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Abstract. We state a general purpose algorithm for quickly finding primes

in evenly divided sub-intervals. Legendre’s conjecture claims that for every
positive integer n, there exists a prime between n2 and (n+1)2. Oppermann’s

conjecture subsumes Legendre’s conjecture by claiming there are primes be-

tween n2 and n(n+1) and also between n(n+1) and (n+1)2. Using Cramér’s
conjecture as the basis for a heuristic run-time analysis, we show that our

algorithm can verify Oppermann’s conjecture, and hence also Legendre’s con-

jecture, for all n ≤ N in time O(N logN log logN) and space NO(1/ log logN).
We implemented a parallel version of our algorithm and improved the empir-

ical verification of Oppermann’s conjecture from the previous N = 2 · 109 up

to N = 7.05 · 1013 > 246, so we were finding 27 digit primes. The computa-
tion ran for about half a year on each of two platforms: four Intel Xeon Phi

7210 processors using a total of 256 cores, and a 192-core cluster of Intel Xeon

E5-2630 2.3GHz processors.

1. Introduction and Motivation

In his work on number theory, Adrien-Marie Legendre conjectured that for every
positive integer n there is always a prime between n2 and (n + 1)2. In 1882,
the Danish mathematician Ludwig Oppermann strengthened the conjecture. He
posited the existence of two primes between each of n2, n(n+ 1), and (n+ 1)2.

While it is commonly believed that these conjectures are true, we remain far
from proving them. After all, Legendre’s conjecture implies a gap between primes
p that is of size O(

√
p). Even the Riemann hypothesis would only give O(

√
p log p).

Our goal is to create an algorithm to computationally verify Oppermann and
Legendre’s conjectures as far as possible. The previous record for this is n ≤ 2×109,
as a consequence of a massive computation that found all primes up to 4 × 1018

due to [12]. We have extended this to n ≤ 7.05× 1013 > 246.
While the correctness of our algorithms will be proved unconditionally, we need

conjectures even stronger than Legendre’s conjecture to provide any meaningful
asymptotic analysis of the algorithm. We will rely on the probabilistic model that
undergirds Cramér’s conjecture. Namely, that if you choose a random number less
than x, then it is expected to be prime with probability 1/ log x. Throughout, we
assume Oppermann’s conjecture is true. Of course it may not be true, and our
algorithms will detect a counterexample interval if there is one below N , but for
the purposes of asymptotic runtime analysis we assume this will not happen. We
present algorithms to verify an unproven conjecture; if the conjecture is false, no
such algorithm can exist.

The organization of the paper is as follows. In Section 2, we give some back-
ground on prime gaps and state the heuristic model we will use for asymptotic
analysis. Since we believe that this is the first computation specifically aimed at
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empirical verification of Legendre’s conjecture, we use Section 3 to discuss three in-
creasingly better but more complicated algorithms that provide context for our
work. In particular, we observe that the best prime sieve algorithms take at
least logN/ log logN time on average per prime found up to N . Since our al-
gorithm must find 2N primes, this implies a heuristic asymptotic lower bound of
N logN/ log logN for our problem. In Section 4, we state our algorithm and Sec-
tion 5 provides the asymptotic analysis of the running time and space used by our
algorithm. Specifically, we show that our algorithm has a heuristic running time
of O(N logN log logN) arithmetic operations, only a factor of (log logN)2 above
the lower bound, while using NO(1/ log logN) space. We conclude with some timing
information, details of our computation, and comments about the implementation
in the final section.

2. Prime Gaps

We know from the prime number theorem that π(x), the number of primes ≤ x,
is asymptotically x/ log x. If we were to choose an integer uniformly at random
below x, then the probability it is prime is asymptotic to 1/ log x as a result, and
further, we assume independence. Of course, primes are not random, but using
this idea to predict the distribution of primes under various conditions has proven
to be very useful. Indeed, Cramér conjectured that the maximum gap between
consecutive primes near n is O((log n)2) based on this model, and as a result we
refer to this as Cramér’s Model. The massive computation from [12] has shown
the model works well in practice. See [6] for a discussion of the model and references
to other work on prime gaps and related conjectures. See also [5, §1.4].

We state a couple simple but useful consequences.

Lemma 2.1. Assuming Cramér’s model, the probability that all integers from a set
of size log n log v near n are composite is at most O(1/v), for large n.

