
A HEURISTIC SUBEXPONENTIAL ALGORITHM TO FIND

PATHS IN MARKOFF GRAPHS OVER FINITE FIELDS

JOSEPH H. SILVERMAN

Abstract. Charles, Goren, and Lauter [J. Cryptology 22(1), 2009] explained

how one can construct hash functions using expander graphs in which it is
hard to find paths between specified vertices. The set of solutions to the

classical Markoff equation X2 + Y 2 + Z2 = 3XY Z in a finite field Fq has
a natural structure as a tri-partite graph using three non-commuting polyno-

mial automorphisms to connect the points. These graphs conjecturally form an

expander family, and Fuchs, Lauter, Litman, and Tran [Mathematical Cryp-
tology 1(1), 2022] suggested using this family of Markoff graphs in the CGL

construction. In this note we show that in both a theoretical and a practi-

cal sense, assuming two randomness hypotheses, one can compute paths in a
Markoff graph over Fq by factoring q − 1 and solving three discrete logarithm

problems in F∗q . In particular, the path problem can be solved in subexponen-

tial time.

Contents

1. Introduction 1
2. A High-Level Description of the Markoff Path-Finding Algorithm 4
3. Rotations on a Fiber and an Associated Matrix 5
4. Some Counting Results for Fq-Rational Points 7
5. Finding Paths in Fibers by Solving the DLP 10
6. Checking If t ∈ F∗q Is Maximally Hyperbolic 11
7. A Heuristic Assumption 12
8. The Markoff Path-Finder Algorithm 14
9. The Markoff Path Finder Algorithm in Action: An Example 15
10. Markoff-Type K3 Surfaces and the ECDLP 17
Appendix A. Proof Sketch of a General Inclusion/Exclusion Argument 18
Appendix B. Computations to Check Heuristic 7.1 21
Appendix C. The Markoff Path-Finder Algorithm and Subroutines 21
References 24

1. Introduction

The classical Markoff surface is the affine surface given by the equation

M : X2 + Y 2 + Z2 = 3XY Z. (1)

Date: June 19, 2024.

2010 Mathematics Subject Classification. Primary: 11T71; Secondary: 94A60, 05C48.
Key words and phrases. Cryptographic hash function, Markoff equation.

Silverman’s research supported by Simons Collaboration Grant #712332.

1

Submitted to Algor. Num. Th. Symp.

2 J.H. SILVERMAN

There are three double covers M → A2 that give rise to three non-commuting
involutions σ1, σ2, σ3. A famous theorem of Markoff [17] says that every positive
integer solution of (1) can be obtained from (1, 1, 1) by repeatedly applying the σi
and permuting the coordinates.

In this note we consider solutions to (1) in a finite field Fq of characteristic at
least 5. There has recently been a lot of interest in studying the orbit structure
ofM(Fq) [2, 4, 5, 8, 15, 6, 9]. Baragar [1] conjectured that the reduction modulo q
map

M(Z) −→M(Fq)
is surjective for all primes q. A recent deep result of William Chen [8], building on
ground-breaking work of Bourgain, Gamburd, and Sarnak [4, 5], says that Baragar’s
conjecture is true for all sufficiently large primes.1

More precisely, consider the three non-commuting automorphisms

ρ1, ρ2, ρ3 :M−→M
given by the formulas

ρ1 = (X,Z, 3XZ − Y), ρ2 = (3XY − Z, Y,X), ρ3 = (Y, 3Y Z −X,Z),

where ρ1, ρ2, ρ3 are obtained from σ1, σ2, σ3 by composing with appropriate coor-
dinate permutations. (The ρi are called “rotations” in [4, 5].) Let

R = 〈ρ1, ρ2, ρ3〉 ⊂ Aut(M)

be the group of automorphisms generated by the ρi, and let

M∗(Fq) =M(Fq) r
{

(0, 0, 0)
}
.

Then Chen’s theorem says that M∗(Fq) consists of a single R-orbit for sufficiently
large prime values of q.

We consider the undirected function graph (sometimes called a Schreier graph)
associated to the action of {ρ1, ρ2, ρ3} on the setM∗(Fq), i.e., we form an undirected

graph M(Fq) whose vertices and edges are given by

Vertices
(
M(Fq)

)
=M∗(Fq),

Edges
(
M(Fq)

)
=
{

[P, ρi(P)] : P ∈M∗(Fq), i = 1, 2, 3
}
.

