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Abstract. If K/k is a function field in one variable of positive characteristic, we describe a
general algorithm to factor one-variable polynomials with coefficients in K. The algorithm
is flexible enough to find factors subject to additional restrictions, e.g., to find all roots
that belong to a given finite dimensional k-subspace of K, more efficiently. For bounded
characteristic, it runs in polynomial time, relative to factorizations over the constant field
k and also provides a deterministic polynomial time irreducibility test. We also discuss
applications to places of reducible reduction, when k is a global field, and to list decoding
of Reed-Solomon codes.

1. Introduction

Let K/k be a function field in one variable, that is, a finitely generated extension of
transcendence degree one with k algebraically closed in K. Let G(T ) be a polynomial in
one variable over K. The algorithmic problem of finding the irreducible factors of G(T ) in
K[T ] and, in particular its roots in K, is a much-studied problem with many applications,
see e.g. [vzGK85,Poh05,BvHKS09] and the references therein. A noteworthy special case
is the case where K = k(x), the rational function field, and the coefficients of G(T ) are in
k[x]. This case corresponds to factoring polynomials in two variables with coefficients in k.
Some recent papers representing the state of the art of this special case are [Lec10,Wei17].

Many of the applications of the above problem actually require the solution of a more
restricted problem. For instance, given G(T ) and a finite dimensional k-subspace V of K,
find the roots of G(T ) in V . An example of an application where this restricted problem
suffices is the Guruswami–Sudan list-decoding algorithm. See [GS00] for a comprehensive
discussion and [BLQ13,NRS17] for other approaches to this problem. We discuss an instance
of this in subsection 5.2 below.

Throughout this paper k has characteristic p > 0 and we make the assumption that
the polynomial G(T ) to be factored is separable. The reduction to this case is a standard
first step in all algorithms and is presented in the above cited papers. We also assume
G(0) ̸= 0. This paper describes an algorithm that solves the general problem of factoring
such a G(T ). Additionally, the algorithm has improved performance when applied to the
more restricted problems described above. Indeed, we will describe an algorithm that finds
a factor of G(T ) of prescribed degree whose coefficients are on prescribed finite dimensional
k-subspaces of K. We prove that, assuming the characteristic is bounded, our algorithm
provides a deterministic polynomial time absolute irreducibility test and, up to factorization
of polynomials in k[T ], the algorithm runs in deterministic polynomial time. See Theorem
3.2, Remark 3.3 and Section 4 below for precise statements and discussion. We also discuss
some other applications of the ideas in this paper in Section 5. The approach is novel and
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relies on casting the problem of finding a factor of G(T ) as finding a k-linear dependence
relation among some elements of a quotient ring of K[T ]/(G(T )) and applying a linear
independence criterion over k involving Wronskian matrices.

Our algorithm, like most standard algorithms, needs at the beginning, a place of the
function field K with a few additional properties. In our presentation of the main part of
the algorithm, in Section 3, we just assume its existence. In the subsequent Section 4 we
discuss how to find such a place. This seems to, unavoidably, require a search.

Most of the standard algorithms then proceed to compute a complete factorization of the
image of the polynomial when specialized to the residue field of the place just discussed
(see the description of a generic factorization algorithm in [Poh05]). This is known as the
lifting and recombination strategy. The factorization step in the residue field is often easy in
practice but can be difficult in certain circumstances (see the beginning of Section 2). These
algorithms also often have a bottleneck reconstructing global factorizations from local ones.
In contrast, our algorithm does not need to compute this factorization in the residue field at
the beginning, nor tries to reconstruct global factorizations from local ones. Instead, it may
do a partial factorization during intermediate steps using easy gcd computations. At the
end, our algorithm may need to further factor some of these partial factors. If the objective
is an irreducibility criterion, it does not require finding such a factorization at all.

There are two algorithms in the literature that use differential operators to factor polyno-
mials and don’t follow the lifting and recombination strategy.

The first is the algorithm of [Rup99,Gao03] that uses a certain first order partial differential
equation and shares some of the advantages of our approach. It only applies however when
K is a rational function field. One application of this approach [Rup99, Theorem pg. 63] is
to bound the size of the largest prime p for which an irreducible poynomial in Z[x, y] factors
modulo p. Our approach allows us to obtain similar bounds in full generality when k itself
is a global field.

The second is the algorithm of [CSTU02] which uses the linear differential operator an-
nihilating all roots of G(T ) (and also uses Wronskians). This algorithm is restricted to
characteristic zero as the crucial [CSTU02, Proposition 4.2] does not extend to positive
characteristic. Indeed, the proposition there is about the k-dimension of the set of solutions
in K of the linear differential operator annihilating roots of G(T ) (assumed irreducible). In
characteristic p, the set of solutions of a linear differential operator of order < p in a field
E/K is a Ep-vector space. But even considering Ep-dimension, the set of solutions in K has
the same Kp-dimension as the Ep-dimension of the set of solutions in the splitting field E
of G(T ), as follows from [Hon81, Lemma 1], as opposed to having dimension 1, which would
be the analogue of the characteristic zero result.

