OPEN IMAGE COMPUTATIONS FOR ELLIPTIC CURVES OVER
NUMBER FIELDS

DAVID ZYWINA

ABSTRACT. For a non-CM elliptic curve E defined over a number field K,
the Galois action on its torsion points gives rise to a Galois representation
pp: Gal(K/K) — GLQ(Z) that is unique up to isomorphism. A renowned
theorem of Serre says that the image of pg is an open, and hence finite index,
subgroup of GLQ(Z). In an earlier work of the author, an algorithm was given
that computed the image of pg up to conjugacy in GLz(z) in the special case
K = Q. A fundamental ingredient of this earlier work was the Kronecker—
Weber theorem whose conclusion fails for number fields K # Q. We shall give
an overview of an analogous algorithm for a general number field and work out
the required group theory. We also give some bounds on the index in Serre’s
theorem for a typical elliptic curve over a fixed number field.

1. INTRODUCTION

1.1. Serre’s open image theorem. Let E be an elliptic curve defined over a
number field K. We denote its j-invariant by jg. For each integer N > 1, let
E[N] be the N-torsion subgroup of E(K), where K is a fixed algebraic closure
of K. The group E[N] is a free Z/NZ-module of rank 2. The absolute Galois
group Galg := Gal(K/K) acts on E[N] and respects the group structure. We may
express this Galois action in terms of a representation pg y: Galg — Aut(E[N]) =
GL2(Z/NZ). By choosing compatible bases and taking the inverse limit, these

representations combine into a single Galois representation
PE: GalK — GrLQ(Z)7

where Z is the profinite completion of Z. The representation pg is uniquely deter-
mined up to isomorphism and hence the image pg(Galg) is uniquely determined
up to conjugacy in GLo (i) With respect to the profinite topologies, we find that
pE is continuous and hence pg(Galg) is a closed subgroup of the compact group
GLy(Z).

In [Ser72], Serre proved the following theorem which says that, up to finite index,
the image of pg is as large as possible when E is non-CM.

Theorem 1.1 (Serre’s open image theorem). Let E be a non-CM elliptic curve
defined over a number field K. Then pp(Galk) is an open subgroup of GLa(Z).
Equivalently, pg(Galgk) is a finite index subgroup of GLa(Z).

Let E be a non-CM elliptic curve over a number field K. We will find it conve-
nient to instead work with the dual representation

pr: Galg — GLz(i)
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of pg, i.e., pi(o) is the transpose of pg(oc~!). Similarly, we can define P N for
each N > 1. R

Define the group Gg := pj(Galg). The group Gg is open in GLy(Z) by The-
orem 1.1 and is uniquely determined up to conjugacy in GLo (Z) Of course, com-
puting G is equivalent to computing the image of pg since pp(Galx) = {A': A €
Gg}. The group G g, when known, will have a simple description since it is open in
GL, (2), i.e., it is given by its level NV and a set of generators for its image modulo
N in GLy(Z/NZ).

Unfortunately, Serre’s proof is ineffective in general. In the special case K = Q,
the author has recently given, and fully implemented, an algorithm to compute Gg
up to conjugacy, see [Zyw22b]. The images for all non-CM elliptic curves over Q of
conductor at most 500000 are easily accessible via the LMFDB [LMFDB].

The goal of this article is to begin the study of how to compute the groups Gg
for a general number K. A vital ingredient in the arguments of [Zyw22b] is that
the commutator subgroup of Gg agrees with GgNSLy (Z) when K = Q; this makes
use of the Kronecker—Weber theorem, cf. §2.1. When K # Q, the commutator
subgroup of G is often strictly smaller than Gg N SLQ@). Much of this paper is
dedicated to dealing with the new group theoretic complications that arise for this
reason.

Fix a number field K. We shall give an algorithm which defines a finite set Jx C
K and computes the group Gg, up to conjugacy, for all non-CM elliptic curves E
over K whose j-invariant does not lie in Jx and for which pg o(Galgx) D SLo(Z/(Z)
holds for primes £ > 19 (conjecturally the condition on the images of the pg ¢ can
be removed by making Jx large enough, cf. Conjecture 2.11).

Our set Ji and our algorithm will both depend only on a finite number of modu-
lar curves and morphisms which do not depend on K; these curves and morphisms
can thus be precomputed. Given any value in K, we will be able to determine
whether or not it lies in Jg (explicitly giving the full set is much harder since its
finiteness makes use of Faltings’ theorem). The group theoretic aspects of the al-
gorithm have been fully implemented. The modular curve computations now seem
reasonable but have not been performed yet. Indeed, one of the main goals of this
work was to confirm there were not too many cases as to make the modular curve
computations infeasible.

1.2. Index bounds. For a non-CM E/K, the group det(Gg) depends only on K,
cf. §2.1. Since [GL2(Z) : Gg| = [Z* : det(GEg)| - [SL2(Z) : Gg N SLy(Z)], we will

~

thus focus on the index [SL2(Z) : Gg N SLQ(Z)] when K is fixed.

Theorem 1.2. Let K be a number field. There is a finite set Jx C K such that for
any non-CM elliptic curve E over K with jr ¢ Jx and pg(Galk) 2 SLo(Z/(Z)
for all primes ¢ > 19, we have

1382400,

677376 if K 2 Q(v—1,v2,v3,V5),

172800  if K NQ(v/—1) = Q,

30000 if K NQ(V-L,v2,V3) = Q,

7200 if KN Q(V=T,v2,v3,v/5,V7,VII) = Q,
1536 if K = Q.

[SLy(Z) : Gg N SLy(Z)] <
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We will prove Theorem 1.2 in §2.3 where we reduce it to a direct calculation
involving a finite number of open subgroups of GL(Z) coming from our group
theoretic computations.

Remark 1.3.

(i) A well-known uniformity conjecture (Conjecture 2.11) would imply that
Theorem 1.2 still holds after removing the assumption on the images of the
PE,¢- N N

(ii) The index [SLa(Z) : Gg N SLy(Z)] can become arbitrarily large as we vary
over all number fields K and all non-CM elliptic curves E/K. For example,
consider a fixed non-CM elliptic curve E/Q base extended by K := Q(E[2¢])
with integers ¢ > 0. Theorem 1.2, along with Conjecture 2.11, shows that
large indices are rare when the number field K is fixed.

1.3. Notation. We now give some notation that will hold throughout. All profi-
nite groups will be viewed as topological groups with their profinite topology. In
particular, finite groups will have the discrete topology. For a topological group G,
we define its commutator subgroup [G, G] to be the smallest closed normal subgroup
of G for which G/[G,G] is abelian. Equivalently, [G,G] is the closed subgroup of
G generated by the set of commutators {ghg='h~!:g,h € G}.

For each integer N > 1, we let Zx be the ring obtained by taking the inverse
limit of the Z/N°¢Z with e > 1. Let Z be the ring obtained taking the inverse
limit of Z/nZ over all positive integers n ordered by divisibility. With the profinite
topology, Zxn and Z are compact topological rings. We have natural isomorphisms

ZN = HZlNZg and 2 = ZN X H@’(NZK = HZZK’

where the products are over primes £. The symbol ¢ will always denote a rational
prime. Fix a positive integer n dividing a power of N. For a subgroup G of GL2(Zy)
or GLs (Z), let G,, € GL2(Z,,) be the group that is the image of G under the n-adic
projection map. From context it should be clear when we have G; with an index
instead. R

The level of an open subgroup G of GLy(Z) is the smallest positive integer n for
which G contains the kernel of the reduction modulo n homomorphism GL2 (Z) —
GL2(Z/nZ). The level of an open subgroup G of GLa(Zy) is the smallest positive
integer n that divides some power of N and for which G contains the kernel of the
reduction modulo n homomorphism GL2(Zy) — GL2(Z/nZ). Similarly, we can
define the level of open subgroups of SLy(Z) and SLa(Zy ).

We shall view Q and any other algebraic field extension of Q that arise as subfields
of C (this is mainly to ensure easy comparison with the analytic theory when
working with modular curves).

1.4. Ideas underlying the algorithm. We now briefly give some ideas and mo-
tivation behind our algorithm to compute the groups Gg. Full details will be
presented in §2 and this section will not be used later on.

Fix a number field K and let K¢ C K be the cyclotomic extension of K. Let

Xeye: Galg — Z* be the cyclotomic character, cf. §2.1.

1.4.1. An alternate description of the image. Consider a non-CM elliptic curve F
over K. We shall give an expression for G in terms of a triple (G, G,vg), see (1.1)
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below. This description of Gg will reduce its computation to the computation of
the triple. The first step is to consider a larger group

Gr C G C GLy(Z)

called the agreeable closure of G, cf. §4.1. This group G contains all the scalar
matrices of GLy(Z) and satisfies [G,G] = [Gp,Ggl. The group G also has the
advantage that its level is often significantly smaller than the level of Gg. We have
inclusions R R

G.G] = [GE,GE] € GENSLy(Z) C GNSLy(Z)

of open subgroups of SLs (i) When K = Q, we will always have Gg N SLy (Z) =
[Gg,GEg] =[G, G], cf. Lemma 2.1; this need not hold when K # Q.