It is conjectured in [4, 5] that M(Fq) is a family of expander graphs; see also [9].
Charles, Goren, and Lauter [7] have explained how one can build cryptographic

hash functions from expander graphs provided that it is hard to find paths in the
graph connecting two given vertices. This led Fuchs, Lauter, Litman, and Tran [10]
to suggest using the Markoff graph M(Fq) to construct a hash function. They
prove, using the connectivity ideas from [4, 5], that there is a path-finding algorithm
for M(Fq) that runs in deterministic time O(q log log q), and they speculate that

any path-finding algorithm inM(Fq) must take time at least O(q). This leads them
to suggest that “these graphs may be good candidates” for the CGL hash function
construction.

Our goal in this note is to show that under some reasonable heuristic assump-
tions, it is possible to solve the path-finding problem in M(Fq) in subexponential

1In an updated version of [4] (private communication), the authors note that the algorithm in
the present article “should allow one to check Baragar’s conjecture for much larger q. Whether it

is feasible to bridge the gap and verify the conjecture for all primes is an interesting question.”

Submitted to Algor. Num. Th. Symp.

PATHS IN MARKOFF GRAPHS 3

(in log q) time on a classical computer and in polynomial (in log q) time on a quan-
tum computer. More precisely, up to small polynomial-time tasks, it suffices to
factor q − 1 and solve three discrete logarithm problems in F∗q , as described in the
following theorem, whose proof will be given in Section 8. We note that the path-
finding algorithm is a randomized algorithm, so the time complexity upper bound
in Theorem 1.1 is average case, not worst case.

Theorem 1.1 (Markoff Path-Finding Algorithm). We set the following notation:

PATH(q) = time to find a path between points in M(Fq).
DLP(q) = time to solve the DLP in F∗q .

FACTOR(N) = time to factor N .

NEGLIGIBLE(q) = tasks that take negligible (polylog) time as a function of q, for
for example taking square roots in Fq, or iterations performed a
small multiple of (q − 1)/ϕ(q − 1) times; see Remark 1.5.

Assume that Heuristic 7.1 is valid. Then with high probability,

PATH(q) ≤ FACTOR(q − 1) + 3 · DLP(q) + NEGLIGIBLE(q).

Remark 1.2. It is well known that there are practical subexponential-time algo-
rithms for factoring (sieve methods) and discrete logarithm problems (index cal-
culus) on a classical computer; see for example [14, Chapter 3]. And there are
polynomial-time algorithms (Shor’s algorithm) for both problems on a quantum
computer; see [19, 20].

Remark 1.3. We note that the paths constructed by our Markoff path-finder
algorithm (Algorithm 1) have the following two properties that are unlikely to be
present in the paths generated by the CGL graph-theoretic hash function [7]:

• They are quite long, in the sense that the number of ρi used to connect P
to Q is almost certainly larger than, say, q1/2.

• The path connecting P toQ has long stretches in which it repeatedly applies
one of the ρi, e.g., it is almost certainly true that somewhere in the path
there is a ρk that is repeated at least q1/2 times without using the other
two ρi.

Thus one might still consider using the Markoff graph for a CGL hash function with
the proviso that long or repetitive paths are disallowed. On the other hand, the
fact that one can create paths and collisions, even of a disallowed type, may cause
some disquiet, as well as making it more difficult to construct a security reduction
proof.

Remark 1.4. In this article we have restricted attention to the classical Markoff
equation (1), but we note that the method works, mutatis mutandis, for more
general Markoff–Hurwitz type equations

a1X
2 + a2Y

2 + a3Z
2 + b1XY + b2XZ + b3Y Z

+ c1X + c2Y + c2Z + dXY Z + e = 0 (2)

that admit three non-commuting involutions.

Remark 1.5. There will be a number of estimates that depend on ϕ(q−1)/(q−1)
or its reciprocol, where we note that this quantity is the probabily that an element

Submitted to Algor. Num. Th. Symp.

4 J.H. SILVERMAN

of the cyclic group F∗q is a generator. For most N , the ratio is N/ϕ(N) is fairly
small, but it can become arbitrarily large when N is very smooth. However, this
can only happen if N is huge. More explicitly, there are classical estimates that
can be used to prove that

N

ϕ(N)
≤ 2 log logN for all N ≥ 5;

see for example [12, Sections 18.4 and 22.9] or [18, Theorem 15]. So for q of large
cryptographic size, say q < 210000, if some task requires 10(q − 1)/ϕ(q − 1) steps,
then in a worse than worst case scenario, it takes fewer than 200 steps.