2. Preliminaries

Let K/k be a function field in one variable, that is, a finitely generated extension of
transcendence degree one with k algebraically closed in K. Factoring polynomials in K[T ]
includes factoring polynomials in k[T ] and the latter could be hard, depending on k. For
example, if k is a finite field or a number field, the existence of a polynomial time determin-
istic factoring algorithm for k[T ] is an open problem, although there are polynomial time
probabilistic algorithms that also perform well in practice. If k is the field of real numbers,
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there may be issues with precision. Our goal, therefore, is to present an algorithm to factor
polynomials in K[T ] relative to factoring polynomials in k[T ].

Also, in discussing the running time of the algorithm, the estimates will be in terms of the
number of field operations in k or finite extensions thereof.

2.1. The basic rings. Let v be a place of K with ring of integers O and maximal ideal m.
If q is a power of the characteristic p of K, we consider the ring O/mq. We have that the
completion of O is isomorphic to ℓ[[x]], where ℓ = O/m and x is an uniformiser of v, that is,
an element of m \m2. It follows that O/mq is isomorphic to ℓ[[x]]/(xq).

Let G(T ) ∈ O[T ] be a monic polynomial such that G (mod v) is separable.
The ring R1 = (O/mq)[T ]/(G(T )) is an Artinian ring and, thus, a direct sum of Artinian

local rings. These summands correspond to irreducible factors of G(T ) in (O/mq)[T ] which,
in turn, correspond to irreducible factors of G(T ) ∈ (O/m)[T ]. The standard factorization
version of Hensel’s lemma gives an algorithmic way to go from the latter to the former.

2.2. Gaussian elimination. In this subsection, we describe a Gaussian elimination proce-
dure on an Artinian ring A which is a sum of finitely many Artinian local rings (such as
R1 above). In addition to the usual row reduction steps (described explicitly below), the
algorithm will also involve splitting the ring in a direct sum of two rings and branching
the algorithm to each summand. To ease notation, we continue to denote by A any such
summand. The final output of the procedure will be a decomposition of the original ring
into a direct sum of rings and, for each such direct summand, a matrix with entries in the
corresponding subring. Moreover, for each maximal ideal of this subring, the image of the
matrix in the quotient field will be row reduced and will have the pivots in the same place.
In particular, the rank of the reduction will be independent of the maximal ideal of this
subring and will be simply called the rank of the matrix.

The procedure is as follows, we scan each column in turn, looking for an element that is
a unit in some summand of A. If none is found, we skip the column. If one is found, we
split A as a sum of two rings, one of which is the maximal summand where the element is
a unit. In that summand we use the unit as a pivot (and in the other summand we move
on to the next entry). Namely, we replace the other rows by the appropriate multiple of the
row of the pivot so that the entry in the column of the pivot is 0. Finally, we multiply the
row of the pivot by its inverse, so the pivot is replaced by 1. The usual analysis of Gaussian
elimination justifies the claimed output. Indeed, we are just doing Gaussian elimination in
the various quotient fields simultaneously to the extent possible and decomposing the ring
as a direct sum, when it’s not possible.

Finally, we note that the direct sum decomposition steps in the above procedure can
be done explicitly as follows in the case of R1. Namely, if the entry in the matrix being
inspected is P (T ), we compute H0(T ) = gcd(G(T ), P (T )) and E0(T ) = G(T )/H0(T ) in
(O/m)[T ]. If E0(T ) ̸= 1, we lift the factorization G(T ) = H0(T )E0(T ) in R0 to a factorization
G(T ) = H(T )E(T ) in R1 and decompose R1 as the direct sum of (O/mq)[T ]/(H(T )) and
(O/mq)[T ]/(E(T )). This works because we assume that G(T ) is squarefree in (O/m)[T ].

2.3. Hasse derivatives and Wronskians. We begin by presenting some concepts and
results from [Sch39, SV86]. See also [GV87] which proves stronger versions of the main
results of [Sch39] and may be more accessible, as well as [Hes02a, Section 6.1] which describes
relevant algorithms (particularly algorithms 26 and 28 there). Let K/k be a function field.
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The usual higher derivatives do not work well in small characteristics. A suitable replacement
for higher derivatives that work in general are the Hasse derivatives. We denote by D(i), i =
0, 1, . . . , the Hasse derivatives with respect to some separating variable x on K. These are
k-linear operators on K with i!D(i) = (d/dx)i and satisfying:

D(i) ◦D(j) =

(
i+ j

j

)
D(i+j),

D(i)(uv) =
i∑

j=0

D(j)(u)D(i−j)(v).

(2.1)

The second formula is an extension of the Leibniz rule. They are defined first in k[x] by
setting D(i)xn =

(
n
i

)
xn−i and extending k-linearly. These operators then extend uniquely

to k(x) and any separable extension thereof by requiring that they satisfy the formulas 2.1
above.

By [Sch39, Satz 2], f0, . . . , fm ∈ K are linearly independent over k if and only if the Wron-
skian matrix (D(i)(fj)) has maximal rank m+ 1. In this case, there is a (lexicographically)
minimal list of integers 0 = ε0 < · · · < εm such that the matrix (D(εi)(fj)) has maximal rank
m + 1. We have εi = i if the characteristic is zero or large enough but that is not going to
be the situation in this paper. Also, to a place v of K, we can associate a (lexicographically)
minimal list of integers 0 = j0 < · · · < jm (called the Hermitian invariants and which depend
on v) such that the matrix (D(ji)(fj) (mod v)) has maximal rank m + 1. Moreover, if x is
a local parameter at v, there exists a linear transformation of the space spanned by the fi
over the residue field of v that transforms fi into a basis (called an Hermitian basis) gi with
gi = xji+ higher order terms ([Sch39, pg. 68]).

