

subgroup of Z×
N =

∏
ℓ|N Z×

ℓ , we have an internal direct product of groups

UN = S ·A1 ·A2,(4.2)

where A1 is torsion-free Z2-module of rank at most 1 and A2 is isomorphic to
a product of an odd finite abelian group with

∏
ℓ|N,ℓ̸=2 Zℓ. Fix a u1 ∈ A1 that

generates A1 as a Z2-module and choose an element g1 ∈ GN for which det(g1) =
u1. There is a unique continuous homomorphism t1 : A1 → GN/WN such that
t1(u1) = g1WN . Since det(g1) = u1, we have det(t1(a)) = a for all a ∈ A1. The
map A2 → A2, a 7→ a2 is an isomorphism of groups whose inverse we denote by
ψ. Define the homomorphism t2 : A2 → GN/WN , a 7→ (ψ(a) · I) ·WN ; it satisfies
det(t2(a)) = ψ(a)2 = a for all a ∈ A2. Using the direct product (4.2) with the
maps β : S → GN/WN , t1 and t2, we obtain a homomorphism sN : UN → GN/WN

that satisfies det(sN (a)) = a for all a ∈ UN . For each prime ℓ ∤ N , we define the
homomorphism sℓ : Z×

ℓ → GL2(Zℓ)/ SL2(Zℓ) by a 7→ ( 1 0
0 a ) ·SL2(Zℓ). The map sℓ is

an isomorphism with inverse given by the determinant; in particular, det(sℓ(a)) = a
for all a ∈ Z×

ℓ . By combining sN with the sℓ for ℓ ∤ N , we obtain a homomorphism

s : U = UN ×
∏

ℓ∤N
Z×
ℓ → GN/WN ×

∏
ℓ∤N

GL2(Zℓ)/SL2(Zℓ) = G/W
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that satisfies det(s(a)) = a for all a ∈ U (this uses that the levels of G and W are

not divisible by any prime ℓ ∤ N). There is a unique subgroup G of GL2(Ẑ) with

G ⊇W for which G/W is equal to s(U) ⊆ G/W . The group G is closed in GL2(Ẑ)
since s is continuous. We have det(G) = det(s(U)) = U . Since det(s(a)) = a for all

a ∈ U , we deduce that G∩SL2(Ẑ) =W . Using that det(G) = U is open in Ẑ× and

G∩SL2(Ẑ) =W is open in SL2(Ẑ), we find that G is an open subgroup of GL2(Ẑ).
We claim that the level of G divides a power of 2 times N . From the definition

of s and our sℓ, we find that G ⊇ {I} ×
∏

ℓ∤N GL2(Zℓ). Therefore, the level of G

is not divisible by any prime ℓ ∤ N . We have GN ⊇ WN ⊇ {B ∈ SL2(ZN ) : B ≡ I
(mod N)}. Using our choice of t2, we find that GN contains the scalar matrices cI
for all c in the set {a ∈ UN : a ≡ 1 (mod N)} ∩ ({1} ×

∏
ℓ|N,ℓ̸=2 Z

×
ℓ ). Therefore,

GN ⊇
∏

ℓ|N,ℓ=2
{I} ×

∏
ℓ|N,ℓ̸=2

Hℓ,

where Hℓ := (1 + ℓeℓZℓ){B ∈ SL2(Zℓ) : B ≡ I (mod ℓeℓ)} and ℓeℓ is the largest
power of ℓ dividing N . Take any odd prime ℓ|N . To complete the proof of the
claim, it suffices to show that Hℓ ⊇ {B ∈ GL2(Zℓ) : B ≡ I (mod ℓeℓ)}. Take any
B ∈ GL2(Zℓ) with B ≡ I (mod ℓeℓ). We have det(B) ∈ 1 + ℓeℓZℓ = (1 + ℓeℓZℓ)

2,
where the equality uses that ℓ is odd. So there is a u ∈ 1 + ℓeℓZℓ for which
det(B) = u2. Define C := u−1B ∈ SL2(Zℓ) and note that C ≡ I (mod ℓeℓ). So
B = uC is in Hℓ and the claim follows.

This completes the proof that (b) implies (a). After we prove the reverse impli-
cation, the final statement of the theorem will follow from the above claim.

Now suppose that there is a group G ⊆ G satisfying the properties of (a). Since

G ∩ SL2(Ẑ) = W and det(G) = U , the map det : G/W → U is an isomorphism
of groups whose inverse gives rise to a homomorphism s : U → G/W ⊆ G/W that
satisfies det(s(a)) = a for all a ∈ U . Let ι : UN → UN ×

∏
ℓ∤N Z×

ℓ = U be the

homomorphism that is the identity on the UN factor and trivial on the Z×
ℓ factors.