We give an initial high-level description of the Markoff path-finder algorithm in
Section 2 using psudo-code (Table 1) and a picture (Table 2). A more detailed de-
scription that includes the path-finder algorithm (Algorithm 1) and its subroutines
is given in Appendix C. The proof that the Markoff path-finder algorithm finds a
path and has the indicated running time is given in Section 8. A key observation
in constructing the path-finder algorithm, as already exploited in [4, 5], is to note
that the action of the ρi on appropriate fibers ofM→ A1 is described via repeated
application of a linear transformation in SL2. (In fancier terminology, the fibers
are Gm-torsors.) This means that if we are given two points on a fiber, then finding
a power of ρi that links the given points can be rephrased as a discrete logarithm
problem, either in F∗q or in the subgroup of norm 1 elements of Fq2 .

We briefly describe the heuristic assumption required by our algorithm. Let
H(Fq) ⊂ M(Fq) be the set of points whose y-coordinate is maximally hyperbolic,
by which we mean that the polynomial T 2−3yT +1 has a root in Fq that generates
the cyclic group F∗q , i.e., such that λ is a primitive root for Fq. The setH(Fq) is quite

large, roughly ϕ(q − 1)/2(q − 1) as large as M(Fq), so in particular (Remark 1.5)

#H(Fq) ≥ 1
4 log log(q−1)#M(Fq). Our heuristic assumption says that starting from

a point in P0 ∈ M(Fq) and randomly applying ρ1 or ρ3 with equal probability, it
will not take very many iterations before we land in H(Fq).

We illustrate the Markoff path-finding algorithm in Section 9 by executing it
on a numerical example with q = 70687. We find paths between some randomly
chosen points inM(Fq), and a non-trivial loop from a point back to itself. Finally,
in Section 10 we briefly discuss a family of K3 surfaces that is analogous to the
Markoff surface (1) and its generalizations (2) and explain how path-finding on
the associated graphs can be heuristically reduced to the elliptic curve discrete
logarithm problem (ECDLP).

Acknowledgements. The author would like to thank Elena Fuchs, Igor Shparlin-
ski, and the referees for their helpful comments.

2. A High-Level Description of the Markoff Path-Finding Algorithm

For the convenience of the reader, Table 1 gives an informal description of our
heuristically subexponential algorithm for finding paths in M(Fq). In this algo-
rithm, we say that an element t ∈ F∗q is maximally hyperbolic if the quadratic

polynomial T 2− 3tT + 1 has a root λ ∈ Fq that is a primitive root, i.e., such that λ
is a generator for F∗q ; cf. Definition 3.4. The algorithm is also illustrated by the

Submitted to Algor. Num. Th. Symp.

PATHS IN MARKOFF GRAPHS 5

picture in Table 2. We refer the reader to Appendix C for a more detailed descrip-
tion of the Markoff path-finding algorithm, and to Section 8 for a proof that the
Markoff path-finding algorithm operates successfully in subexponential time.

• Input: Fq a finite field of characteristic at least 5
P,Q points in M(Fq)

• Use ρ1 and ρ3 to randomly move P in M(Fq) until reaching a point P ′

satisfying y(P ′) is maximally hyperbolic. This gives i1, . . . , iα ∈ {1, 3} such
that

P ′ = ρiα ◦ · · · ◦ ρi1(P).

• Use ρ−11 and ρ−12 to randomly move Q in M(Fq) until reaching a point Q′

satisfying z(Q′) is maximally hyperbolic. This gives j1, . . . , jβ ∈ {1, 2} such
that

Q = ρj1 ◦ · · · ◦ ρjβ (Q′).

• Let F (X,Y, Z) = X2 + Y 2 + Z2 − 3XY Z. Randomly select maximally
hyperbolic x0 ∈ F∗q until finding a value for which the quadratic equations

F
(
x0, y(P ′), Z

)
= F

(
x0, Y, z(Q

′)
)

= 0

have a solution (y0, z0) ∈ F2
q. Set

P ′′ ←
(
x0, y(P ′), z0

)
and Q′′ ←

(
x0, y0, z(Q

′)
)
.

We note that:
• P ′′ and Q′′ are on the same maximally hyperbolic x-fiber,
• P ′ and P ′′ are on the same maximally hyperbolic y-fiber,
• Q′ and Q′′ are on the same maximally hyperbolic z-fiber.

• Find a, b, c satisfying

P ′′ = ρa2(P ′), Q′ = ρb3(Q′′), Q′′ = ρc1(P ′′).