If K is the function field of an algebraic curve Y , then the morphism (f0 : . . . : fm) :
Y → Pm has some degree ∆ and εi ≤ ji ≤ ∆ when the fi are linearly independent ([SV86,
Section 2],[Hes02a, Prop. 13]). On the other hand, if the Wronskian matrix has rank m
and a0, . . . , am ∈ K satisfy

∑m
j=0 ajD

(i)(fj) = 0, i = 0, 1, 2, . . . and a0 = 1, then aj ∈ k, j =

0, 1, . . . ,m as follows from the proof of [Sch39, Satz 1].
Consider a monic, separable polynomial

G(T ) =
s∑

j=0

ajT
j, aj ∈ K, as = 1. (2.2)

Let R = K[T ]/G(T ) and t the image of T in R. We extend the operators D(i), i ≥ 0 to
R. We need an expression for D(i)(t). We have that

0 = D(i)(G(t)) =
∑

j1+2j2+···+iji≤i

Aj1,...,ji(D
(1)(t))j1 · · · (D(i)(t))ji (2.3)

where the Aj1,...,ji are polynomials in t and, in particular, A0,...,0,1 = G′(t) which is invertible in
R and this determines D(i)(t) uniquely, by induction. They can be computed more efficiently
by the algorithms of [Hes02a].

If v is a place of K with ring of integers O and maximal ideal m = (x) then, for any
q power of p, the operators D(i), i < q, defined using x as the separating variable, induce
operators on O/mq. Indeed, D(i)(xq) = 0, i < q, so D(i)(xqy) = xqD(i)(y), i < q for any
y ∈ O and it follows that D(i), i < q preserve mq. In our main algorithm, we will choose q
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large enough so that the non-zero elements of K appearing in the course of the computation
have degree smaller than q, so, if the computation produces an element in mq, it has to be
the zero element.

Now, if G(T ) ∈ O[T ] is as above and is such that G (mod v) is separable, then the opera-
tors D(i), i < q induce operators on R1 = (O/mq)[T ]/(G(T )) by the same formulas. As men-
tioned before, R1 is an Artinian ring and, thus, a direct sum of Artinian local rings. For each
irreducible factor H0 of G (mod m), there is a corresponding factor H of G (mod mq) and a
corresponding summand (O/mq)[T ]/(H(T )) of R1. If m = (x), then O/mq is isomorphic to
(O/m)[X]/(Xq) and (O/mq)[T ]/(H(T )) is isomorphic to ((O/m)[T ]/(H0(T )))[X]/(Xq) and
we refer to the subring (O/m)[T ]/(H0(T )) of this latter ring as its constants.

Lemma 2.1. If u ∈ R1 satisfies D(i)(u) = 0, 0 < i < q, then in each local summand of R1,
u is constant (in the above sense).

Proof. Each summand is isomorphic to ℓ[X]/(Xq) for some field ℓ and D(i)(xr) =
(
r
i

)
xr−i,

where x is the image of X, so it is clear that D(i)(u) = 0, 0 < i < q if and only if u ∈ ℓ. □

Remark 2.2. In the process of algorithm 1 below, we will decompose R1 as a direct sum but
we may not go all the way to the full decomposition as a sum of Artinian local rings.

3. The main algorithm

Our main algorithm is described below as Algorithm 1. As mentioned in the introduction,
it takes as input a polynomial G(T ) ∈ K[T ] and a collection of finite dimensional k-vector
spaces Vi ⊂ K, i = 0, . . . r− 1 and decides whether there exists a factor H(T ) of G(T ) of the
form H(T ) =

∑r
i=0 biT

i, bi ∈ Vi, i < r, br = 1. Given k-bases {hij} for the Vi, the algorithm
proceeds by computing the Wronskian matrix of the functions hijT

i in a suitable ring where
G(T ) = 0 and doing Gaussian elimination on this matrix, in the sense of Subsection 2.2,
identifying a k-linear dependence among the hijT

i.
To obtain a full factorization algorithm (where the Vi are not necessarily given in advance),

we prove lemma 3.1 below (a variant of [Poh05, Lemma 4.1]).

Lemma 3.1. Let G(T ) =
∑s

i=0 aiT
i ∈ K[T ] with as = 1, a0 ̸= 0 and let τ be a root of G(T )

in some finite extension L/K and H(T ) =
∑r

i=0 biT
i be its monic minimal polynomial over

K. Then, for any place v of L extending a place of K,

v(τ) ≥ min
0,1,...,s−1

v(ai)/(s− i)

and, for any place v of K,

v(bj) ≥ (r − j) min
0,1,...,s−1

v(ai)/(s− i).

Proof. Recall that we assume throughout that G(0) ̸= 0, so τ ̸= 0. If iv(τ) + v(ai) > sv(τ)
for all i < s, then ∞ = v(G(τ)) = min{iv(τ) + v(ai)} = sv(τ), contradiction. This gives the
first part of the lemma.