We now fix an open subgroup G of G for which GNSLy(Z) = GgNSLy(Z). The
group G is normal in G with G/G a finite abelian group since G contains [G, G] and
is open in G. Let

QG E: Galg i>(;E QQ—>Q/G

be the homomorphism obtained by composing p}, with the obvious quotient map.

By Lemma 2.1, we have GOSLQ(Z) =Gg ﬂSLg(z) = pi(Gal(K/K®°)). There-
fore, ag g factors as Galg — Gal(K*°/K) — G/G, where the first map is the
quotient map. There is thus a unique homomorphism

VE: Xeye(Galg) — G/G

that satisfies ag g(0) = Vg (Xeye(0)) 7! for all o € Galg.
We claim that

(1.1) Gg = {9 €G:detg € Xeye(Galk), gG = vp(det g) }.

Denote by Hg the group on the right-hand side of (1.1). For any ¢ € Galg, the
above definitions give pi(0)G = YE(Xeye(0)) ™!, As observed in §2.1, we have
det op}, = Xy and hence pj;(0)G = ye(det(pj(0))) for all o € Galg. This proves
the inclusion Gg C Hg. Since Gg € Hg and Hg N SLQ(Z) =GN SLQ(Z) =
G NSLsy(Z), to prove the claim it suffices to show that det(Gg) 2 det(Hg). The
claim thus follows since det(Gg) = Xcyc(Galgx) 2 det(Hg).

1.4.2. A computation perspective. Let E be a non-CM elliptic curve over K. For
simplicity, let us assume that pg ((Galg) D SLy(Z/¢Z) for all primes ¢ > 19. We
wish to use (1.1) to compute Gg. We first need to find the agreeable closure G of
GE.

We will see in §2.3 that only finitely many G can occur as we vary over all
such elliptic curves E/K with our fixed number field K. Moreover, we shall prove
that there is a finite set Jx C K, depending only on K, and a finite set of open
subgroups A; of GL(Z) such that if jg ¢ Jg, then G is conjugate in GLy(Z) to
a unique group in A;. Our set A; does not depend on K or the curve E/K and
has cardinality 11972. One of the main tasks of this paper is to explicitly compute
such a set A;.

We shall now impose the additional condition that jr ¢ Jx and hence G is
conjugate in GLg(i) to a unique group in A;. The group G will in fact be conjugate
to the group G’ € A; with maximal index [GLy(Z) : ] so that G is conjugate
in GLo (Z) to a subgroup of G’. Whether G g is conjugate to a subgroup of G’ can
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be readily determined after computing the modular curve Xg/ and its morphism to
the j-line, cf. §2.2. Since A; is finite, the curve Xg: and its morphism to the j-line
can be precomputed for all G’ € A;. This gives the general idea of how to compute
G; it is only unique determined up to conjugacy in GLQ(Z) which is fine since the
group G also has this property.

Now assume that we know the agreeable closure G of Gg. For each subgroup
[G,G] C H C GNSLs (2), choose an open subgroup G of G for which GNSLs (2) =H
and define the character

ac.p: Galx 75 G = G/G.

We will use modular curves and specializations to compute ag g; these modular
curves can also be precomputed.

Amongst all the G, we find one with maximal index [SLQ(i) : GN SLg(i)}
for which ag g(Gal(K/K®)) = 1; this group will satisfy G N SLy(Z) = Gg N
SLg(z). Now that we have G, G and ag g, we let vg: Xcye(Galg) — G/G be the
character for which ag g(0) = YE(Xeye(0)) 7! forall o € Galg. So after conjugating
appropriately in GLg (Z), we deduce that (1.1) holds with our computable G, G and
aQq E-

1.5. Acknowledgements. The computations in this paper were performed using
the Magma computer algebra system [BCP97]. Thanks to the referees for their
useful comments and suggestions.

2. OVERVIEW OF IDEAS AND GROUP THEORETIC RESULTS

2.1. Cyclotomic and abelian extensions. Let x.y.: Galg — Z* be the cy-
clotomic character, i.e., the continuous homomorphism such that for every integer
n > 1 and every n-th root of unity ¢ € Q we have ¢(¢) = (Xeve(?) modn for a]]
o c Gal@.

Fix a number field K. We can identify K with a subfield of Q and take K = Q.
Let K be the cyclotomic extension of K in K. Let K?P be the maximal abelian
extension of K in K. We have an inclusion K¢ C K2, We have K°° C K ab
whenever K # Q. The Kronecker—Weber theorem says that Q¢ = Q2P.

Let E be a non-CM elliptic curve over K. Using the Weil pairing on E[n] for
n > 1, one finds that det op}; = xgyklcal,. In particular, det(Gg) = Xeye(Galg) is

an open subgroup of 7> that depends only on K.

Lemma 2.1.
(1) We have p(Galgeye) = Gg N SL»(Z) and pi(Galgas) = [Gg, GEl.
(i) We have an inclusion [Gg, G| C Gg N SLy(Z).
(iii) If K = Q, then [Gg,Gg| = Gg N SLy(Z).

Proof. We have p%,(Gal(K /K?®)) = [Gg, G| since Gal(K /K?P) is the commutator
subgroup of Galg. Since x;,L = det op?;, we have pi(Gal(K /K%°)) = GpNSLy(Z).

cyc

The inclusion [Gg,Gg] € Gg N SLQ(Z) thus follows from K¢ C K2, We have
equality when K = Q since Q%°¢ = Q2P, O

FEzample 2.2. Consider any number field K # Q. The main result of [Zyw10]
implies that for a “random” elliptic curve E/K, we have Gg O SLy(Z). For such
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an elliptic curve F/K, we have
(G, G| C SLy(Z) = Gg N SLy(Z),

where [Gg, Gg| # SLo (2) can be shown by noting that the commutator subgroup
of GL2(Z/27Z) is a proper subgroup of SLy(Z/27Z).

Now suppose that K = Q. Since [Gg,Gg] = Gg N SLg(i) by Lemma 2.1(iii)
and [Gg, G| C SLa(Z), we find that Gg 2 SLa(Z). That pp: Galg — GLy(Z) is
never surjective was first observed by Serre, cf. Proposition 22 of [Ser72].

2.2. Modular curves. Let G be an open subgroup of GLg (Z) that contains —1I.
We define K¢ to be the unique subfield of Q¢ for which yey.(Gal(Q/Kg)) =
det(G); it is a number field due to the openness of G.

Associated to G, there is a modular curve X¢; it is a smooth projective and
geometrically irreducible curve defined over K that comes with a morphism

Ta: Xg = Pk, = Ak, U{oco}.

We define the genus of the group G to be the genus of the curve Xg. For our
applications, the following property of these curves are key.

Proposition 2.3. For any number field K C Q and non-CM elliptic curve E/K,
05 (Galg) is conjugate in GLa(Z) to a subgroup of G if and only if K O Kg and
JE € Wg(Xg(K)).

Remark 2.4. Modular curves are fully discussed in §3 of [Zyw22b] with the ad-
ditional assumption det(G) = Zx (equivalently, K¢ = Q). We now make some
remarks indicating that everything in §3 of [Zyw22b] carries over straightforwardly
to the general setting. Let N be a positive integer divisible by the level of G and let
G C GLy(Z/NZ) be the image of G modulo N. With notation as in [Zyw?22b, §3],
we define X to be the smooth, projective and geometrically irreducible curve
over K¢ whose function field is F§; this field indeed has transcendence degree 1
over Q and the number field K is the algebraical closure of Q in fﬁ. The field

Ka(Xg) = F§ consists of modular functions of level N and contains the modular
j-invariant j. The inclusion of function fields Kg(X¢g) 2 Kg(j) induces a dom-
inant morphism m¢: X¢ — Pj . = Spec Kg[j] U {oo} = A, U {oo} of curves
over Kg. Since det(Gg) = Xcyc(Galk ), we have det(Gg) C det(G) if and only if
K D K¢. Proposition 2.3 is proved in the same manner as [Zyw22b, Proposition
6.4] by working over K¢ instead of Q.

Let T' be the congruence subgroup consisting of matrices in SLy(Z) whose image
modulo N lies in G. With our implicit embedding K C C, there is an isomorphism
of smooth compact Riemann surfaces between X¢(C) and Ap, := I'¢\H*, where
H* is the extended complex upper half-plane and I' acts on it by linear fractional
transformations (as noted in §3.3 of [Zyw22b], they have the same function field).
In particular, the genus of I'g, i.e., the genus of A, agrees with the genus of G.

There are many approaches to computing models of X¢. In §5 of [Zyw22b], we
give an algorithm for computing a model of X using modular forms under the
assumption det(G) = Z*. This assumption is not needed with the only change
being that the spaces of modular forms My, ¢ that arise in [Zyw22b] are now vector
spaces over K¢ instead of Q. For our exposition below, we will take it for granted
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that one can always compute a model of X¢ in terms of modular forms/functions.
With respect to such a model, one can also compute the morphism 7¢.