As explained in Proposition 5.1, this involves solving three DLPs in F∗q .
• Output: The list of integers (i1, . . . , iα), (j1, . . . , jβ), (a, b, c) specifies the

path

Q = ρj1 ◦ · · · ◦ ρjβ ◦ ρb3 ◦ ρc1 ◦ ρa2 ◦ ρiα ◦ · · · ◦ ρi1(P).

Table 1. High-level description of the Markoff path-finding algo-
rithm

3. Rotations on a Fiber and an Associated Matrix

The map ρ1 may be written in matrix form as

ρ1(x, y, z) =

1 0 0
0 3x −1
0 1 0

xy
z

 . (3)

Thus computing ρn1 (x, y, z) amounts to taking the nth power of the matrix
(
3x −1
1 0

)
.

Similar considerations apply to ρ2 and ρ3. This prompts the following definitions.

Submitted to Algor. Num. Th. Symp.

6 J.H. SILVERMAN

P ′′

Q′′

P ′

Q′

x-fiber

y-fiber
z-fiber

P
Q

Short random walks from P to P ′

and Q to Q′, together with three
DLP computations to find paths
P ′ → P ′′, P ′′ → Q′′, and Q′′ → Q′

Table 2. Illustrating the Markoff path-finding algorithm

Definition 3.1. For t ∈ F∗q , we set the following notation:

Lt =

(
3t −1
1 0

)
∈ SL2(Fq), λt, λ

−1
t = the eigenvalues of Lt.

We note that λt ∈ F∗q2 , and that λt is in F∗q if and only if 9t2 − 4 is a square in F∗q .

Formula (3) tells us that if we apply iterates of ρ1 to a point (x, y, z) ∈ M(Fq),
then

ρn1 (x, y, z) = (x, yn, zn) with

(
yn
zn

)
= Lnx

(
y
z

)
, (4)

and similarly for ρ2 and ρ3. This often allows us to find paths in fibers of M(Fq)
by solving a DLP in F∗q .

Definition 3.2. In [4, 5, 10], the various Lt are separated into three cases, analo-
gous to the classification of elements of SL2(R). We say that t ∈ F∗q is

hyperbolic: if λt ∈ Fq r {±1},
parabolic: if λt = ±1,

elliptic: if λt ∈ F∗q2 r F∗q .

Remark 3.3. The characteristic polynomial of Lt is T 2 − 3tT + 1, whose discrim-
inant is 9t2 − 4, so we see that

Lt is hyperbolic ⇐⇒ 9t2 − 4 ∈ F∗q
2,

Lt is parabolic ⇐⇒ 9t2 − 4 = 0,

Lt is elliptic ⇐⇒ 9t2 − 4 /∈ F∗q
2.

Definition 3.4. We say that t ∈ F∗q is maximally hyperbolic if any one of the
following equivalent conditions is true:

• Lt is hyperbolic and has order q − 1 in SL2(Fq).
• An eigenvalue λt of Lt is in Fq and generates the multiplicative group F∗q .
• There is a generator λ ∈ F∗q such that t = 1

3 (λ+ λ−1).

Submitted to Algor. Num. Th. Symp.

PATHS IN MARKOFF GRAPHS 7

4. Some Counting Results for Fq-Rational Points

In this section we give various elementary counting result for the number of Fq-
rational points in M, on fibers of M, and on certain curves associated to M, in
some cases with a maximal hyperbolicity requirement on one of the coordinates.

Proposition 4.1. For x0 ∈ Fq, we denote the fiber by

Mx0
(Fq) =

{
(x, y, z) ∈M(Fq) : x = x0

}
.

(a) Let x0 ∈ Fq. Then

#Mx0
(Fq) =

q − 1 if x0 6= 0 is hyperbolic,

q + 1 if x0 6= 0 is elliptic,

(q − 1)
[
1 +

(−1
Fq

)]
if x0 = 0,

2q
[
1 +

(−1
Fq

)]
if x0 is parabolic.

(b) Let Felliptic
q = {t ∈ Fq : t is elliptic}, and similarly for Fhyperbolic

q and Fparabolic
q .

Then

#Felliptic
q =

q − 1

2
, #Fhyperbolic

q =
q − 3

2
, #Fparabolic

q = 2.

(c) We have

#M(Fq) = q

(
1 + 3

(
−1

Fq

))
,

where the count does not include the singular point (0, 0, 0).
(d) We have

#{t ∈ F∗q : t is maximally hyperbolic} =
ϕ(q − 1)

2
. (5)

(e) We denote the set of points in M(Fq) whose y-coordinate is non-zero and
maximally hyperbolic by

M(Fq)y-max-hyp :=
{

(x, y, z) ∈M(Fq) : y 6= 0 and y is maximally hyperbolic
}
.