Proof. Assuming independence, this probability is(
1− 1

log n

)logn log v

∼ e− log v =
1

v
.

□

Setting v = n gives Cramér’s conjecture.
Let M be a positive integer. Next, we apply Cramér’s model to primes in

arithmetic progressions. By Dirichlet’s theorem [2] we know that, asymptotically,
there are x/(ϕ(M) log x) primes ≤ x in each of the ϕ(M) residue classes a modulo
M where gcd(a,M) = 1. Here ϕ(M) is Euler’s totient function. This means
an integer chosen uniformly at random from a fixed residue class modulo M , for
example 1 mod M , is prime with probability M/(ϕ(M) log x).

Lemma 2.2. For positive integers n, b, and v, let M be a positive integer that
is a multiple of all primes p ≤ b. Assuming Cramér’s model, the probability that
log n log v/ log b integers near n that are all relatively prime to M are all composite
is at most O(1/v), for large n and b tending to infinity as a function of n.
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Proof. WLOG we can assume all the integers are in the same residue class modulo
M . Let m =

∏
p≤b p, which divides M . Then we have

M

ϕ(M)

1

log n
≥ m

ϕ(m)

1

log n

=
1

log n

∏
p≤b

p

p− 1

=
1

log n

∏
p≤b

1− 1

p

−1

∼ 1

log n
eγ log b

by Mertens’s theorem [9]. Following the lines of the previous lemma, the result
follows. □

3. Three Algorithms

Of course we can do better than finding all primes up to N2, which is what was
done in [12]. In this section we outline three increasingly better, but increasingly
more complicated, ways to do this that illustrate the design choices for our new
algorithm, which is described in detail in the next section.

3.1. Algorithm A. One way to verify Oppermann’s conjecture for all n ≤ N
would be, for each n, to test n2 + 1, n2 + 2, . . . for primality until we find a prime.
Then test n(n+ 1) + 1, n(n+ 1) + 2, . . . and do the same. We can employ some of
the techniques outlined in [14] to make this efficient:

• We can do a small bit of trial division and use base-2 strong pseudoprime
tests to quickly discard composites. We can easily do this so that the
average time spent on each composite is at most O(log n).

• We need an unconditional, fast proof of primality. If we are willing to
assume the ERH for runtime analysis (not correctness) the pseudosquares
prime test [11] takes O((log n)3) arithmetic operations. Otherwise we can
use AKS [1, 4], in O((log n)4) time.

By Cramér’s model, we expect to find each desired prime after ruling out O(log n)
composites on average. Since we are finding 2N primes, the overall runtime of
Algorithm A is O(N(logN)3) under the ERH and O(N(logN)4) without.

Lemma 3.1. Assuming Cramér’s model, Oppermann’s conjecture, and the ERH,
Algorithm A can verify that Opperman’s conjecture is true for n ≤ N in O(N(logN)3)
expected arithmetic operations. This assumes a suitable table of pseudosquares has
been precomputed. The ERH is used only for the running time, not for correctness.

3.2. Algorithm B. How much better can we do than an O(N(logN)3) running
time? The Atkin-Bernstein prime sieve [3] can find all primes up to N in time
O(N/ log logN) with the use of a wheel, which is only logN/ log logN time per
prime. This implies a heuristic lower bound of N logN/ log logN to find N primes.
Because the primes we want to find are spread out, it makes sense to sieve an
arithmetic progression. Say we choose a modulus M near N/4 logN , so that the
residue class 1 mod M has about N2/M ≈ 4N logN integers up to N2. Applying
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Cramér’s model to this arithmetic progression implies we expect to find that around
2N of these numbers are prime, since log(N2) = 2 logN . Now the Atkin-Bernstein
sieve takes linear time on an arithmetic progression, since it is not generally possible
to deploy a wheel, but by embedding small primes in M we can keep the log logN
time improvement, thereby matching the desired time bound.

Algorithm B has two major drawbacks. First, it uses space linear in N . Because
we are finding primes in an arithmetic progression, we cannot employ Galway’s
space improvement [7], and so the necessary space will be the square root of the
upper bound, hence N . Note that Helfgott’s sieve has the same drawback [10].
Second, although Cramér’s model tells us that we can expect to find a prime among
2 log n integers of size n2, there is no guarantee. To get the probability of failing to
find a prime in such a set down to 1/N or less means we need to sample ≫ (logN)2

integers by Lemma 3.1. Remembering that we put small primes in M can lower
this to (logN)2/ log logN by Lemma 3.2, but we now need an overall running time
of O(N(logN)2/ log logN).