2.3. The agreeable closure. Our initial strategy for computing the group G is
to instead compute a larger group that has the same commutator subgroup. We
first define the class of groups we will consider.

We say that a subgroup G of GLQ@) is agreeable if it is open, contains all the
scalar matrices in GLg(z), and each prime dividing the level of G also divides
the level of [G,G] C SLQ(Z). This definition uses that [G,§] is open in SLQ(Z),
cf. Lemma 3.3. For any open subgroup G of GLg(i), there is a unique minimal
agreeable subgroup G of GLg(i) that satisfies G C G, cf. §4.1. We call G the
agreeable closure of G. We have [G,G] = [G, G], cf. Lemma 4.1.

Let A} be the set of subgroups of GLg (2) that are agreeable and have genus at
most 1. The set A} is stable under conjugation by GLQ(Z). Let A; be a set of

representatives of the GLg (Z)—conjugacy classes of A].

Theorem 2.5. The set A; is finite and computable. For all G € Ay, the level of
[G, G] C SLo(Z) is not divisible by any prime £ > 19.

Theorem 2.5, along with the other theorems in §2.3, will be proved in §5. The
groups in 41, up to conjugacy, can be found in the public repository [Zyw24]. The
set A; has cardinality 11972. The number of groups G € A; in terms of their genus
and the index [Z* : det(@)] is given in Table 1. The largest integer that occurs as
the level of a group in A; is 1176.

|1 2 22 23 24
genus 0 | 418 1490 1319 417 38
genus 1 | 1078 3383 2897 868 64
TABLE 1. Number of groups G in 4; broken up by the genus and
the index of det(G) in Zx.

Let A, be the set of agreeable subgroups G C GLo (2) such that the following
hold:

e G has genus at least 2 and every agreeable group G C G' C GLy(Z) has
genus at most 1,
e the level of G is not divisible by any prime ¢ > 19.

The set Aj is stable under conjugation by GLQ(Z). Let A5 be a set of representatives
of the GLQ(Z)—conjugacy classes of Aj.
Theorem 2.6.

(i) The set Ag is finite and computable.

(ii) Take any agreeable subgroup G of GLQ(z) with genus at least 2 that satisfies

Gy 2 SLa(Zy) for all £ > 19. Then G is conjugate in GLa(Z) to a subgroup
of some group in As.

For each number field K, let Jx be the intersection of K with the subset

U  meXe(®)

GeAs, KcCK
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of K U{oo}. The set Jk is finite by Theorem 2.6(i) and Faltings’ theorem.

Theorem 2.7. Let K be a number field and let E/K be a non-CM elliptic curve
with jg ¢ Ji that satisfies pg o(Galg) D SLa(Z/UZ) for all primes ¢ > 19. Take
a group G € Ay with mazimal index [GLg(i) : G] for which K¢ C K and jg €
7¢(Xa(K)). Then G and the agreeable closure of Gg are conjugate in GLy(Z).

Since the sets A4; and As are both finite, we can compute a model for the curve
X and compute the morphism g, with respect to this model, for each group
Ge AL UA,.

We can effectively determine whether a number in K lies in the set Jx by using
explicit models of the curves X¢ for G € As. Using explicit models of X¢, with
G € A;, Theorem 2.7 lets us compute the agreeable closure of Gg, up to conjugacy,
for all elliptic curves E/K satisfying the assumptions of the theorem.

Proof of Theorem 1.2. Consider a number field K. Take any non-CM elliptic curve
E/K with jg ¢ Jk that satisfies pg ¢(Galg) D SLa(Z,) for £ > 19. By Theorem 2.7,
there is a group G € A; that is conjugate to the agreeable closure of Gg. There is
no harm in conjugating Gg so that Gg C G. We have [G,G] = [Gg, Gg] since G is

the agreeable closure of Gg. Therefore, [G,G] C GgNSL2(Z) by Lemma 2.1(ii). In
particular, we have

[SL2(Z) : G NSLa(Z)] < [SLa(Z) : (G, G)).

The group 7x /det(G) is an elementary 2-group since 7*1 C G. Therefore, the
number field Kg is the compositum of quadratic extensions of Q. We have Kg C K
since Xeye(Galg) = det(Gg) C det(G).

For the finite number of groups G € A;, one can compute the index [SLQ(Z) :
[G,G]] and the number field Kg; this data can be found in [Zyw24]. All but the
last inequality in Theorem 1.2 follow from a direct inspection of this data.

Suppose K = Q. Only groups G € A; with det(G) = Z* will arise. After
possibly increasing the finite set Jx, we need only consider those groups G for
which X¢(Q) is infinite. Since G is agreecable, Theorem 2.5 implies that the level of
G is not divisible by any prime ¢ > 19. Therefore, G is conjugate in GL, (Z) to one
of the groups in the finite set &7 from Theorem 1.9 of [Zyw22b] with Xg(Q) infinite
(see also Remark 4.2). The groups G in this finite set &/ have been computed and
for each group we have also computed [SLy(Z) : [G,G]]; this data can be found in
the repository [Zyw22c] for the paper [Zyw22b]. The largest integer that occurs as
[SLy(Z) : [G,G]], as we vary over all G € 7, is 1536. Another proof of the bound
1536 can be found in [Zyw15]. O

~

2.4. Some abelian quotients. Fix an agreeable subgroup G of GLy(Z). Consider
any non-CM elliptic curve E over a number field K for which the agreeable closure
of Gg is G. We have [Gg,Gg| =[G, ] so Gg is a normal subgroup of G and G/Gg
is abelian. Moreover, G/Gg is a finite abelian group since Gg is open in G by
Theorem 1.1.

There may be infinitely many open subgroups G of G with [G,G] C G. In order
to make future computations easier, we will want to work with groups G with small
level and small index [ZX : det(G)]. The following theorem, which we prove in §4.4,
promises a finite collection of nice subgroups G C G that will be suitable for our
applications.
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Theorem 2.8. Let N be the least common multiple of the levels of G and [G,G].
Then there is a computable finite set Sg of open subgroups of G such that:

o For every group G € Sg, we have [G,G] C GN SLQ(Z) cgn SLQ(Z).

o For every group G € Sg, the level of G divides some power of 2 times N.

e For every group G € Sg, [ZX : det(G)] is a power of 2.

o For every group [G,G] CW C GnN SLQ(Z), we have G N SLQ(Z) =W fora
unique G € Sg.

2.5. Some abelian representations. Throughout this section we fix an agreeable
subgroup G of GLs (i) and a finite set of open subgroups Sg of G as in Theorem 2.8.
Fix an integer N > 3 that is divisible by the level of [G, G], the level of G, and the
level of each G € Sg.

Define the open subvariety Ug := 7@1(1?’}(9 —{0,1728,00}) of Xg. The Weier-
strass equation

(2.1) y P =a —27-5(j —1728) -z + 54 - 5(j — 1728)?,

with j = mg, defines an elliptic scheme &g over Ug. For a number field K O Kg
and point u € Ug(K), the fiber of &g over u is the elliptic curve &g, over K given
by (2.1) with j replaced by mg(u) € K — {0, 1728}; it has j-invariant g (u).

Let G be the image of G modulo N. As in [Zyw22b, §6.3.1], we have a surjective
and continuous representation

0%, n: m1(Ug, 1) = G C GLo(Z/NZ),

where 77 is a particular geometric generic point of Ug and m; denotes the étale
fundamental group (the only difference being to base extend by K¢ first). The
representation g% can be constructed in a similar fashion to our adelic representa-
tions for elliptic curves; the N-torsion subscheme &g[N] can be viewed as a lisse
sheaf on Ug that gives rise to the representation. For any number field K D Kg
and point v € Ug(K), the specialization of g}g’ y at u defines a representation

Galg -+ G C GLQ(Z) that is isomorphic to p{s ) -
Now take any group G € Sg and let G be the image of G modulo N. Since the

level of G divides N by our choice of N, reduction modulo N induces an isomor-
phism G/G = G/G that we will view as an equality. Define the homomorphism

ag: 7T1(Ug) — Q/G

by composing 0%, n with the quotient map G — G/G = G/G; we may suppress the
point 7 since G/G is abelian.

Proposition 2.9. The homomorphism ag is computable, i.e., one can compute a
model of Ug and an étale cover Y — Ug corresponding to ag along with the action
of G/G on Y. In particular, for any number field K O Kg and point u € Ug(K),
one can compute the specialization Galy — G/G of ag at u.

Proof. This follows from the same argument as in [Zyw22b, §11] except working
over K¢g. A slight difference to keep in mind is that the field of constants K¢ in
Kg(Ug) will not be algebraically closed in the function field of Y when det(G) is a
proper subgroup of det(G); in [Zyw22b], we only considered cases where det(G) =
det(G). O
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2.5.1. A description of Gg. Now consider any non-CM elliptic curve E defined over
a number field K for which the agreeable closure is conjugate to G in GLq (Z)

By Proposition 2.3, we have jg = 7g(u) for some point u € Ug(K). The elliptic
curve E is a quadratic twist of E' := (&g), by a character x: Galg — {%1} since
E is non-CM and the two elliptic curves have the same j-invariant. For each group
G e Sg, let

OG,E: GalK — Q/G

be the homomorphism that is the product of x and the specialization of a at u.