Then

#M(Fq)y-max-hyp =
(q − 1)ϕ(q − 1)

2
.

Proof. These results appear in various places, see for example [4, Lemmas 3, 4, 5],
but for the convenience of the reader, we include a proof. For notational conve-
nience, for the proof of Proposition 4.1, we let

Q =

(
−1

Fq

)
= (−1)(q−1)/2.

(a) If x0 ∈ F∗q is hyperbolic or elliptic, i.e., if 9x20 6= 4, then

Cx0
: U2 − 3x0UV + V 2 = −x20W 2

is a non-singular conic in P2. Therefore Cx0
∼=/Fq P1, and hence

#Cx0
(Fq) = #P1(Fq) = q + 1.

Submitted to Algor. Num. Th. Symp.

8 J.H. SILVERMAN

The two points at ∞, i.e., the points with W = 0, are defined over Fq if and only
if 9x20 − 4 is a square in F∗q , i.e., if and only if x0 is hyperbolic. Thus

#
(
Cx0

r {W = 0}
)

(Fq) =

{
#P1(Fq) = q + 1 if x0 6= 0 is elliptic,

#P1(Fq)− 2 = q − 1 if x0 6= 0 is hyperbolic.

If x0 = 0, then Mx0 reduces to y2 + z2 = 0, so

#M0(Fq) = (q − 1) [1 +Q] .

(We are not counting the singular point (0, 0, 0).) Finally, x0 is parabolic if and
only if 9x20 = 4, in which case the equation for Cx0

is (U − 3x0V/2)2 = −x20W 2.
So Cx0 is the union of two lines, and

#Cx0(Fq) =

{
2q + 1 if −1 is a square in Fq,
1 otherwise.

Since there is 1 point with W = 0, the fiber has either 2q points or is empty.
(b) The parabolic elements of Fq are those t such that t = ±2/3, so there are 2
parabolic elements. The set of hyperbolic elements of Fq is the image of the map

f : F∗q r {±1} −→ Fq, λ −→ 1

3
(λ+ λ−1). (6)

The map (6) is exactly 2-to-1 onto its image, since f(λ′) = f(λ) if and only if λ′ =
λ±1, so we find that

#Fhyperbolic
q =

q − 3

2
.

Finally, we have

#Felliptic
q = #Fq −#Fhyperbolic

q −#Fparabolic
q = q − q − 3

2
− 2 =

q − 1

2
.

(c) We use (a) and (b) to compute

#M(Fq) = #M0(Fq) +
∑
x0∈F∗q

x0 hyperbolic

#Mx0
(Fq) +

∑
x0∈F∗q

x0 elliptic

#Mx0
(Fq) +

∑
x0∈F∗q

x0 parabolic

#Mx0
(Fq)

= (q − 1)(1 +Q) +

(
#Fhyperbolic

q − 1 +Q

2

)
· (q − 1)

+

(
#Felliptic

q − 1−Q
2

)
· (q + 1)

+ #Fparabolic
q · q(1 +Q) where the 1±Q

2 compensates
for when 0 is hyperbolic or elliptic,

= (q − 1)(1 +Q) +
q − 4−Q

2
· (q − 1) +

q − 2 +Q

2
· (q + 1) + 2q(1 +Q)

= q(q + 3Q).

(Note that we are not including (0, 0, 0).)
(d) Let Gen(q) ⊂ F∗q denote the set of generators of F∗q , and consider the map

f : F∗q −→ Fq, λ −→ 1

3
(λ+ λ−1).

We want to count #f
(
Gen(q)

)
. The map f is exactly 2-to-1 onto its image,

since f(λ) = f(λ−1), except for the two points f(±1) = ± 2
3 that have only one

Submitted to Algor. Num. Th. Symp.

PATHS IN MARKOFF GRAPHS 9

pre-image. The set of generators of F∗q is invariant under inversion and does not
contain ±1, so

#f
(
Gen(q)

)
=

1

2
Gen(q).

The group F∗q is cyclic of order q − 1, so # Gen(q) = φ(q − 1), which gives (5).
(e) We compute

#M(Fq)y-max-hyp =
∑
y0∈F∗q

y0 maximally hyperbolic

#
{

(x, y0, z) ∈M(Fq)
}

=
∑
y0∈F∗q

y0 maximally hyperbolic

(q − 1) from (a),

= (q − 1) ·#{y0 ∈ F∗q : y0 maximally hyperbolic}

=
(q − 1)ϕ(q − 1)

2
from (d). �

Theorem 4.2. Let

F (X,Y, Z) = X2 + Y 2 + Z2 − 3XY Z,

let

a, b ∈ Fq satisfy ab(a2 − 4)(b2 − 4)(a− b) 6= 0,

and let Ca,b ⊂ A3 be the affine curve

Ca,b :=
{

(X,Y, Z) : F
(
X, a, Z

)
= F

(
X,Y, b

)
= 0
}
.