We have that bj is the (r− j)-th elementary symmetric function on the conjugates of τ so
the second part follows from the first by extending v to a valuation of the splitting field of
H. □
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Algorithm 1 Find factor of G(T ) with restricted coefficients
Input

A function field K/k
A polynomial G(T ) ∈ K[T ] monic, separable, of degree s with discriminant f ̸= 0.
A place v of K/k, with ring of integers O and maximal ideal m with G(T ) ∈ O[T ]
and v(f) = 0 and an uniformizer of v used to define the D(i).
Finite dimensional k-vector spaces Vi ⊂ K, i = 0, . . . r−1, with 1 ∈ V0, together with
a k-basis {hij} for each Vi, where r < s. Put h01 = hr1 = 1,m =

∑
dimVi.

An integer ∆ which bounds ji, εi for any map to Pm obtained by viewing Φ in a
quotient field of R in which its entries are linearly independent over k.

Output
Either a proof that G(T ) has no monic factor of the form H(T ) =

∑r
i=0 biT

i, bi ∈
Vi, i < r, br = 1.
Or a direct summand S of the ring R1 = (O/mq)[T ]/(G(T )) and elements bi, i =
0, . . . , r of S such that, for each local summand of S, a factor of G(T ) of the required
form can be obtained (see Theorem 3.2 and Remark 3.3).

1: R = K[T ]/(G(T )) and t the image of T in R.
2: Φ ∈ Rm+1 the row vector with entries (in some order) hijt

i ∈ R, i = 0, . . . , r and for each
i < r, j = 1, . . . , dimVi and j = 1 for i = r.

3: Compute q, smallest power of p with q > max{m,∆} (so q ≤ pmax{m,∆}).
4: R1 = (O/mq)[T ]/(G(T )), R0 = (O/m)[T ]/(G(T )).
5: Compute matrix M with rows D(i)(Φ), i = 0, . . . , q − 1, working in R1.
6: Do the Gaussian elimination on M , working in R1, as described in Subsection 2.2.
7: for Each direct summand R′ of R1 returned by the Gaussian elimination step and cor-

responding matrix M do
8: if M has full rank m+ 1 then
9: return G(T ) has no factor of the form required for the output in R′.

10: else if M (mod m) has rank m then
11: Compute solution uij in R′ of

∑
ij uijD

(ℓ)(hijt
i) = 0, ur1 = 1, ℓ = 0, 1, . . . , q − 1.

12: return bi =
∑

j uijhij, i = 0, . . . , r in R′.
13: else
14: Go back to 2, replace the ring R1 with the subring R′, remove an entry from Φ

such that the corresponding column of the matrix M has no pivot and set m equal to
m− 1.

15: end if
16: end for

Lemma 3.1 provides bounds for the valuations of the coefficients of the potential factors
of G(T ) and these bounds can be used to define spaces Vi such that if G(T ) factors, it has
factors of the form H(T ) =

∑r
i=0 biT

i, bi ∈ Vi, i < r, br = 1 for these Vi. To obtain k-bases
for these Vi’s (as required in the algorithm) one may apply the results of [Hes02b]. It also
follows that we can take

∆ = −r
∑
v

min{0, min
0,1,...,s−1

v(ai)/(s− i)} (3.1)
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as a bound for the ji, εi as required by Algorithm 1.
We begin by proving that Algorithm 1 performs as described and runs in polynomial time.

We defer a detailed estimate of the running time and a discussion of how to compute the
auxiliary place to Section 4.

Theorem 3.2. Given the above input, Algorithm 1 runs in deterministic polynomial time in
p, s,∆ (measured in number of operations in the field O/m) and outputs either a certificate
that G(T ) has no factor of the required form or a decomposition of R1 as a direct sum of at
most s rings. Moreover, for each such summand (R′, say), the algorithm outputs elements
uij of R′ that are constant in each summand of the decomposition of R′ into local rings and
from which a factor of G(T ) of the required form can be constructed or a certificate that this
summand does not yield such a factor. In particular, the algorithm provides a deterministic
polynomial time absolute irreducibility test in characteristic p for p polynomially bounded in
s,∆ and a general factoring algorithm modulo factoring in k[T ] under the same conditions.

Proof. By induction on m. Assume m = 1. Since 1 ∈ V0,Φ = (1, tr) and M has rank 1 or
2. If the rank is 2 in R′, it is clear there is no factor of the required form. If the rank is 1
in R′, this means that D(i)(tr) = 0, i = 1, . . . , q − 1, so tr is constant in any local summand
of R′, the solution of the linear system is u01 = −t, ur1 = 1 and H(T ) = T − t is a factor of
G(T ) of the required form.

As mentioned above, step 3 is dealt with in general by equation 3.1 unless there is a better
bound available.

As mentioned above, the operators D(i), i < q act on R1 and the computation of the matrix
M in step 6 is polynomial in operations in R1 but dimO/mR1 ≤ sq giving a bound in terms
of the number of operations in O/m.

The process of Gaussian elimination has running time polynomial in the size of the matrix
just as in the field case.At the end of it, we arrive at a decomposition of R as a sum of at
most s rings and the image of M in each of these is put in row echelon form.