Proposition 2.10.

(i) There is a unique group G € Sg such that ag p(Galgee) = 1 and G N

SLg(z) 1s minimal with respect to inclusion.
(ii) Take G € Sg as in (i). The groups Gg and

Heg :={g€G:detg € xeye(Galg), gG = ye(det g)}

are conjugate in GLQ(Z), where Vg Xeye(Galx) = G/G is the unique ho-
momorphism satisfying ac (o) = Vg (Xeye (o)1) for all o € Galg.

Proof. The specialization of g, y at uis a representation Galg — G C GLy(Z/NZ)
isomorphic to pZ‘ Eo)uN = P n- So by replacing pf, y with an isomorphic represen-
tation, we may assume that it is the specialization of % y at u. In particular, we
have p},, n(Galg) € G. We also have p}, (Galg) C G since the level of G divides N.
Since E is the quadratic twist of E’ by x, we may assume that p%, = x-p}, and hence
also p; v = X - Piyn- In particular, pj, y(Galg) € G and G = pj(Galk) C G
since —1 € G.

Now take any G € Sg. The homomorphism o g agrees with the composi-
tion of pp n: Galx — G with the quotient map G — G/G = G/G. Therefore,
ag,g(Galgeye) is equal to the image of pf(Galgeye) = Gg N SLy (Z) in G/G, where
we have used Lemma 2.1(1). So ag,g(Galgeye) = 1 if and only if GpNSLy(Z) C GN
SLQ(Z). Thus to prove (i), it suffices to show that [G, G] C GNSLo (2) C GNSLy (Z)
since any such group is of the form G N SLQ@) for a unique G € Sg. The group
G is the agreeable closure of G since it is conjugate to the agreeable closure and
Gg C G. Therefore, [Gg,Gg] =[G, G] and hence [G, G] C GEmSLQ(Z) C ngLQ(Z)
by Lemma 2.1(ii).

We may now suppose that G is chosen as in (i). We have just shown that
G N SLy (Z) = Gr NSLy (Z) We have already made choices so that Gg C G. For
each g € Gg, we have detg € det(Gg) = Xcyc(Galg). Note that the existence
and uniqueness of vg is clear since Xcy. induces an isomorphism Gal(K®°/K) =
chc(GalK).

We claim that ¢G = yg(det g) for all ¢ € Gg. Take any o € Galg. From our
identification G/G = G/G, p}; (o) - G and pj;(0) - G represent the same coset.
Therefore, p;(0) - G = ag,e(0) = YE(Xeye(0) ™). Since det op}; = xghlcal, we
have p3;(0)-G = vr(det p;(0)). The claim follows since o was an arbitrary element
of GalK.

Using the claim, we have now shown that Gg C ‘Hg. Taking determinants gives
Xeye(Galg) = det(Gg) C det(HEg) C Xeye(Galx) and hence det(Gg) = det(HEg).
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We also have
Hp NSLy(Z) ={g € G: g € SLy(Z), gG = G} = G N SLy(Z) = Gg N SLy(Z).

Therefore, G = Hg since G is a subgroup of H g with the same determinant and
the same intersection with SLo(Z). O

2.6. Computing the Galois image for most elliptic curves. For our algo-
rithm, we first shall perform some one-time precomputations. For each group
G € A U Ay, we can compute a model for the curve X¢g and, with respect to
this model, compute the morphism ng. For each G € Ay, we can compute a set
Sg as in Theorem 2.8. For each G € A; and G € Sg, we can compute ag as in
Proposition 2.9.

Fix an explicit non-CM elliptic curve E defined over a number field K for which
Jje ¢ Jk and pp(Galg) 2 SLo(Z/¢Z) for all primes ¢ > 19. Note that the condi-
tion jg ¢ Jx can be checked since the morphisms 7g with G € Ay are computed
already. We will discuss the conditions on the pg ¢ in §2.7. We can also compute
the open group Xcyc(Galg) C A

Using Theorem 2.7 and our precomputed modular curves, we can find a group
G € A; that is conjugate in GLs (Z) to the agreeable closure of Gg = ph(Galk).
Choose a point u € Ug(K) for which ng(u) = jg. Let E’ be the elliptic curve over
K defined by the equation (2.1) with j replaced by jg. The curve F is a quadratic
twist of E’ by a computable character x: Galx — {£1} since F is non-CM and
JE = JE-

Take any group G € Sg. We define ag g: Galg — G/G to be product of x
and the specialization of ag at w; this is computable by using our precomputed
ag. We can find the group G € Sg that satisfies Proposition 2.10(i); for the rest
of the section, we work with this fixed group G. There is a unique computable
homomorphism Vg : Xeye(Galg) = G/G satisfying ag,g(0) = Ve (Xeyc(0) 1) for all
o € Galg.

From G, G, Xcyc(Galg) and g, Proposition 2.10(ii) gives an explicit subgroup
Hg of GLQ(Z) that is conjugate to Gg. This is the desired explicit computation of
GE up to conjugacy.

2.7. Loose ends 1: images modulo ¢ and uniformity. Consider a non-CM
elliptic curve E over a number field K. A consequence of Theorem 1.1, and also
one of the ingredients of its proof, is that pg ¢(Galx) 2 SLa(Z/¢Z) for all primes ¢ >
CE, K, Where cg, i is a positive integer which we take to be minimal. In the case K =
Q, Serre asked whether c¢g g can be bounded independent of E, see [Ser72, §4.3]
and the final remarks of [Ser81] where he asks if cg g < 37. We formulate this as a
conjecture over a general number field.

Conjecture 2.11 (Serre uniformity problem). For any number field K, the fol-
lowing equivalent conditions hold:
(a) There is a constant cx such that for any prime ¢ > cx and any non-CM
elliptic curves E/K, we have pg ¢(Galg) D SLo(Z/(Z).
(b) There is a finite set Jx C K such that for any prime £ > 19 and any non-
CM elliptic curve EJK with jg ¢ Jk, we have pg ¢(Galg) 2O SLa(Z/VZ).

It is an important problem to determine the finite set of primes £ > 19 for which
pee(Galg) 2 SLo(Z/CZ). For a fixed prime ¢ > 19, there are fast probabilistic
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methods of Sutherland [Sut16] to identify the image of pg ¢ up to a notion of local
conjugacy. Note that whenever the algorithm of [Sutl6] predicts pg¢(Galx) 2
SLo(Z/¢Z), the result is guaranteed to be correct.

There are various bounds for cg  in the literature. For example, in [Kaw03] one
finds an explicit upper bound for cg g; however, it is too large for use in practice.
Bounds for ¢g x assuming GRH, like suggested in [LV14], should do better.

In the case K = Q, [Zyw22a] gives an efficient algorithm that computes a rela-
tively small finite set of primes S for which pg ¢(Galg) O SLo(Z/¢Z) for all £ > 19
with £ ¢ S (one can then quickly address any primes in S). An analogous algorithm
over a general number field should be worked out.

Proof of the equivalence in Conjecture 2.11. Take any prime ¢ > 19 and any non-
CM elliptic curve E/K. Since SLy(Z/¢Z) is equal to its own commutator subgroup,
see Lemma 3.2(i), we have pg ¢(Galg) 2 SLo(Z/¢Z) if and only if +pg ¢(Galg) 2
SLo(Z/¢Z). Since pg (Galg), up to conjugacy, does not change if we replace E/K
by a quadratic twist and E is non-CM, we find that the condition pg ((Galk) D
SLo(Z/¢Z) depends only on jg, K and ¢. Therefore, condition (b) implies (a) since
for each j € Jk that is the j-invariant of a non-CM elliptic curve E/K, we can
conclude by Theorem 1.1.

We now assume that (a) holds for some constant cgx. Suppose that we have
pe,(Galg) 2 SLa(Z/¢Z) for some non-CM elliptic curve E/K and prime ¢ > 19.
We have 19 < £ < ci. Let G be the open subgroup of GLQ(Z) of level £ whose image
modulo ¢ is the transpose of pp ¢(Galg) (and hence does not contain SLo(Z/(Z)).
Using the classification in [CP03] and ¢ > 19, the genus of Xg is at least 2. We
have jg € mg(Xg(K)) by Proposition 2.3. Therefore, (b) holds since only finitely
many groups G arise and Xg(K) is finite by Faltings’ theorem. O

2.8. Loose ends 2: exceptional images. In general, computing G for an ar-
bitrary non-CM elliptic curve E over a number field is still an extremely difficult
problem. The fundamental reason being that every open subgroup of GLg(i) will
occur as such an image (to prove this one need only show that GLq (Z) occurs, see
[Zyw10]).

For a fixed number field K, and assuming Conjecture 2.11 for simplicity, we have
shown how to compute G g for all non-CM elliptic curves E/ K whose j-invariant lies
away from some finite subset of K. What makes this proposed algorithm especially
practical is that one need only compute a finite number of modular curves and this
can be done ahead of time.