Then

Prob
P∈Ca,b(Fq)

(
x(P) is maximally hyperbolic

)
:=

#
{
P = (x, y, z) ∈ Ca,b(Fq) : x is maximally hyperbolic

}
#Ca,b(Fq)

≥ ϕ(q − 1)

2q
+Oε

(
q−

1
2+ε
)

(7)

≥ 1

4 log log q
+Oε

(
q−

1
2+ε
)
. (8)

Proof. We want to apply Proposition A.2 to the family of curves Ca,b parameterized
by (a, b) ∈ A2(Fq). In order to apply the proposition, we need to know that the
curves

C′a,b[n] :=
{

(P, µ) ∈ Ca,b × P1 : µ2n − 3x(P)µn + 1 = 0
}

are irreducible for all n | q − 1. We note that these curves appear implicitly in [4]
during the “Endgame”, but their irreducibility is not addressed. However, an up-
dated version of [4] now includes irreducibility proofs of the relevant curves via some
intricate algebraic calculations and via a monodromy argument.2 Proposition A.2
then gives

#
{
P ∈ Ca,b(Fq) : x(P) is maximally hyperbolic

}
≥ 1

2
ϕ(q − 1) +O

(
q−

1
2+ε
)
,

2The author has an alternative proof that is more algebro-geometric in nature using properties
of fiber products.

Submitted to Algor. Num. Th. Symp.

10 J.H. SILVERMAN

This combined with Weil’s estimate

#Ca,b(Fq) = q +O(q1/2)

gives (7), and then the discussion in Remark 1.5 gives (8). �

5. Finding Paths in Fibers by Solving the DLP

We now prove the key result that if x ∈ Fq is maximally hyperbolic, then ρ1
acts transitively on the x-fiber of M, and that we can explicitly find ρ1-paths in
the x-fiber by solving a DLP in F∗q .

Proposition 5.1. Let x ∈ F∗q be maximally hyperbolic, and let

P = (x, y, z) ∈M(Fq) and P ′ = (x, y′, z′) ∈M(Fq) (9)

be any two points on the x-fiber of M. Then there exists an n ≥ 0 such that

P ′ = ρn1 (P), (10)

and we can compute an exponent n satisfying (10) by solving a quadratic equation
in Fq and then solving a DLP in the group F∗q . (See Algorithm 2 in Table 7 for an
explicit algorithm.)

Proof. The assumption that x is maximally hyperbolic means, by definition, that
the eigenvalues λx, λ

−1
x of the matrix Lx are elements of order q−1 in F∗q . Further,

since we always assume that q > 3, we know that λx 6= ±1. This allows us to
diagonalize Lx working over Fq. Explicitly,

U =

(
1 −λ−1x
−1 λx

)
∈ GL2(Fq) satisfies ULxU

−1 =

(
λx 0
0 λ−1x

)
. (11)

(Note that λx 6= ±1 implies that U is invertible, since det(U) = λx − λ−1x .)
We first prove that ρ1 acts transitively on the x-fiber of M. To do this, we

characterize the integers m such that ρm1 fixes P = (x, y, z). Thus

ρm1 (P) = P ⇐⇒
(
y
z

)
= Lmx

(
y
z

)
from (4),

⇐⇒ U

(
y
z

)
=

(
λmx 0
0 λ−mx

)
U

(
y
z

)
from (11),

=⇒

1 is an eigenvalue of Lmx , since we know that (yz) 6= (0
0) and

that U is invertible, so U (yz) 6= (0
0) is an eigenvector

of
(
λmx 0

0 λ−mx

)
with eigenvalue 1,

⇐⇒ λmx = 1 since the eigenvalues of

(
λmx 0

0 λ−mx

)
are λ±mx ,

⇐⇒ q − 1 | m since λx has order q − 1 in F∗q .

This proves in particular that the q − 1 points

P, ρ1(P), ρ21(P), ρ31(P), . . . , ρq−21 (P) (12)

are distinct. On the other hand, Propostion 4.1 and the assumption that x is
hyperbolic tell us that the x-fiber of M has exactly q − 1 points with coordinates
in Fq, so (12) is the complete list of such point. This completes the proof that ρ1
acts transitively on the x-fiber.