Lemma 3.2. Assuming Cramér’s model and Oppermann’s conjecture, Algorithm
B can verify that Oppermann’s conjecture is true for all n ≤ N with probability
1− o(1) in time O(N(logN)2/ log logN) using O(N) space.

To get the space use down to N c for some c < 1 will incur a higher runtime
cost. This seems to be true even if we use a variant of the sieve of Eratosthenes
and choose to allow sieving by non-primes. See, for example, [13].

3.3. Algorithm C. Linear space use is not practical if we want to extend sig-
nificantly beyond N = 2 × 109. Our third method is to take Algorithm A, but
apply it to an arithmetic progression like we used in Algorithm B but without
the sieve to save space. We choose a prime R, with R > (N2)1/3 = N2/3 and
set our modulus M = Rm, where m is composed of small primes such that M
is roughly N/(logN)2 in size. If we set a ≡ n2 mod M , then we would check
n2 + (M − a) + 1, n2 + (2M − a) + 1, . . . for a prime to search the arithmetic
progression 1 mod M . The benefit of this is that we can use the Brillhart-Lehmer-
Selfridge (BLS) prime test (see [5, Theorem 4.1.5]) with the prime R dividing ℓ− 1
for each integer ℓ we test for primality; this specialized test is very fast with a
running time of O(log n) arithmetic operations. If m contains all primes up to,
say, 0.2 log n, the probability of an integer that is 1 mod M being prime is then
roughly log log n/(2 log n) by Lemma 2.2. This implies an overall running time
of O(N(logN)2/ log logN), matching Algorithm B’s runtime while using a small
fraction of the space.

Lemma 3.3. Assuming Cramér’s model and Oppermann’s conjecture, Algorithm
C can verify that Oppermann’s conjecture is true for n ≤ N with probability 1−o(1)
in time O(N(logN)2/ log logN) using O(logN) space.

In the next section, we describe the final version of our algorithm, which utilizes
many of the ideas described in this section. In particular, we combine Algorithm
C with limited sieving to achieve an O(N logN log logN) running time, a mere
(log logN)2 factor off our heuristic lower bound.
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4. Our approach

The next new idea is to sieve in small batches. We choose a parameter t and in
one batch, or segment as we call it, sieve the arithmetic progression 1 mod M over
the range n2 to (n+ t)2, hoping to find 2t roughly evenly-spaced primes. We refer
to the portion of the segment where we find one prime, either between (n+ i)2 and
(n+ i)(n+ i+1) or between this and (n+ i+1)2, as an interval. Thus each segment
contains 2t intervals.

We now give the main steps of the algorithm, with comments to follow. The
algorithm accepts starting values n and t, and as we said before, it will verify
Oppermann’s conjecture over the segment n2 to (n+ t)2, thereby finding 2t primes.
This is then continued by updating n := n + t and repeating the process until
everything is verified up to N . In the next section, we will pin down a value to use
for t to optimize the asymptotic running time, but it will be no larger than a small
fractional power of N . We assume here that t = o(n).

(1) Set parameters. Let s denote the minimum number of values to check
in a given interval. We choose s so that, by Cramér’s model, one of these
candidates is highly likely to be prime. For now, it is safe to assume that
s = log(n2) = 2 log n.

From a precomputed list of primes, choose a prime R with R > (n +
t)2/3 so that R can be used to prove primality for potential primes in
the current segment that are 1 mod R using the Brillhart-Lehmer-Selfridge
(BLS) prime test mentioned above. We then construct a modulus M where
M = Rm with m composed of small primes, with 2 | m. We want to find
2t primes, so we need

2ts ≈ (n+ t)2 − n2

M

or, after some simplifications, M ≈ (n + t/2)/s. This means m ≈ (n +
t/2)/(Rs). So set m = 2 · 3 · 5 · · · until m is the correct size.

(2) Set up bit vector for sieving. Let q := ⌈n2/M⌉ so that Mq + 1 is the
smallest integer larger than n2 that is 1 mod M . Create a bit vector x of
length roughly 2ts, initialized to all zeros, where the ith bit position in x
represents whether M(q + i) + 1 is not prime; so putting all zeros means
we assume all of these integers are potentially prime to begin with.