For non-CM elliptic curves over K with one of the excluded j-invariants, a sim-
ilar approach works but requires more modular curves computations or ad hoc
computations. For how we dealt with this in the K = Q case, see §10.2 and §12.3
of [Zyw22b].

3. BASIC GROUP THEORY

In this section, we collect some basic group theory facts that will be used in our
arguments.

3.1. Goursat’s lemma.

Lemma 3.1 (Goursat’s lemma, [Rib76, Lemma 5.2.1]). Let G; and G3 be two
groups and let H be a subgroup of G1 X Go so that the projection maps p1: H — G
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and pa: H — Ga are surjective. Let By and By be the normal subgroups of G
and Go, respectively, for which ker(ps) = By x {1} and ker(p1) = {1} x Bs. Then
the image of H in (G1 x G2)/(B1 X Bs) = G1/B1 x Ga/Bs is the graph of an
isomorphism G1/B; — G2/ Bs.

3.2. Commutator subgroups.

Lemma 3.2. [Zyw22b, Lemma 7.7]

(i) The commutator subgroup of SLa(Zy) is equal to SLa(Zyg) for all £ > 3.
(ii) The commutator subgroup of GLa(Zy) is equal to SLa(Zy) for all £ > 3.
(iii) The commutator subgroup of SLa(Zs) has level 3 and index 3.

Lemma 3.3. [Zyw22b, Lemma 7.10] Let G be an open subgroup of GLy(Z) or
SLo(Z). Then the commutator subgroup [G,G] is an open subgroup of SLa(Z).

Lemma 3.4. Take any prime ¢ > 3.

(i) There is a unique closed normal subgroup Wy of SLa(Zy) for which SLa(Ze) /Wy
s a simple group.
(ii) Suppose ¢ > 3. Then the group Wy consists of the matrices in Sla(Zy)
whose image modulo ¢ are £1. We have SLa(Zy) /Wy = SLo(F,) /{£T1}.
(iii) The group W3 is the commutator subgroup of SLa(Zs3) and SLa(Zs)/ W3 is
cyclic of order 3.

Proof. Let @ be a finite simple group that is a quotient of SLy(Z¢) by a closed
normal subgroup.

Suppose ¢ > 3. The simple group @ is nonabelian by Lemma 3.2(i). Since pro-¢
groups are prosolvable and @ is simple and nonabelian, we find that any continuous
surjective homomorphism SLy(Z;) — Q factors through SLo(Z/¢Z)/{£I} — Q.
The lemma is immediate in this case since SLo(Z/¢Z)/{%1I} is simple.

The group SLa(Z3) is prosolvable since pro-3 groups are prosolvable and SLo(Z/3Z)
is solvable. Therefore, @ is a cyclic group of prime order. The lemma for ¢ = 3
follows since SLa(Z3)/[SL2(Z3), SLo(Zs)] =2 Z/37 by Lemma 3.2(iii). O

Lemma 3.5. Let G be an open subgroup of GLao(Z) or SLa(Z). Take any prime
£>5. Then Gy 2 SLa(Zy) if and only if £ does not divide the level of |G, G].

Proof. First suppose that ¢ does not divide the level of [G,G] C SLQ(Z). Then
Go 2 [G,G]y 2 SLy(Zy).

Now suppose that Gy D SLy(Z). Define G’ = [G, G]; it is an open subgroup of
SLy(Z) by Lemma 3.3. We have G, = [Gy,Gy] D SLa(Z¢) by Lemma 3.2(i). The
level of [G’, G’] divides the level of the larger group [G, G]. So after replacing G by
G', we may assume that G C SLQ(Z) and that Gy = SL2(Z¢). Let H be the image
of G under the projection map to Hp# SL2(Zy). We may view G as a subgroup of
H x SLy(Zy) for which the projections to the factors H and SLa(Z,) are surjective.
By Goursat’s lemma (Lemma 3.1), we have By X By C G and H/B; = SLy(Zy)/Ba,
where B; and By are certain normal subgroup of H and SLs(Z), respectively. In
our case, the groups B; and B; are also closed.

Suppose that By # SLy(Z,). By Lemma 3.4, the simple group Q := SLa(Fy) /{£I}
is isomorphic to a quotient of SLy(Zs)/By = H/B;. Therefore, @ is a quotient of
H, for some prime p # ¢, where H,, is a closed subgroup of GL2(Z,). The group @

240125-Zywina Version 3 - Submitted to Algor. Num. Th. Symp.



14 DAVID ZYWINA

is not isomorphic to either of the groups SLqo(FF,)/{£I} or A5 by cardinality con-
siderations. However, this contradicts the computation of the sets “Occ(GL2(Z¢))”
in [Ser98, IV §3.4].

Therefore, By = SLs(Z;) and hence also By = H. From the inclusions H x
SL2(Z¢) 2 G 2 By x Ba, we deduce that G = H x SLy(Zy). Therefore, [G,G] =
[H, H]xSL2(Z;) by Lemma 3.2(i) and hence ¢ does not divide the level of [G,G]. O

Lemma 3.6. Fiz a prime £ > 5 and let G be a closed subgroup of GLo(Zg). Then
G 2 SLo(Zy) if and only if the image of G modulo £ contains SLo(Z/LZ).

Proof. After replacing G by [G, G, and using Lemma 3.2(i), we may assume that
G C SLs(Zg). The lemma now follows from [Ser98, TV §3.4 Lemma 3]. O

3.3. Determining the level of groups. The following lemmas give cases where
we can show that a subgroup of GLo(Zy ) is open and also give a bound on its level.

Lemma 3.7. [Zyw22b, Lemma 7.6] Fiz an integer N > 1 with N #Z 2 (mod 4).
Let G be a subgroup of GLo(Zy) for which G N SLy(Zy) is an open subgroup of
SLo(Zy) whose level divides N. Define Ny := N if N is odd and Ny := 2N if N is
even. Then Zy, - G is an open subgroup of GLa(Zy) whose level divides Ny .

Lemma 3.8. Fix an integer N > 1 with N # 2 (mod 4). For each prime ¢ dividing
N, define the integer
Ng = (% H P,

p|N, p?2=1 mod ¢
where £°¢ is the largest power of ¢ dividing N. Note that Ny is a divisor of N.
Let G be an open subgroup of GLa(Z ) whose level divides N. Let G be a mazimal
open subgroup of G whose level does not divide N. Then for some prime ¢|N, the
images of G and G modulo Nyl are distinct subgroups of GLa(Z/NlZ).

Proof. Suppose that GG is a maximal open subgroup of G such that G and G have the
same image in GLg(Z/N¢lZ) for all primes ¢|N. Take any ¢|N. Since the level of G
divides N, we find that the image of G in GL2(Z/N{Z) contains all the matrices
that are congruent to I modulo Ny;. By [Zyw22b, Lemma 7.2], we deduce that G
has level dividing . O

4. AGREEABLE GROUPS

4.1. Agreeable groups. Recall that a subgroup G of GLg(i) is agreeable if it is
open, contains all the scalar matrices in GLQ(Z), and each prime dividing the level
of G also divides the level of [G, G].

Let G be an open subgroup of GLg (i) and let M be the product of the primes
that divide the level of [G,G] C SLy (Z) We define the agreeable closure of G to be
the group

(4.1) G = (Z},G) % HW GLa(Zy).
We now give some basic properties of G.

Lemma 4.1.
(i) We have G C G and [G,G] =[G, §].
(ii) The group G is the minimal agreeable subgroup of GLQ(Z) that contains G.
In particular, G is agreeable if and only if G = G.
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(i) If M is the level of [G, G] € GLy(Z), then the level of G divides 21cm(M’, 4).
Proof. The inclusion G C G is clear since Gy C Zj3;Gn. The integer M is even
since the commutator subgroup of GLg(z), and hence also of G, has level divisible
by 2. Since M is even, we have [GL2(Z¢), GL2(Z¢)] = SLa(Z,) for all ¢ 1 M,
cf. Lemma 3.2(ii). Therefore, [G,G] = [Gar, G X [lyar SLa(Ze) = [G,Glar x
[Tepar SL2(Ze) = [G,G], where the last equality uses that M has the same prime
divisors as the level of [G, G]. This proves (i).

Since [G, G] = [G, G], the integer M is also the product of the primes dividing the
level of [G,G]. From the definition of the group G, it contains the scalars of GLy(Z)
and each prime dividing the level of G must divide M. Therefore, G is agreeable.

Take any agreeable subgroup B of GLQ(Z) with G C B. Let N be the product
of the primes that divide the level of [B, B]. We have [G,G] C [B, B], so N divides
M. Since B is agreeable and N[M, we have B = By x [ GL2(Z¢). We have
Gy = ZX/[GM C By since B contains the scalars and G C B. Therefore, G C B.
Part (ii) now follows.