Submitted to Algor. Num. Th. Symp.

PATHS IN MARKOFF GRAPHS 11

Now let P and P ′ be points (9) on the x-fiber ofM. We have just proven that ρ1
acts transitively, so we know that there exists an n ≥ 0 such that P ′ = ρn1 (P), and
we want to describe how to compute such an n. The first step is to compute λx,
which requires solving a quadratic equation. We then repeat our earlier calculation,

P ′ = ρn1 (P) ⇐⇒
(
y′

z′

)
= Lnx

(
y
z

)
from (4),

⇐⇒ U

(
y′

z′

)
=

(
λnx 0
0 λ−nx

)
U

(
y
z

)
from (11). (13)

We note that the vectors

U

(
y′

z′

)
=

(
y′ − λ−1x z′

−y′ + λxz
′

)
and U

(
y
z

)
=

(
y − λ−1x z
−y + λxz

)
are non-zero (since (y, z) 6= (0, 0) and (y′, z′) 6= (0, 0) and U is invertible) and that
they involve only the known quantities λx, y, z, y

′, z′ ∈ Fq. Hence the only unknown
quantity in (13) is n. Since the vectors are non-zero, at least one of the coordinates
of (13) gives an equation of the form αλnx = β with known α, β ∈ F∗q , so we can
find n by solving a DLP in F∗q . �

Remark 5.2. We have focused on points of M(Fq) that have a coordinate that
is maximally hyperbolic for reasons of computational and expositional simplicity.
But we note that we could also use points with a maximally elliptic coordinate,
where t ∈ F∗q is said to be maximally elliptic if Lt has order q + 1 in SL2(Fq),
or equivalently if the roots of the polynomial T 2 − 3tT + 1 generate the subgroup
of F∗q2 of index q − 1. Checking for maximal ellipticity requires a factorization
of q + 1, which could be an advantage if q + 1 is easier than q − 1 to factor. And
using maximal elliptic points would more-or-less double the probability of finding a
point having a fiber on which the associated rotation acts transitively. On the other
hand, we would then need to solve the DLP in the order q + 1 subgroup of F∗q2 ,
which is more difficult than working in Fq, although still a subexponential problem.
In any case, the algorithm still requires solving three DLPs.

6. Checking If t ∈ F∗q Is Maximally Hyperbolic

We analyze the running time of Algorithm 3 in Table 8, which checks whether
a given t ∈ F∗q is maximally hyperbolic, i.e., whether the matrix Lt =

(
3t −1
1 0

)
has

order q − 1 in SL2(Fq). Algorithm 3 is then invoked in Steps 5, 13, and 22 of the
Markoff path-finder algorithm (Algorithm 1 in Table 6).

The first step in Algorithm 3 is to find a non-zero root of

T 2 − 3tT + 1 = 0 (14)

in Fq, or show there is no such root. This is done by checking if the discrimi-
nant 9t2 − 4 of (14) is a square, and if it is, using a practical polynomial-time
square-root algorithm.

Assuming that the equation (14) has a root λ ∈ Fq, it remains to check whether λ
generates F∗q , i.e., whether λ is a primitive root. The most straightforward way to
check this is to first factor q − 1,

q − 1 =

r∏
i=1

peii ,

Submitted to Algor. Num. Th. Symp.

12 J.H. SILVERMAN

which need only be done once, and then use the elementary fact:

λ is a primitive root ⇐⇒ λ(q−1)/pi 6= 1 for all 1 ≤ i ≤ r. (15)

Hence once q − 1 has been factored, we have:(
time to check if t ∈ Fq
is maximally hyperbolic

)
=

(
time to compute
a square root in Fq

)
+

(
time to compute r
exponentiations in Fq

)
.

Since taking square roots and doing exponentiations take practical polynomial time,
and since r < log2(q), the time to check if an element of F∗q is maximally hyperbolic
is negligible.