Define the homomorphism sN : UN ↪→ U
s−→ G/W → GN/WN , where the first map

is ι and the last map is the N -adic projection. We have det(sN (a)) = a for all
a ∈ UN . We have S ⊆ UN , so β := sN |S : S → GN/WN is a homomorphism
satisfying det(β(a)) = a for all a ∈ S. This completes the proof that (a) implies
(b).

Now suppose that (c) holds with a homomorphism β : S → G(N1)/W (N1).
For any a ∈ S, we claim that there is a g ∈ GN such that det(g) = a and such

that the order of a agrees with the order of gWN in GN/WN . Take any a ∈ S
and denote its order by e. We may assume that e ≥ 2 since we can take g = I
when e = 1. Choose a g1 ∈ GN whose image modulo N1 represents the coset
β(a) ∈ G(N1)/W (N1). We have det(g1) ≡ det(β(a)) ≡ a (mod N1). Since N1 ≡ 0
(mod 8) when N1 is even, we have (1+N2ZN )2 = 1+N1ZN where N2 := N1 = N
if N is odd and N2 := N1/2 if N is even. Therefore, det(g1)a

−1 = c−2 for some

c ∈ 1+N2ZN . Define g := cg1; it lies in GN since G contains the scalars in GL2(Ẑ).
We have det(g) = c2 det(g1) = a. The matrix ge thus lies in GN ∩ SL2(ZN ). We
have β(a)e = β(ae) = 1, so reducing ge1 modulo N1 gives the identity coset in
G(N1)/W (N1). We have ce ≡ 1 (mod N1) since c ≡ 1 (mod N2) and e > 1 is a
power of 2. Therefore, ge = cege1 modulo N1 lies in W (N1). Since W has level
dividing N and ge ∈ SL2(ZN ), we deduce that ge ∈ WN . So gWN has order at
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most e in GN/WN . The order is exactly e since det(g) = a has order e in UN . This
completes the proof of the claim.

Let {u1, . . . , ur} be a minimal generating set of the finite abelian group S and let
ei be the order of ui. In particular, we have an isomorphism Z/e1Z×· · ·×Z/erZ →
S, (n1, . . . , nr) 7→ un1

1 · · ·unr
r . So to define a homomorphism S → GN/WN as in (b)

we need only map each ui to an element in GN/WN of order ei that has determinant
ui. Therefore, (b) is true by the previous claim. This proves that (c) implies (b).

Finally, it remains to show that (b) implies (c). This is clear by taking any homo-
morphism as in (b) and composing with the quotient map GN/WN → G(N1)/W (N1).

□

Remark 4.6. We note that the condition (c) in Theorem 4.5 is straightforward to
check in practice since all the groups involved are finite. Now suppose that the
conditions of Theorem 4.5 hold. One way to find a group G as in (a), if it exists,
is to do a direct search modulo 2iN for i = 0, 1, . . . (the proof of Theorem 4.5 also
gives a constructive way when starting with homomorphism β as in (c)).

4.4. Proof of Theorem 2.8. The group [G,G] is open in G∩SL2(Ẑ) by Lemma 3.3.
Let N be the least common multiple of the levels of G and [G,G]. Note that N is
even since the level of [G,G] is even. Let W be any of the finitely many of groups

satisfying [G,G] ⊆ W ⊆ G ∩ SL2(Ẑ); its level divides N . To prove the theorem, we

need to show that one can find an open subgroup G ⊆ G such that G∩SL2(Ẑ) =W ,

[Ẑ× : det(G)] is a power of 2, and the level of G divides N times a power of 2.
There is an open subgroup U0 ⊆ det(GN ) ⊆ Z×

N with U0[2
∞] = 1 such that

det(GN ) is generated by its 2-power torsion and U0; we can may further choose U0

so that it contains the open and torsion-free subgroup {a ∈ Z×
N : a ≡ I (mod 2N)}.

Let S be a subgroup of the 2-power torsion of det(GN ) ⊆ Z×
N , with maximal car-

dinality, for which condition (b) of Theorem 4.5 holds, cf. Remark 4.6. Define
U := (S ·U0)×

∏
ℓ∤NZ×

ℓ ; it is an open subgroup of det(G) and [det(G) : U ] is a power

of 2. The level of U0, and hence also of U , divides 2N . By our choice of U , Theo-

rem 4.5 implies that there is an open subgroup G ⊆ G such that G ∩ SL2(Ẑ) =W ,
det(G) = U , and the level of G divides a power of 2 times N . By computing in
GL2(Z/2iNZ) for i ≥ 0, we can find such a group G.