The level of H := GNSLy(Z) divides M’ since H D [G, G]. Note that M and M’
have the same prime divisors. Lemma 3.7 implies that Z3; Hys is an open subgroup
of GLa(Zps) whose level divides 2lem(M’,4). Part (iii) follows since G contains
(ZxrHor) % [Tgar GL2(Ze). O

Remark 4.2. In [Zyw22b], we gave a different definition of an agreeable subgroup G
that insisted on the extra assumption det(G) = 7. Consider any open subgroup
G of GLy(Z) for which det(G) = Z*. In the notation of [Zyw22b], the group G
is agreeable if and only G equals (4.1), cf. §8.3 of [Zyw22b] where the agreeable
closure is constructed. In particular, the notions of agreeable in this work and in
[Zyw22b] are the same for groups with full determinant.

4.2. Maximal agreeable subgroups. Fix an agreeable subgroup G of GLQ(Z).
Let M be the product of the primes that divide the level of [G,G]. In this section,
we shall describe the maximal agreeable (proper) subgroups of G. We start by
giving some obvious maximal agreeable subgroups.

Lemma 4.3.

(i) Let B be a mazimal (proper) open subgroup of Gar satisfying B 2 Zj,I.
Then G := B x HHM GLy(Zy) is a mazimal agreeable subgroup of G.

(ii) For a prime p{ M, let B be a maximal (proper) open subgroup of GLo(Z,)
that satisfies B 2 Z; 1 and B 2 SLa(Zy). Then G := G x Bx[ [y, GL2(Ze)
s a mazimal agreeable subgroup of G.

(i) If 31 M, then G := Gn x (Z3 SLa2(Z3)) X [1paps GL2(Ze) is a mazimal
agreeable subgroup of G.

Proof. Since G is agreeable, we have G = Gy X HHM GL3(Z¢). In all the cases, the

group G is open, contains Z*1 and satisfies G C G. Let N be the product of the
primes dividing the level of [G, G] € SLy(Z). We have M|N since G C G. We have
N =M, N =pM and N = 3M in parts (i), (ii) and (iii), respectively; in part
(iil), we use Lemma 3.2(iii). In all the cases, every prime dividing the level of G
also divides N. Thus G is agreeable. In all the cases, one readily sees that G is a
maximal subgroup of G. O
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After setting some more notations, we will describe the maximal agreeable sub-
groups of G that are not covered by Lemma 4.3.

Fix a prime p € {3,5}. Let &, and 2, be the symmetric and alternating
groups, respectively, on p letters. By Lemma 3.4, there is a unique closed nor-
mal subgroup W, of SLy(Z,) for which SLy(Z,)/W, is a finite simple group.
The group SLy(Z,)/W), is isomorphic to 2, (recall the exceptional isomorphism
PSLy(Fs5)/{£I} = 25). The group W), is also normal in GLg(Z,). Let

pi GLa(Zy) — GL2(ZP)/(Z;>; Wp) =6,

be the homomorphism obtained by composing the quotient map with a choice
of isomorphism (the existence of this isomorphism is a direct computation and
requires p € {3,5}). The group ¥, (SL2(Z,)) is equal to the alternating group 2.
Using the uniqueness of W), we find that a closed subgroup B of GL2(Z,) satisfies
B D SLy(Z,) if and only if ¢,(B) 2 A,.

Lemma 4.4. Let G be a maximal agreeable subgroup of G that is not one of the
groups described in Lemma 4.3.

(i) There is a unique prime p € {3,5} such that p¥ M and p divides the level
of [G,G]. We have G = Gurp X [yar, GL2(Ze).
(ii) We have Zf SLa(Zy) € G, € GLa(Zy,). If p =3, then G = GLa(Z,).
(i) There is a homomorphism ¢: Gy — S, such that ©(Gar) = ¥,(Gp) and

Gup = {(91,92) € Gu x Gy 1 p(g1) = Vp(g2)}-

Proof. Since G is a maximal agreeable subgroup of G, our assumption that G is
not one of the groups from Lemma 4.3 implies that the following hold:

o Gv =Gum,
e Gy D SLy(Zy) for all primes ¢ M,
o if 31 M, then G = GLs(Zs).

Since M is even and G D Z*I, we have 7, SLy(Z¢) € Gy € GLo(Zy) for all £4 M.
In particular, (ii) will follow once we prove (i).

Since Gy D SLg(Zy) for all £+ M, Lemma 3.5 implies that the level of [G,G] is
not divisible by any prime ¢ M with £ > 5. Since M is even and [G,G] C [G, g],
we deduce that the product of the primes dividing the level of [G, G] is Mm for a
unique m|15. We have m > 1 since G is a proper subgroup of G and G = Gy
Let p € {3,5} be the largest prime dividing m.

We can view G, as a subgroup of G X Gp,. The projection homomorphisms
¢1: Gypp — G and o1 G, — G), are surjective. Let By and By be the normal
subgroups of G and G, respectively, for which ker(y2) = By x {I} and ker(¢1) =
{I} x By. Note that G, contains By x By. We have Z5,I C By and Zy1I C By
since G contains all the scalars of GLQ(Z). By Goursat’s lemma (Lemma 3.1), the
image of Gy in (Gar X Gp)/(B1 x Bg) = G /B1 % Gp/ By is the graph of a group
isomorphism f: Gpr/B1 — Gp/Bo.

o First consider the case where By 2 SLa(Z,) and hence 9, (B2) 2 2,. In particu-
lar, 1, (B2) is a normal subgroup of ¥, (G,) € {2,,S,} that does not contain 2.
Therefore, 1,(B2) = 1; equivalently, By C ZW),. Define the homomorphism

0: Gt = Gar/B1 L Gy /By = G, (Z2W,) < GLo(Z,) /(LI W) = &,
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where the last isomorphism with &, is the same as that in our definition of v,. We
have ¢(Gar) = ¢¥p(Gp) 2 AU, and inclusions

Gup = {(91,92) € Gur X Gy, = f(91B1) = 92B2}
C{(g1,92) € G x Gy 1 p(g1) = Yp(g2)} =: C.

Define the open subgroup G' := C x [[ 4, GL2(Z¢) of GLy(Z).

We claim that G’ is agreeable and satisfies G C G’ C G. We certainly have G C
G’ since Gy € C. We have G' C G since C C Gy x G, € Gyr X GLo(Zy) = Gy,
where the strict inclusion uses that i, is non-trivial on G}, and the last equality
uses that p does not divide the level of G. The inclusion G’ C G implies that
[G',G'] C [G,G] and hence the level of [G', G'] is divisible by every prime dividing
M. Since M is even, we have [G',G'] = [C, C] x [yas, SL2(Z¢) by Lemma 3.2(ii).
So the level of [G’, G'] is not divisible by any primes ¢ { Mp. Using that 1,(Gp N
SLy(Z,)) = 1, (SLa(Z,)) = Ay, one finds that the level of C'NSLy(Zasp), and hence
also of [C, (1, is divisible by p. Combining everything together, we deduce that the
product of primes that divide the level of [G’, G'] is Mp. Observe that the level of
G’ is divisible only by primes dividing Mp. Since G contains the scalars of GLQ@),
we have Z]T/[p =7y X Zy C By x By € Gurp € C. Therefore, G’ contains all the

~

scalars of GL2(Z). We have now verified that G’ is agreeable.

Since G is a maximal agreeable subgroup of G, the previous claim implies that
G’ = . The lemma is now immediate in this case from our definition of G’.

e Now consider the case where By O SL2(Z,,). We will prove that this case cannot
oceur.

We claim that [Garp, Gap) = [Gam, Gu] X SLa(Zy). It suffices to show that
[Garips Gup) 2 {I} x SLa(Zp). Take any g1,92 € G, with det(g1) = det(g2).
Since By O SLy(Z,), g1 and go lie in the same coset of Gp/By. So there is an
a € Gy such that (a,¢1) and (a, g2) both lies in Gpsp. Taking the commutator
of these elements, we find that (I,g1g2g; ‘g5 ") lies in [Garp, Garp]. Therefore,
[Garip, Garp) 2 {I} x C, where C' C SLy(Z,,) is the closed group generated by the
set {919207 95" 91,92 € Gp,det(g1) = det(go)}. It thus suffices to show that
C = SLy(Z,). When p = 5, we have C = SLs(Z,) by Lemma 3.2(i). So assume
that p = 3. Since C contains the commutator subgroup of SLa(Z3), the group C
has level 1 or 3 by Lemma 3.2(iii). A simple computation shows that the image of
C modulo 3 is SLy(Z/3Z) and hence C' = SL2(Z3). This completes the proof of the
claim.

Suppose that m = p. The product of the primes dividing the level of [G,G] is
Mm = Mp. By the above claim, we deduce that [G, G] =[Gy, Gum] X SLa(Z,,) x
[Tesarp SL2(Z¢) which contradicts that p divides the level of [G, G].

Therefore, m = 15 and p = 5. We can view [G15p, Gis0m] as a subgroup of
[Gsr, Gsu] X [Gs, Gs] whose projection to each factor is surjective. By Gour-
sat’s lemma (Lemma 3.1), there are normal subgroups B and BY of [Gsar, Gs]
and [Gs, G3], respectively, so that the image of [Gisn, Gism] in [Gsar, Gsa]/ By X
[G3,G3)/B) is the graph of an isomorphism. The group G3 = GLy(Z3) is prosolv-
able (since GL2(Z/3Z) is solvable) and SLa(Zs) is equal to its own commutator
subgroup by Lemma 3.2(i), so we must have {I} x SLy(Zs) C Bj. From this we
deduce that the level of [G15nrr, G1snm] € SLa(Z15a7) is not divisible by 5 which con-
tradicts that m = 15. We conclude that the case By O SL2(Z,,) does not occur. O
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4.3. Special subgroups. Let G be an open subgroup of GLg(z) that contains the
scalars Z*I. Fix an open group W of SLy(Z) that satisfies

[G,G] €W C GNSLy(Z).