Those summands of R1 where M has full rank m+1 yield no factor of G(T ) of the required
form, since such a factor is a linear relation among the entries of Φ with constant coefficients
and, applying D(i), i < q to this relation shows that the coefficients are in the kernel of M .
For other factors R′ where M has rank m, we compute the uij as described in step 13. It
follows from the proof of [GV87, Theorem 1] that D(r)(uij) = 0, 0 < r < q and thus, from
Lemma 2.1 the uij are constant in each local factor of the decomposition of R′. Let S be
one such factor. It determines a factor H(T ) of G(T ) and a place w|v in the function field
L obtained by adjoining a root t of H(T ) to K. Moreover, if ûij are the constants in S
corresponding to the uij, the fact that

∑
uijhijt

i = 0 in S, shows that
∑

ûijhijt
i vanishes to

order at least q at w. But q > ∆ and ∆ is an upper bound for the degree of the morphism
associated to Φ, therefore an upper bound for the degree of

∑
ûijhijt

i and this implies that∑
ûijhijt

i = 0 in L. Hence
∑

ûijhijT
i yields a factor of G(T ) of the required form, if the

ûij are elements of k and, otherwise, S does not yield a factor of G(T ) of the required form.
For the factors R′ where M has rank smaller than m, we decrement m, drop an entry of Φ
as described, rerun the algorithm and are done by induction.

For the last two claims of the theorem, first notice that when G(T ) is absolutely irreducible,
the matrices M will have full rank m + 1 in every factor ring in play on the algorithm so
the algorithm will terminate with a certificate of absolute irreducibility. Finally, a general
factoring algorithm follows from Lemma 3.1 and the discussion surrounding it. □
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Remark 3.3. What Algorithm 1 and Theorem 3.2 don’t do is to identify the uij with specific
elements of an algebraic extension of k, necessarily. For that, we need to further factor the
factor of G(T ) (mod m) corresponding to the ring R′ as a product of irreducibles to obtain
the full decomposition of R′ as a sum of local rings and identify the uij with constants in
each summand. Note that it is possible that G(T ) (mod m) has irreducible factors of degree
greater than 1 and, in the local ring corresponding to that factor,

∑
ûijhijT

i will not give a
factor of G(T ) of the required form over k. If such an irreducible factor of G(T ) (mod m)
is detected, the corresponding local ring can be discarded. For each linear factor of G(T )
(mod m), once it is identified, we obtain a summand of R′ which is a local ring with residue
field k and projecting each ûij to the residue fields yields the uij, completing the factorization
process.

As mentioned in the introduction, the first step in most standard factoring algorithms for
K[T ] is to fully factor G(T ) ∈ (O/m)[T ] and how it is performed depends on the nature of
the field k. In our algorithm, this step may not be required at all (if G(T ) has no factors, or
a single irreducible factor, of the required form) or it may only be needed for a proper factor
of G(T ).

On the other hand, it is not claimed that the algorithm, as described, will output all factors
of the required form, only that it will output at least one such factor, in case it exists. This
can be easily remedied by dividing by the output factors and rerunning the algorithm with the
quotient as input.

We will discuss an example but, beforehand, here is a non-example. If G(T ) ∈ k[T ], that
is, has constant coefficients, then D(i)(t) = 0, i > 0, the matrix M has always rank one and
the algorithm unravels to the base case m = 1. The polynomial T − t is a factor of G(T ) for
G(t) = 0 and we are left with the task of factoring G(T ) over the constant field k.

For a more representative example consider

G(T ) = T 4 + (x+ 1)T 3 + (x2 + 1)T 2 + (x3 + x2 + 1)T + (x2 + x) ∈ F2(x)[T ].

We look for factors of G(T ) of the form T+ax+b, so r = 1, V0 is spanned by 1, x, Φ = (1, x, t)
where t is the image of T in (k[x]/(x4))[T ]/(G(T )) and m = 2. Modulo the ideal (x + 1),
G(T ) reduces to T 4 + T . We find, using 2.3 that D(2)(t) = J(t)/G′(t)3, where

J(T ) = (xT 5 + (x2 + x)T 4 + x5T + (x6 + x5)).

The gcd of G(T ) and J(T ) is H(T ) = T 2 + T + x2 + x and, switching to the ring R1 =
(k[x]/(x + 1)4)[T ]/(H(T )), we let t be the image of T , forcing D(2)(t) = 0. Using 2.3 now
with H, we find that D(t) = 1. The matrix M is therefore

M =

1 x t
0 1 1
0 0 0


Now, we solve the system t + ax + b = D(t) + a = 0, so a = D(t) = 1, b = t + x. Now,
modulo the ideal (x+ 1), we have H(T ) = T 2 + T = T (T + 1) and we lift this factorization
to k[x]/(x+ 1)4 and find H(T ) = (T + x)(T + x+ 1). Now, R1 is a direct sum of two rings
from this factorization and b = 0, 1 respectively in each of the factors. Consequently, G(T )
has the factors T + x, T + x+ 1 of the required form.
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Remark 3.4. If the characteristic is zero, R1 is not defined and if the characteristic is
large, R1 is too big. An extension of the algorithm of this paper to those cases would require
a replacement for R1. For theoretical results, such as Theorem 5.1, we can work with R =
O[T ]/(G(T )) but for algorithmic purposes we need a ring finite dimensional over k. We
could work with the ring (O/mn)[T ]/(G(T )) for some appropriate choice of n, but the higher
derivatives are not typically well-defined as operators on this ring. Instead, it makes sense
to look at D(i) : (O/mn)[T ]/(G(T )) → (O/mn−i)[T ]/(G(T )). We have not worked out the
full details of this possibility.