(3) Sieve by small primes. We sieve x by all primes p ≤ B, with gcd(p,M) =
1, where B is determined in the next section. We want B to be of roughly
the same magnitude as the length of x, or 2ts. So B = o(N).

For each such prime p, we compute the first bit position j such that
M(q + j) + 1 is divisible by p, and then set that bit position and every
pth bit position after that in x, as is done in the sieve of Eratosthenes for
arithmetic progressions.

(4) Look for primes. We repeat this next step 2t times, once for each interval:
there are two cases (I and II) and we run this for i = 0 . . . (t − 1) on both
cases.

In case (I), we are looking for a prime between (n+i)2 and (n+i)(n+i+1),
and in case (II) we are looking between (n+ i)(n+ i+ 1) and (n+ i+ 1)2.
We will describe case (I); case (II) is similar.
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Compute the value of qi, the smallest integer such that M(q+ qi) + 1 >
(n + i)2. Then search for the first j, j = qi, qi + 1, qi + 2, . . . so that bit
position j in x is still a zero. Then test M(q + j) + 1 for primality using
the BLS test. If it is prime, we are done with this interval. If not, continue
trying larger values of j until either a prime is found or M(q+j)+1 reaches
(n+ i)(n+ i+ 1).

We expect to find a prime, but with some small frequency we will fail. In
this case, we have up to 4 other primes R to try, in the style of Algorithm
C. Since sieving is not used, we would resort to some trial division instead.
If this all fails to find a prime (that is, if we exhaust our precomputed list
of primes R), then we run Algorithm A on the interval. In practice, this
was never necessary.

With the details of our algorithm set, we optimize for t, s, and B in the next
section.

5. An analysis

In this section we give the overall heuristic running time of our algorithm from the
previous section. We reiterate that this analysis is heuristic; we assume Cramér’s
model, and we assume Oppermann’s conjecture is true. Also note that the algorithm
we analyze is not exactly the same as the code we wrote. For example, in our code
we fixed s = 128, but below we will choose s = log(n + t) for the purposes of
analysis.

We also make the implicit assumption below that n ≥
√
N , say, so that n is large

and we can write log(n + t) = O(log n) unambiguously. Of course the algorithm,
as we coded it, works in practice for all n ≤ N .

Our model of computation is an algebraic RAM. We assume basic arithmetic
operations take constant time.

To verify all n ≤ N , our algorithm steps from the previous section are repeated
N/t times, once for each segment. Let us now give the running time for one segment,
broken down by the four main steps.

(1) We set s to the smallest integer larger than log(n+ t). With R ≈ (n+ t)2/3,
we have that m can be as large as n1/3/ log n asymptotically. This is large
enough that the largest prime in m is ≫ log(n+ t).

The time for this step is dominated by the cost of constructing m, since
we assume the prime R is precomputed. Since the largest prime in m is
O(log n), this cost is bounded by finding the primes up to O(log n), which
is O(log n log log log n) using the sieve of Eratosthenes.

(2) The bit vector x has length 2ts = O(t log n), and the running time for this
step is linear in the length of x. Although x can be reused for different
segments, it needs to be cleared to all zeroes each time.

(3) We can find the primes up to B outside the loop over segments so that we
pay this cost only once, but asymptotically it does not matter. The cost of
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sieving is

π(B) +
∑

p≤B,gcd(p,m)=1

2ts

p

≤ π(B) +
∑

(logn)/4<p≤B

2ts

p

∼ π(B) + (log logB − log log log n)(2ts).

If we assume that (log n)/B = o(1), this is asymptotically at mostB/ logB+
2t log n log logB < B/ logB + 2t log n log log n.

Next, we set B = 2ts, the same as the size of the bit vector x, so that
the running time of this step is O(t log n log log n).

(4) For the running time of this step, we need to first determine the cost of a
single BLS prime test. This cost is a constant number of modular exponen-
tiations, or O(log n), since we can do modular multiplications in constant
time (in our computational model).

We must also calculate the time taken to scan the bit vector x to find
zero bits to construct numbers to test for primality. This is bounded by
the number of bits in x, or O(t log n).

We are searching for exactly 2t primes, so the cost of successful prime
tests is then bounded by O(t log n).

This brings us two questions:
(1) How many failed prime tests are there? and
(2) What guarantee do we have that there will be a successful prime test
in each interval?