The group W is normal in G and G/W is abelian since [G,G] C W C G.

Given an open subgroup U of det(G), the following theorem gives a criterion that
determines whether there exists an open subgroup G of G for which GNSLy(Z) = W
and det(G) = U. Let N be the least common multiple of the levels of G and W in
GLy(Z) and SLy(Z), respectively. Define Ny := N if N is odd and N := lem(N, 8)
if NV is even.

Theorem 4.5. Let U be an open subgroup of det(G) C Z% and let S := Uy [2] be
the 2-power torsion subgroup of Un C Zy.. Then the following are equivalent:

(a) There is an open subgroup G C G with G N SLy(Z) = W and det(G) = U.

(b) There is a homomorphism B: S — Gn/Wn such that det(B(a)) = a for all
a€csS.

(c) There is a homomorphism $: S — G(N1)/W(N1) such that det(8(a)) = a
(mod Ny) for alla € S.

Moreover, if a group G as in (a) exists, then there is such a group whose level
divides a power of 2 times the least common multiple of N and the level of U C Z*.

Proof. Define U’ = Uy x HZ,(N Z,. We have U C U’ C det(G). Note that the
conditions (b) and (c) depend only on Uy = Up. If there is an open subgroup
G’ C G satisfying G’ N SLy(Z) = W and det(G’) = U’, then the group G := {g €
G’ : det(g) € U} will satisfy (a). Also if the level of G’ divides an integer m, then
the level of G will divide the least common multiple of m and the level of U. So
without loss of generality, we may assume that U = Unx x [[yn Zy).

We first assume there is a homomorphism 8: S — Gy /Wy as in (b). Recall
that for odd ¢, Z, = C(1 + (Z;) for a finite cyclic group C of order £ — 1 and
14+ 0Z¢ =2 Zy. We have Z5 = £(1 + 8Zs) and 1 + 8Zy = Zs. Since Uy is an open
subgroup of Zy = Hé| ~ Z; , we have an internal direct product of groups

(42) UN =5- Al : A27

where A; is torsion-free Zs-module of rank at most 1 and Ay is isomorphic to
a product of an odd finite abelian group with HEIN,#? Zy. Fix a u; € Ap that
generates A; as a Zs-module and choose an element g1 € Gy for which det(gy) =
uj. There is a unique continuous homomorphism ¢1: Ay — Gy /Wy such that
ti(uy) = g1Wy. Since det(g1) = w1, we have det(t;(a)) = a for all a € A;. The
map Ay — As, a — a? is an isomorphism of groups whose inverse we denote by
. Define the homomorphism to: A2 — Gn /Wi, a — (Y(a) - I) - Wy it satisfies
det(t2(a)) = 9(a)? = a for all a € A;. Using the direct product (4.2) with the
maps 3: S — Gn /W, t1 and ta, we obtain a homomorphism sy: Uy — Gn /Wi
that satisfies det(sy(a)) = a for all a € Uy. For each prime ¢4 N, we define the
homomorphism s;: Z, — GLa(Z¢)/SLa(Z¢) by a — (§9)-SLa(Z¢). The map s is
an isomorphism with inverse given by the determinant; in particular, det(s;(a)) = a
for all a € Z;. By combining sy with the s, for £4 N, we obtain a homomorphism

s:U=Uxx ][, 25 = /Wy <[], GLa(Z0)/ SLa(Ze) = /W
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that satisfies det(s(a)) = a for all @ € U (this uses that the levels of G and W are
not divisible by any prime ¢ f N). There is a unique subgroup G of GLy (2) with
G D W for which G/W is equal to s(U) C G/W. The group G is closed in GLy (Z)
since s is continuous. We have det(G) = det(s(U)) = U. Since det(s(a)) = a for all
a € U, we deduce that G N SLy (Z) = W. Using that det(G) = U is open in Z* and
GNSLy (Z) = W is open in SLQ(Z), we find that G is an open subgroup of GLQ(Z).
We claim that the level of G divides a power of 2 times N. From the definition
of s and our s, we find that G 2 {I} x [y GL2(Z¢). Therefore, the level of G
is not divisible by any prime £{ N. We have Gy D Wy D {B € SLo(Zy): B=1
(mod N)}. Using our choice of t2, we find that G contains the scalar matrices cI
for all ¢ in the set {a € Uy :a =1 (mod N)} N ({1} x [y n 2 Z;'). Therefore,

B}
Gy 2 quv,z:z{[} x HZ\N,K;&HZ’

where Hy := (1 + ¢°¢Z¢){B € SLa(Zy) : B = I (mod £°¢)} and £° is the largest
power of ¢ dividing N. Take any odd prime ¢|N. To complete the proof of the
claim, it suffices to show that Hy D {B € GLy(Zy) : B = I (mod ¢°¢)}. Take any
B € GLy(Zy) with B =TI (mod ¢¢). We have det(B) € 1+ £%Z; = (1 + (°Zy)?,
where the equality uses that ¢ is odd. So there is a u € 1 + ¢¢Z; for which
det(B) = u®. Define C := u='B € SLy(Z,) and note that C = I (mod ¢°¢). So
B =uC is in Hy and the claim follows.

This completes the proof that (b) implies (a). After we prove the reverse impli-
cation, the final statement of the theorem will follow from the above claim.

Now suppose that there is a group G C G satisfying the properties of (a). Since
GnN SLg(i) = W and det(G) = U, the map det: G/W — U is an isomorphism
of groups whose inverse gives rise to a homomorphism s: U — G/W C G/W that
satisfies det(s(a)) = a for all @ € U. Let v: Uy — Uy x [[gnZ, = U be the
homomorphism that is the identity on the Uy factor and trivial on the Z; factors.
Define the homomorphism sy : Uy < U = G/W — Gn /Wy, where the first map
is ¢ and the last map is the N-adic projection. We have det(sy(a)) = a for all
a € Uy. We have S C Uy, so 8 := snyl|s: S = Gn/Wn is a homomorphism
satisfying det(8(a)) = a for all @ € S. This completes the proof that (a) implies
(b).

Now suppose that (c¢) holds with a homomorphism 5: S — G(Ny)/W (Ny).

For any a € S, we claim that there is a g € Gx such that det(g) = a and such
that the order of a agrees with the order of gWy in Gy/Wy. Take any a € S
and denote its order by e. We may assume that e > 2 since we can take g = I
when e = 1. Choose a g1 € Gy whose image modulo N7 represents the coset
B(a) € G(N1)/W (N1). We have det(g;) = det(8(a)) = a (mod Ni). Since Ny =0
(mod 8) when N is even, we have (1 + NoZy)? = 1+ N1Zy where Ny := N; = N
if N is odd and Ny := N;/2 if N is even. Therefore, det(g1)a=! = ¢=2 for some
c € 14+ NoZy. Define g := cgq; it lies in Gy since G contains the scalars in GLQ(Z).
We have det(g) = c?det(g1) = a. The matrix ¢g¢ thus lies in Gy N SLa(Zy). We
have B(a)¢ = B(a®) = 1, so reducing ¢g¢ modulo N; gives the identity coset in
G(N1)/W(N7). We have ¢® =1 (mod Ny) since ¢ = 1 (mod Na) and e > 1 is a
power of 2. Therefore, g¢° = ¢®¢§ modulo Ny lies in W(Ny). Since W has level
dividing N and ¢¢ € SLa(Zy), we deduce that g¢ € Wy. So gWy has order at
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most e in Gy /Wy. The order is exactly e since det(g) = a has order e in Uy. This
completes the proof of the claim.

Let {uy,...,u,} be a minimal generating set of the finite abelian group S and let
e; be the order of u;. In particular, we have an isomorphism Z/e1Z X - - - X Z/ e, 7. —
S, (n1,...,n.) = ul* - ul. So to define a homomorphism S — Gy /Wy as in (b)
we need only map each u; to an element in Gy /Wy of order ¢; that has determinant
u;. Therefore, (b) is true by the previous claim. This proves that (c) implies (b).

Finally, it remains to show that (b) implies (¢). This is clear by taking any homo-
morphism as in (b) and composing with the quotient map Gy /Wy — G(Ny)/W (Ny).

[l

Remark 4.6. We note that the condition (c¢) in Theorem 4.5 is straightforward to
check in practice since all the groups involved are finite. Now suppose that the
conditions of Theorem 4.5 hold. One way to find a group G as in (a), if it exists,
is to do a direct search modulo 2°N for i = 0,1,... (the proof of Theorem 4.5 also
gives a constructive way when starting with homomorphism 3 as in (c)).