4. Running time estimates and finding a suitable place

We retain the notation of the previous section and especially of Algorithm 1.

Theorem 4.1. Given a place v as in the input of Algorithm 1 with [O/m : k] = d, the
algorithm runs in O(ds(pmax{m,∆})4) field operations in k.

Proof. The ring R1 is initialized in the algorithm and during its execution it is replaced by its
direct summands, of which there are at most s. From [Hes02a, Section 6.1], the computation
of the matrix M takes O(q2) operations in each ring R1 and Gaussian elimination of the
matrix M takes O(q3) operations in each ring R1. The latter dominates the former. The
initial ring R1 is a vector space over O/m of dimension sq, so we can bound the running time
of these calculations as O(sq4) operations in O/m. Using now that q ≤ pmax{m,∆} we
arrive at a running time of O(s(pmax{m,∆})4) operations in O/m. If we let d = [O/m : k],
we finally arrive at O(ds(pmax{m,∆})4) operations in k. □

Remark 4.2. There are faster algorithms in the special cases of most interest, e.g. k finite,
K = k(x) [Lec10, Wei17] (e.g. [Lec10, Theorem 1], seems to translate to a running time
of O(ds(max{m,∆})3) field operations in k) or finding a root of G(T ), again for k finite
[GS00]. There does not seem to be an algorithm with the same generality and flexibility with
a stated running time for direct comparison.

It remains to make explicit how to find a suitable place v and compute d. We are given
a function field K/k and f ∈ K, f ̸= 0, we need to construct a place v of K such that
v(f) = 0, as well as an uniformizer for this place. Without loss of generality, we assume that
k is finitely generated over its prime field. We can also assume that f /∈ k, for otherwise the
condition v(f) = 0 is automatic and we can replace f by an element of K \ k in order to
produce the place v. Under this additional hypothesis, there are only at most 2[K : k(f)]
places of K with v(f) ̸= 0 as [K : k(f)] =

∑
v max{0, v(f)} = −

∑
v min{0, v(f)}. Hence,

to find v it suffices to generate enough places of K until a place with v(f) = 0 is found. It
seems that such a search is, at the moment, unavoidable. In the case k finite, K = k(x),
for example, f(x) = a(x)/b(x), a(x), b(x) ∈ k[x] and all that is required is an element α
(possibly in an extension of k) with a(α)b(α) ̸= 0 which can be found by a simpleminded
search over a suitably large extension of k. However, such a search can be more difficult
in the generality we work with and some of the literature seems to gloss over this point.
We assume K/k(f) separable. For a general discussion of how to reduce to this case, see
[Ste05]. Then K = k(f, g) for some g ∈ K and there is P (x, y) ∈ k[x, y], P (f, g) = 0. We
then find α ̸= 0 in k or in an extension field such that P (α, y) is separable. There is a
place of K corresponding to each irreducible factor of P (α, y) over k(α) and, if m(x) is the
minimal polynomial of α over k, then m(f) is an uniformizer for any such place, as m(f)
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is an uniformizer for the corresponding place of k(f) which, by construction, is unramified
in K. An easy way of ensuring that P (α, y) is separable is to require that it be irreducible
in k(α)[y]. This has the advantage that irreducibility tests are easier than factorization and
that m(x) = x−α in this case. On the other hand, this makes the degree of the place bigger.

Assume first that k is a finite field. This case is discussed in [GS00, Algorithm 3.2] with
some additional assumptions which are relevant there but not here, so we just give a simplified
discussion. Basically, one just searches for α in k or an extension thereof until one is found
with P (α, y) is irreducible in k(α)[y]. Chebotarev’s density theorem implies that α exists if
#k is large enough in terms of [K : k(f)] and the genus of K. It is worth pointing out that
we may not have a suitable place with residue field k or even an extension of k of small degree
as we can see by considering a simple example such as G(T ) = T p−(xpn−x)T+1 ∈ Fp(x)[T ]
(which has f = ±(xpn − x)p).

The case where k is not algebraic over its prime field can be tackled as follows. Let k0
be the algebraic closure in k of its prime field. Then K and k are respectively the function
field of varieties X, Y over k0 with a map X → Y of relative dimension 1. We realize X
as a hypersurface of projective space and intersect X with random hypersurfaces. As long
as these hypersurfaces intersect X in an irreducible subset that is not a component of the
divisor of f and is transversal to the generic fiber of the map X → Y , such a hypersurface
will define a place of K/k satisfying our requirements and the equation of the hypersurface
is the uniformizer we need. The version of Bertini’s theorem over finite fields from [CP16]
guarantees that, for high enough degree, most hypersurfaces satisfy our conditions. Checking
irreducibility can be done using the main algorithm of this paper (applied to a field of smaller
transcendence degree) and the other conditions can be checked directly. Alternatively, one
can use the explicit version of Hilbert’s irreducibility theorem for function fields from [BSE21]
to estimate how far one might need to search.