We will now address these two questions from step 4.
When the algorithm encounters a zero bit in x and then performs a prime test,

under Cramér’s model, the chance that number is actually prime is conditional
on knowing that it is free of prime divisors below B. By Lemma 2.2, this is
O(logB/ log n) Thus, we would expect to have to test log n/ logB numbers rep-
resented by zero bits in x before finding the prime we seek. This answers the first
question.

To answer the second question, we simply need to know the chance there is a
prime in the interval. Since s ∼ log n, Lemma 2.2 applies with v = b, the bound on
primes in m. The probability there are no primes in the interval is O(1/ log n).

The cost of the last step is expected to be O(t log n(log n/ logB)) arithmetic
operations, assuming a prime is found.

To match the cost of the sieving step, O(t log n log log n), we need log log n ≫
log n/ logB, so we set B = N c/ log logN for a positive constant c like c = 1. We can
now set t = B/(2s).

With probability O(1/ log n) we failed to find a prime in the interval, but then
we use Algorithm C for an expected running time of O(t log n/ log log n), which is
negligible. We leave it to the reader to show that the chance Algorithm C fails is
exponentially rare making the expected cost of a use of Algorithm A negligible as
well.

We multiply the cost of one segment by N/t to obtain the overall running time
of O(N logN log logN) using NO(1/ log logN) space.
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Theorem 5.1. Under the assumption of Cramér’s model for the runtime analysis
only, if Opperman’s conjecture is true, our algorithm from Section 4 will verify Op-
perman’s conjecture for all n ≤ N using O(N logN log logN) arithmetic operations
and at most NO(1/ log logN) space.

6. Implementation Details

We conclude with a discussion of some of our implementation details and com-
ments on our computation.

For each of the four main steps of the algorithm, we have a few comments.

(1) In practice, we used s = 128. We adapted the value of t each segment;
our bit vector x was of a fixed size, so we chose M so that t would fall
between 256 and 512. The average value of t was around 450. This all
implies that the length of the bit vector x and the value of B were fixed at
217 = 131072, which easily fit in cache. We used the C++ bitset class for
x and the masks (see below).

We used a Sage script to precompute a 2-dimensional list of integers that
are provably prime to serve as R values. Five primes of each size are found,
and the size difference between adjacent groups of five is a multiple around
1.25. The list has a total of around 50 primes to cover the scope of our
computation.

In practice we mostly used m = 2 · 3 · 5 with a small possible additional
factor to make M fit as we described.

(2) Having bit values of 1 mean composite and 0 possibly prime is opposite
what is normally done in practice, but this works better for us as you will
see in the next comment.

(3) In addition to the sieving described above, for each of the primes p < 64
we created a mask the same data type and length as x, where all bits of
the mask are zero except at bit positions that are multiples of p, which are
set to 1. Then, to sieve by a small prime p, we first shift the mask to line
up with the start point n2, and then perform a bitwise or of the mask with
x. This should greatly speed sieving by small primes, since x is packed 64
bits to a word.

If we were to use a larger value for t so that x was much larger, the
space used by the masks might use up cache and make the program slower.
Finding the right balance for our hardware took some trial and error.

This optimization shows some improvement in practice, but should have
no effect on the asymptotic running time.

(4) To perform the BLS prime test we must construct the value of M(q+j)+1,
which fits in a 128-bit integer. However, the test itself requires modular
exponentiation. We found that converting this 128-bit integer into the
mpz t integer data type in GMP and using GMP’s modular exponentiation
function worked the best. Our own hand-coded modular exponentiation
routine, using Montgomery multiplication, was not as fast. Also, we always
used the base 2 for the prime test; if that failed, rather than trying another
base we simply looked for another j to try.

The sieving was quite successful in that the average number of failed
prime tests per interval was only around 2.
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In practice, the first prime R we used worked almost always. About one
time in 104 the second R value was used with Algorithm C. It never went
to the third R value during our computation, and we never had to resort
to Algorithm A.

Aside from the Sage script to precompute the primes used for R values, all our
code was written in C++. We used the GMP library only for prime testing as
described above, and we use MPI to parallelize the code. Parallelization was easy –
we simply striped on large groups of segments. We used groups of segments rather
than individual segments so that the value of t could be adjusted on each segment
to maximally utilize the fixed-sized bit vector x.

See https://github.com/sorenson64/olc for our code and most of our data.
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