4.4. Proof of Theorem 2.8. The group [G, G] is open in QDSLQ(Z) by Lemma 3.3.
Let N be the least common multiple of the levels of G and [G, G]. Note that N is
even since the level of [G,§] is even. Let W be any of the finitely many of groups
satisfying [G,G] C W C G N SLy (2), its level divides N. To prove the theorem, we
need to show that one can find an open subgroup G C G such that GNSLs (i) =W,
[Z* : det(@)] is a power of 2, and the level of G divides N times a power of 2.

There is an open subgroup Uy C det(Gn) C Zj with Up[2*°] = 1 such that
det(Gy) is generated by its 2-power torsion and Up; we can may further choose Uy
so that it contains the open and torsion-free subgroup {a € ZY : a = I (mod 2N)}.
Let S be a subgroup of the 2-power torsion of det(Gy) C ZY;, with maximal car-
dinality, for which condition (b) of Theorem 4.5 holds, cf. Remark 4.6. Define
U:=(S-Up)x HaNZzX? it is an open subgroup of det(G) and [det(G) : U] is a power
of 2. The level of Uy, and hence also of U, divides 2N. By our choice of U, Theo-
rem 4.5 implies that there is an open subgroup G C G such that G N SLs (Z) =W,
det(G) = U, and the level of G divides a power of 2 times N. By computing in
GL2(Z/2'NZ) for i > 0, we can find such a group G.

5. PROOF OF THE THEOREMS FROM §2.3

Note that our proofs of the finiteness of A; and A, will be given in a manner so
that it is clear that they are indeed computable.

5.1. Proof of Theorem 2.5. First consider any agreeable subgroup G of GLs (Z)
for which X has genus at most 1. Define H := GﬂSLQ(Z); it is an open subgroup of
SLy(Z). The group H contains —I since G contains all the scalars in GLs(Z). Let N
be the level of H. Define the congruence subgroup I' := SLo(Z)NH = SL3(Z)NG of
SLo(Z); equivalently, it is the congruence subgroup of level N whose image modulo
N agrees with the image of H modulo N. In particular, H can be recovered from
I'¢ and we have —I € T'g. The genus of I'¢ agrees with the genus of G, see
Remark 2.4, and hence is at most 1.

There are only finitely many congruence subgroups of SLo(Z) that have genus
at most 1 and contain —I, cf. [CP03]. Moreover, all such congruence subgroups
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are explicitly given in [CP03] up to conjugacy in GLga(Z); there are 121 and 163
conjugacy classes with genus 0 and 1, respectively.

Now fix one of the finitely many congruence subgroups I' of SLo(Z) that have
genus at most 1 and contains —I. Let H be the open subgroup of SLQ(Z) cor-
responding to I'. We have —I € H. In the rest of the proof, we will explain
how to compute the (finitely many) agreeable subgroups G of GLs (Z) for which
GnN SLQ(Z) = H. The finiteness of A}, and hence also of Ay, will be obtained by
varying over the finite many I'. Let N be the level of I'; it is also the level of H.
Define the integer N; := 2lem(N, 12).

Lemma 5.1. For any agreeable subgroup G of GLQ(Z) with G N SLQ(Z) = H, the
level of G divides N7.

Proof. Define Ny = lem(N,12). We have H = H, X [y, SL2(Z¢) since the level
of H divides No. Hence [H, H] = [Hy,, Hn,] % [ [, SL2(Z¢) by Lemma 3.2(i). In
particular, the level of [H, H] is divisible only by primes dividing Ny; equivalently,
dividing N; = 2Ny. Consider any agreeable subgroup G of GL2(2) for which
G N SLy(Z) = H. We have SLy(Z) 2 [G,G] 2 [H, H], so any prime dividing the
level of [G,G] must also divide Ny. Since G is agreeable, we have G = Gy, X
[Ten, GL2(Ze). It remains to show that the level of G, C GL2(Zy,) divides Nj.

From Lemma 3.7 and our choice of Ny, we find that Z;,l Hp;, is an open subgroup
of GLz(Zy, ) whose level divides N;. We have Zy Hy, € G, since G contains H
and 7% - T , and hence the level of G, divides Nj. O

We now describe how to compute all the agreeable subgroups G of GLo (i) for
which GN SLg(z) = H. By Lemma 5.1, the level of such a group G divides N;. So
we first look for subgroups G of GLg(Z/N;Z) for which GNSLy(Z/N1Z) equals the
the image of H modulo N;. There are only finitely many such groups G which give
rise to finite many candidate groups G of GLQ(Z) which satisfy G N SLy (Z) =H.
We can then check which of the candidates G are agreeable.

Finally, suppose there is a group G € A; and a prime ¢ > 19 for which ¢ divides
the level of [G,G]. By Lemma 3.5, we have Gy 2 SL2(Z;) and hence the level of
GNSLy(Z) C SLy(Z) is divisible by £. From our argument above, we find that there
is a congruence subgroup I' C SLa(Z) of genus at most 1 for which ¢ divides the
level of I'. However, the classification of low genus congruence subgroups in [CP03]
shows that 19 is the largest possible prime divisor of the level of a congruence
subgroup of genus at most 1. Therefore, the level of [G, G] is not divisible by any
prime £ > 19 for all G € A;.

5.2. Proof of Theorem 2.6. First consider any agreeable subgroup G of GLs (2)
with genus at least 2 that satisfies Gy O SLa(Zg) for all £ > 19. By Lemma 3.5,
the level of [G,G] is not divisible by any prime ¢ > 19. Since G is agreeable, its
level is not divisible by any prime ¢ > 19. Choose a maximal agreeable group
G C G’ C GLy(Z) for which G’ has genus at least 2. Since the level of G’ divides
the level of G, we deduce that G’ lies in \A5. This proves part (ii).

Now take any group G € A,. Choose a minimal agreeable group G of genus
at most 1 that satisfies G C G. Using the definition of A} and A5, we find that
G € A| and that G is a (proper) maximal agreeable subgroup of G. Since we are
only interested in groups up to conjugacy, we may assume that G € A;. Since A;
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is finite by Theorem 2.5, to prove the finiteness of A it suffices to show that every
group G € A; has only finitely many maximal agreeable subgroups whose level is
not divisible by any prime ¢ > 19.

Fix a group G € A; and let M be the product of the primes that divide the level
of [G,G]. We have ¢{ M for all £ > 19 by Theorem 2.5. Since G is agreeable, the
level of G is also not divisible by any prime ¢ > 19. We now consider the maximal
agreeable subgroups G of G as classified in §4.2. We want to show that there are
only finitely many of each type and make clear that they are computable.

If 31 M, we obtain a single maximal agreeable subgroup as in Lemma 4.3(iii).

Take any prime p t M with p < 19. The maximal open subgroups B C GL2(Z,)
with ZI C B and SLy(Z,,) € B, give rise to the maximal agreeable subgroups of
G as in Lemma 4.3(ii). By Lemma 3.6, the group B have level p and are thus easy
to enumerate.

A maximal agreeable subgroup of G as given in Lemma 4.3(i) arises from a
maximal proper open subgroup B of Gj; that contain Zj,I. Let N be the least
common multiple of 4, M, and the level of G. Lemma 3.8 implies that the level of
B divides N/ for some prime ¢|N. So one need only look for maximal subgroups of
the image of G in GLy(Z/N{Z) for each ¢|N.

Now consider any prime p € {3,5} that does not divide M. We now consider
maximal agreeable subgroups of G as described in Lemma 4.4. By Lemma 4.4, it
suffices to compute the open normal subgroups of G, for which the quotient is
isomorphic to a group @ € {&,,2,} where Q # 2, when p = 3. Let N be the least
common multiple of M and the level of G; it has the same prime divisors as M.
For any continuous and surjective homomorphism Gy; — @, the kernel contains all
g € Gy with g = T (mod N) since @ contains no normal ¢-groups for all £ { M.
Therefore, one need only look for normal subgroup of the image of Gy; modulo NV
that have @) as a quotient group.

5.3. Proof of Theorem 2.7. Let G be the agreeable closure of G . Proposition 2.3
implies that G is a minimal element of A], with respect to inclusion, for which Gg
is conjugate in GLo (Z) to a subgroup of G. By conjugating G, we may assume
that Gg C G. Since G is the minimal agreeable subgroup containing G, we have
Ggp C G C G. If G has genus at most 1, then G = G since otherwise G is not a
minimal element of A} with respect to inclusion. We can now assume that G has
genus at least 2.

We claim that Gy D SLa(Zg) for all primes £ > 19. Take any prime ¢ > 19.
By assumption, we have pg ¢(Galg) 2 SLo(Z/¢Z) and hence (Gg)e 2 SLa(Z;) by
Lemma 3.6. The claim follows since Gg C G and hence (Gg)¢ C Go.

Theorem 2.6(ii) implies that G, and hence also Gg, is conjugate in GLg(i)
to a subgroup of some G’ € A,. Proposition 2.3 implies that Kg» € K and
je € ma(Xa (K)) C Jk, where the last inclusion uses that G’ lies in Ay. Since
je ¢ Jk by assumption, the case where G has genus at least 2 does not occur.
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