5. Other applications

5.1. Arithmetic properties. As mentioned in the introduction, [Rup99] has a bound on
the size of the largest prime p for which an irreducible polynomial in Z[x, y] factors modulo
p. We substantially extend this result. We will consider polynomials in K[T ] where K/k is
a function field and k itself is a global field. We impose no restriction on the characteristic
of k. We can associate a height to elements of k in the usual way ([Lan83, Chapter 3, §3]),
namely, for a ∈ k, the height of a is −

∑
v min{0, v(a)}, where v runs through the places of

k. If we represent K as a finite extension of k(x) for some transcendental element x of K,
for an element a ∈ K, there is a polynomial P (x, y) ∈ k[x, y], P (x, a) = 0 of minimal degree.
We call the coefficients (in k) of P simply the coefficients of a and use the maximum of their
heights as a measure of the complexity of a. Given G(T ) ∈ K[T ], for all but finitely primes
p of k, we can consider the reduction of G(T ) modulo p.
Theorem 5.1. Let k be a global field, K/k a function field and G(T ) ∈ K[T ] an irreducible
polynomial, as in equation 2.2 and define ∆ as in equation 3.1. Let H be the maximum height
of the coefficients of the ai. The norm N(p) of the primes p of k for which the reduction
of G(T ) modulo p is either undefined or reducible satisfies N(p) = O(H(∆+1)3), where the
implied constant depends on s,∆.
Proof. Since G(T ) is assumed irreducible, the matrix M in Algorithm 1 has maximal rank
and so a maximal minor has non-zero determinant. Note that ∆ + 1 is a bound for the
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number of columns (hence also of rows) of M . We now compute M with entries in R (with
no restriction on the characteristic of k). It follows by induction from equation 2.3 that
the height of the coefficients of D(i)(tj) is O(H ij) = O(H(∆+1)2), hence the height of the
coefficients of the (non-zero) determinant of a maximal (∆ + 1) × (∆ + 1)-minor of M is
O(H(∆+1)3). But for the reduction of G(T ) modulo p to be either undefined or reducible, p
needs to divide the determinant of this minor and the result follows. □

In the case where k = Fq(Z), the approach of the previous theorem can be used to prove a
proximity gap statement (in the sense of [BSCI+20,BLNR22]) for Algebraic Geometry codes.

5.2. List decoding. A different application concerns the the Guruswami–Sudan list-decoding
algorithm for Reed–Solomon or Algebraic Geometry codes [GS00]. If one has a fixed code,
there are fixed finite dimensional k-vector spaces V0,W0, . . . ,Ws−1 ⊂ K and, for each re-
ceived message, a polynomial G(T ) ∈ K[T ] is constructed with coefficients ai ∈ Wi (the
precise construction is irrelevant at the moment), for which we want to know its roots in V0.
That is precisely the problem we dealt with above, with r = 1.

For an alternative approach to improving the factorization step of the Guruswami–Sudan
algorithm, see [AP00]. Additionally, [AP00, Theorem 5] provides an alternative way of find-
ing a suitable place (in the sense of Section 4) to be used in either approach to factorization
in the context of the Guruswami–Sudan algorithm.

For a prime power q and an integer k, 1 ≤ k ≤ q, the Reed-Solomon code RSk(q) is the
subspace of the q-dimensional space of functions Fq → Fq corresponding to the functions
represented by a polynomial f(x) ∈ Fq[x], deg f < k. Define, as usual for g1, g2 : Fq → Fq,
the Hamming distance d(g1, g2) = #{α ∈ Fq | g1(α) ̸= g2(α)}.

McEliece [RJM03] has shown that, for a fixed Reed-Solomon code, most invocations of the
Guruswami–Sudan algorithm output a list of codewords of size 0 or 1. We will strengthen
this result and show that, for a certain range of Reed-Solomon codes, for most invocations
of the Guruswami–Sudan algorithm, the polynomial G(T ) ∈ K[T ] has at most one root in
V0, so we can take full advantage of our factoring algorithm’s enhanced perfomance in this
situation. Our result is meant to be illustrative and one might expect a similar result in
much greater generality.

The following proposition sets the stage for our result and is a special case of Sudan’s
original precursor [Sud97] to the Guruswami–Sudan algorithm.

Proposition 5.2. Assume (q+5)/10 < k ≤ q/8 and that g : Fq → Fq is any function. Then
there exists a non-zero polynomial G(x, y) = a0(x) + a1(x)y + a2(x)y

2 + a3(x)y
3 + a4(x)y

4 ∈
Fq[x, y] with deg ai ≤ (4−i)(k−1), i = 0, . . . , 4 such that ∀α ∈ Fq, G(α, g(α)) = 0. Moreover,
if f(x) ∈ RSk(q) satisfies d(f, g) ≤ [q/2] then G(x, f(x)) is identically zero.