5. Proof of the theorems from §2.3

Note that our proofs of the finiteness of A1 and A2 will be given in a manner so
that it is clear that they are indeed computable.

5.1. Proof of Theorem 2.5. First consider any agreeable subgroup G of GL2(Ẑ)
for whichXG has genus at most 1. DefineH := G∩SL2(Ẑ); it is an open subgroup of

SL2(Ẑ). The groupH contains −I since G contains all the scalars in GL2(Ẑ). Let N
be the level ofH. Define the congruence subgroup ΓG := SL2(Z)∩H = SL2(Z)∩G of
SL2(Z); equivalently, it is the congruence subgroup of level N whose image modulo
N agrees with the image of H modulo N . In particular, H can be recovered from
ΓG and we have −I ∈ ΓG. The genus of ΓG agrees with the genus of G, see
Remark 2.4, and hence is at most 1.

There are only finitely many congruence subgroups of SL2(Z) that have genus
at most 1 and contain −I, cf. [CP03]. Moreover, all such congruence subgroups
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are explicitly given in [CP03] up to conjugacy in GL2(Z); there are 121 and 163
conjugacy classes with genus 0 and 1, respectively.

Now fix one of the finitely many congruence subgroups Γ of SL2(Z) that have

genus at most 1 and contains −I. Let H be the open subgroup of SL2(Ẑ) cor-
responding to Γ. We have −I ∈ H. In the rest of the proof, we will explain

how to compute the (finitely many) agreeable subgroups G of GL2(Ẑ) for which

G ∩ SL2(Ẑ) = H. The finiteness of A′
1, and hence also of A1, will be obtained by

varying over the finite many Γ. Let N be the level of Γ; it is also the level of H.
Define the integer N1 := 2 lcm(N, 12).

Lemma 5.1. For any agreeable subgroup G of GL2(Ẑ) with G ∩ SL2(Ẑ) = H, the
level of G divides N1.

Proof. Define N0 = lcm(N, 12). We have H = HN0
×
∏

ℓ∤N0
SL2(Zℓ) since the level

of H divides N0. Hence [H,H] = [HN0
, HN0

]×
∏

ℓ∤N0
SL2(Zℓ) by Lemma 3.2(i). In

particular, the level of [H,H] is divisible only by primes dividing N0; equivalently,

dividing N1 = 2N0. Consider any agreeable subgroup G of GL2(Ẑ) for which

G ∩ SL2(Ẑ) = H. We have SL2(Ẑ) ⊇ [G,G] ⊇ [H,H], so any prime dividing the
level of [G,G] must also divide N1. Since G is agreeable, we have G = GN1

×∏
ℓ∤N1

GL2(Zℓ). It remains to show that the level of GN1
⊆ GL2(ZN1

) divides N1.

From Lemma 3.7 and our choice of N1, we find that Z×
N1
HN1 is an open subgroup

of GL2(ZN1
) whose level divides N1. We have Z×

N1
HN1

⊆ GN1
since G contains H

and Ẑ× · I, and hence the level of GN1
divides N1. □

We now describe how to compute all the agreeable subgroups G of GL2(Ẑ) for

which G∩ SL2(Ẑ) = H. By Lemma 5.1, the level of such a group G divides N1. So
we first look for subgroups G of GL2(Z/N1Z) for which G∩SL2(Z/N1Z) equals the
the image of H modulo N1. There are only finitely many such groups G which give

rise to finite many candidate groups G of GL2(Ẑ) which satisfy G ∩ SL2(Ẑ) = H.
We can then check which of the candidates G are agreeable.

Finally, suppose there is a group G ∈ A1 and a prime ℓ > 19 for which ℓ divides
the level of [G,G]. By Lemma 3.5, we have Gℓ ̸⊇ SL2(Zℓ) and hence the level of

G∩SL2(Ẑ) ⊆ SL2(Ẑ) is divisible by ℓ. From our argument above, we find that there
is a congruence subgroup Γ ⊆ SL2(Z) of genus at most 1 for which ℓ divides the
level of Γ. However, the classification of low genus congruence subgroups in [CP03]
shows that 19 is the largest possible prime divisor of the level of a congruence
subgroup of genus at most 1. Therefore, the level of [G,G] is not divisible by any
prime ℓ > 19 for all G ∈ A1.