Proof. Each condition G(α, g(α)) = 0 is a linear equation on the coefficients of the ai. The
total number of coefficients is

∑4
i=0((4−i)(k−1)+1) = 10k−5 > q, by hypothesis. So there is

a G, as prescribed. If f(x) ∈ RSk(q) satisfies d(f, g) ≤ [q/2] then G(x, f(x)) is a polynomial
with at least q/2 zeros but, since deg f ≤ k− 1, we have degG(x, f(x)) ≤ 4(k− 1) < q/2 by
hypothesis, hence G(x, f(x)) is identically zero. □

So, as mentioned above, given such G, we need to find its factors of the form y −
f(x), deg f < k to find the elements f(x) ∈ RSk(q), d(f, g) ≤ [q/2] and, by construction,
there are at most 4 such. This is the “list” in the list-decoding algorithm. It is easy to see
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that, for most choices of g, the list is empty. Indeed, there are qq possible g’s and at most
qk

∑[q/2]
i=0

(
q
i

)
(q − 1)i of those satisfy d(f, g) ≤ [q/2] for some f ∈ RSk(q) and the sum is

asymptotic to qk+q/2+o(q), hence bounded above by q5q/8+o(q), much smaller than qq.
More interestingly, McEliece [RJM03] has shown that, for most choices of g such that there

exists some f ∈ RSk(q) with d(f, g) ≤ [q/2], the f is unique. It follows that qk+q/2+o(q) is the
correct order of magnitude for the number of g with d(f, g) ≤ [q/2] for some f ∈ RSk(q).
The following result strengthens this result by showing that, for most choices of g such that
there exists some f ∈ RSk(q) with d(f, g) ≤ [q/2], any polynomial G, output of Proposition
5.2, has only one factor of the form y − f(x), deg f < k. This justifies our claim that a
factoring algorithm that performs better when there is only one factor of prescribed type
improves the running time of the list decoding algorithm.

Theorem 5.3. Assume (q + 5)/10 < k < q/8. Among those g : Fq → Fq such that there
exists some f ∈ RSk(q) with d(f, g) ≤ q/2, the number of those for which a polynomial G,
output of Proposition 5.2, has more than one factor of the form y − f(x), deg f < k is at
most q5k+o(q).

Proof. We assume that d(f0, g) = δ ≤ [q/2], for some f0 as above. Replacing g by g − f0,
where f0 is one choice, we can assume f0 = 0. By Proposition 5.2, G(x, y) = yH(x, y),
for some H. Moreover, H(α, g(α)) = 0 for δ values of α. We split the proof in two cases,
depending on whether or not there exists α ∈ Fq with H(α, y) identically zero.

Suppose first that there is no such α. The number of g’s for a given choice of H is at most(
q
δ

)
3δ. Indeed, there are

(
q
δ

)
choices for a subset of size δ of Fq and, for each α in this subset,

at most 3 choices for a solution of H(α, y) = 0 as H is cubic in y (for the α outside of the
subset we set g(α) = 0). If, in turn, H(x, y) = (y − f(x))S(x, y) with f ∈ RSk(q) and

S(x, y) = b0(x) + b1(x)y + b2(x)y
2, deg bi ≤ (2− i)(k − 1), i = 0, 1, 2,

we can count the number of coefficients, namely k for f and 3k for the bi’s. Hence at most q4k
possible such H’s and at most

∑
δ≤[q/2]

(
q
δ

)
3δq4k possible such g’s. If we now allow the initial

f0 to vary (as opposed to be set to f0 = 0) we end up with a total of at most
∑

δ≤[q/2]

(
q
δ

)
3δq5k

for the count of the theorem and this is at most q5k+o(q), as desired.
Let’s now assume that there are α ∈ Fq with H(α, y) identically zero and let c(x) be the

monic polynomial that has these α’s as roots. Since the coefficient of y3 in H(x, y) as a
polynomial in y is constant, we conclude in this case that it is zero. We can then write H
(in the case that G has a second root f ∈ RSk(q)) as

H(x, y) = c(x)(y − f(x))(b0(x)/c(x) + (b1(x)/c(x))y).

If we fix deg c = m, the number of possible H’s is at most qmqkq2k−mqk−m = q4k−m by
counting the number of possible c, f, b0/c, b1/c respectively. The number of g given H is
bounded above by 3q−mqm by counting the options for g(α) when c(α) ̸= 0 or c(α) = 0,
respectively. So, the count in this case is at most q4k+o(q) and again, allowing m and the
initial f0 to vary (as opposed to be set to f0 = 0) we end up with a total of at most q5k+o(q)

g’s, completing the proof.
□

We note that 5k < k + q/2 if k < q/8 which justifies the claim made immediately before
the theorem. We also note that there are functions, as in the statement of the theorem, for
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which G has more than one factor of the required form. For example, if q is even, we can
take any g that takes only values 0, 1 each q/2 times. Then G = y(y + 1) is an output of
Proposition 5.2 for this g.

Finally, we note that Algorithm 1 vastly simplifies in the context of Proposition 5.2. In
this case K = Fq(x), T = y, r = 1. The vector Φ is (1, x, x2, . . . , xk−1, y), m = k,∆ = 4k
and the matrix M is already in echelon form with rows (0, 0, 0, . . . , 0, D(ε)(y)) after the first
k rows. The only real computation is to express the pivots D(ε)(y) as elements of R1 and do
the computations producing the splitting of R1 in subrings from Subsection 2.2. As we want
to detect whether y is a polynomial of degree < k, it is enough to check whether D(ε)(y) = 0
for k ≤ ε < q and depending on the base-p expansion of k, only a few values of ε need to be
checked, e.g. if k is a power of p, then only the powers of p satisfying k ≤ ε < q need to be
checked.
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