5.2. Proof of Theorem 2.6. First consider any agreeable subgroup G of GL2(Ẑ)
with genus at least 2 that satisfies Gℓ ⊇ SL2(Zℓ) for all ℓ > 19. By Lemma 3.5,
the level of [G,G] is not divisible by any prime ℓ > 19. Since G is agreeable, its
level is not divisible by any prime ℓ > 19. Choose a maximal agreeable group

G ⊆ G′ ⊆ GL2(Ẑ) for which G′ has genus at least 2. Since the level of G′ divides
the level of G, we deduce that G′ lies in A′

2. This proves part (ii).
Now take any group G ∈ A′

2. Choose a minimal agreeable group G of genus
at most 1 that satisfies G ⊆ G. Using the definition of A′

1 and A′
2, we find that

G ∈ A′
1 and that G is a (proper) maximal agreeable subgroup of G. Since we are

only interested in groups up to conjugacy, we may assume that G ∈ A1. Since A1
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is finite by Theorem 2.5, to prove the finiteness of A2 it suffices to show that every
group G ∈ A1 has only finitely many maximal agreeable subgroups whose level is
not divisible by any prime ℓ > 19.

Fix a group G ∈ A1 and let M be the product of the primes that divide the level
of [G,G]. We have ℓ ∤ M for all ℓ > 19 by Theorem 2.5. Since G is agreeable, the
level of G is also not divisible by any prime ℓ > 19. We now consider the maximal
agreeable subgroups G of G as classified in §4.2. We want to show that there are
only finitely many of each type and make clear that they are computable.

If 3 ∤M , we obtain a single maximal agreeable subgroup as in Lemma 4.3(iii).
Take any prime p ∤M with p ≤ 19. The maximal open subgroups B ⊆ GL2(Zp)

with Z×
p I ⊆ B and SL2(Zp) ̸⊆ B, give rise to the maximal agreeable subgroups of

G as in Lemma 4.3(ii). By Lemma 3.6, the group B have level p and are thus easy
to enumerate.

A maximal agreeable subgroup of G as given in Lemma 4.3(i) arises from a
maximal proper open subgroup B of GM that contain Z×

MI. Let N be the least
common multiple of 4, M , and the level of G. Lemma 3.8 implies that the level of
B divides Nℓ for some prime ℓ|N . So one need only look for maximal subgroups of
the image of G in GL2(Z/NℓZ) for each ℓ|N .

Now consider any prime p ∈ {3, 5} that does not divide M . We now consider
maximal agreeable subgroups of G as described in Lemma 4.4. By Lemma 4.4, it
suffices to compute the open normal subgroups of GM for which the quotient is
isomorphic to a group Q ∈ {Sp,Ap} where Q ̸= Ap when p = 3. Let N be the least
common multiple of M and the level of G; it has the same prime divisors as M .
For any continuous and surjective homomorphism GM ↠ Q, the kernel contains all
g ∈ GM with g ≡ I (mod N) since Q contains no normal ℓ-groups for all ℓ ∤ M .
Therefore, one need only look for normal subgroup of the image of GM modulo N
that have Q as a quotient group.

5.3. Proof of Theorem 2.7. Let G be the agreeable closure ofGE . Proposition 2.3
implies that G is a minimal element of A′

1, with respect to inclusion, for which GE

is conjugate in GL2(Ẑ) to a subgroup of G. By conjugating GE , we may assume
that GE ⊆ G. Since G is the minimal agreeable subgroup containing GE , we have
GE ⊆ G ⊆ G. If G has genus at most 1, then G = G since otherwise G is not a
minimal element of A′

1 with respect to inclusion. We can now assume that G has
genus at least 2.

We claim that Gℓ ⊇ SL2(Zℓ) for all primes ℓ > 19. Take any prime ℓ > 19.
By assumption, we have ρE,ℓ(GalK) ⊇ SL2(Z/ℓZ) and hence (GE)ℓ ⊇ SL2(Zℓ) by
Lemma 3.6. The claim follows since GE ⊆ G and hence (GE)ℓ ⊆ Gℓ.

Theorem 2.6(ii) implies that G, and hence also GE , is conjugate in GL2(Ẑ)
to a subgroup of some G′ ∈ A2. Proposition 2.3 implies that KG′ ⊆ K and
jE ∈ πG′(XG′(K)) ⊆ JK , where the last inclusion uses that G′ lies in A2. Since
jE /∈ JK by assumption, the case where G has genus at least 2 does not occur.
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