Remark 6.1. We note that the factorization of q − 1 is used to make it easy to
check if an element of F∗q is a primitive root. However, rather than completely
factoring q − 1, we could instead use Lenstra’s elliptic curve factorization algo-
rithm [16] to find all moderately small prime factors. This is very efficient, since
the running time for Lenstra’s algorithm to factor an integer N depends on the
size of the smallest prime factor of N . We can then use the partial factorization to
create a probabilistic primitive root algorithm that has a high success rate. Thus
for example, if q ≈ 24000 and we use Lenstra’s algorithm to find all primes p < 2100

that divide q − 1, we can consider the algorithm

λ is probably a primitive root ⇐⇒ λ(q−1)/p 6= 1 for all p | q − 1, p < 2100.
(16)

The probability that (16) misidentifies an element of F∗q as a primitive root when q ≈
24000 is less than

1−
∏

p|q−1, p>2100

(
1− 1

p

)
< 1−

(
1− 1

2100

)40

≈ 1

294
,

so the probability is negligible. And even if (16) returns a false positive, the path-
finding algorithm can simply restart. Finally, we note the since factoring q − 1 and
solving the DLP in F∗q are of roughly the same order of difficulty using the best
known algorithms, the saving in only partially factoring q − 1 is minimal at best.

7. A Heuristic Assumption

In this section we describe the heuristic assumption that underlies our Markoff
path-finding algorithm. It says that a random walk inM(Fq) using the rotations ρ1
and ρ3 quickly simulates choosing points in M(Fq) randomly uniformly. We will
apply this heuristic specifically to the assertion that such a random walk has the
expected probability of landing in the set of points of M(Fq) whose y-coordinates
are maximally hyperbolic. We refer the reader to Section B for data that supports
Heuristic 7.1.

Heuristic Assumption 7.1. Let P0 ∈ M(Fq), and as in Proposition 4.1(e), we
consider the set

M(Fq)y-max-hyp :=
{

(x, y, z) ∈M(Fq) : y 6= 0 and y is maximally hyperbolic
}
.

For n ≥ 1 and for i = (i1, i2, . . . , in) ∈ {1, 3}n, define the i-path of P0 to be the set
of points

Path(i, P0) :=
{
ρi1(P0), ρi2ρi1(P0), . . . , ρin · · · ρi2ρi1(P0)

}
.

Submitted to Algor. Num. Th. Symp.

PATHS IN MARKOFF GRAPHS 13

Then for n > 4 log2(q),

Prob
i∈{1,3}n

(
Path(i, P0) ∩M(Fq)y-max-hyp 6= ∅

)
' 1−

(
1− #M(Fq)y-max-hyp

#M(Fq)

)n−2 log2(q)

≈ 1−
(

1− ϕ(q − 1)

2(q − 1)

)n−2 log2(q)

for large q.

Hence for large q, it is highly likely that a path of length roughly 4 log2(q) will include
a point whose y-coordinate is maximally hyperbolic.

Justification. To ease notation, we let

Tq :=M(Fq)y-max-hyp and Sq :=M(Fq).

It is conjectured that the collection of Markoff graphs
{
M(Fq)

}
is an expander

family. In any case, it is reasonable to assume that if we take a random path of
length greater than (say)

n0(q) := log2

(
M(Fq)

)
≈ 2 log2(q),

then the probability that we land in Tq is roughly #Tq/#Sq, i.e., the same as if we
randomly chose a point in Sq.

Hence as we randomly use ρ1 and ρ3 to “rotate” on the x-fiber and the z-fiber,
after we get to the n0(q)th point in the path, it is reasonable to view the subsequent
points in the path as being random points in Sq, at least insofar as to whether they
lie in Tq. Hence in a random path of length n > n0(q), the path contains n− n0(q)
points that each have probabilty #Tq/#Sq of being in Tq.

We then use the standard results from probability that if T ⊆ S are finite sets
and if we randomly choose m points in S (with replacement), then the probability
that we get at least one point in T is

1−
(

1− #T
#S

)m
,

and that the average number of samples taken from S before getting an element
of T is #S/#T . Applying this with m = n−n0(q) gives the first estimate. For the
second, Proposition 4.1(c,e) gives us the values of #M(Fq) and M(Fq)y-max-hyp,
which after a bit of algebra yields

1−
(

1− #M(Fq)y-max-hyp

#M(Fq)

)n
= 1−

(
1− ϕ(q − 1)

q − 1
· (1− q−1)2

2± 3q−1

)n
.

For large q, the q−1 terms are negligible, which gives the second estimate. �

Remark 7.2. We note that Remark 1.5 tells us that the probability estimate
appearing in Heuristic 7.1 satisfies

1−
(

1− ϕ(q − 1)

2(q − 1)

)n−2 log2(q)

≥ 1−
(

1− 1

4 log log q

)n−2 log2(q)

.

So for example,the probability in Heuristic 7.1 is very close to 100% for (say) 21000 <
q < 210000, even in the worst case scenario that q − 1 is very smooth (which is
when the ratio ϕ(q − 1)/(q − 1) is smallest), provided that we take n ≈ 4 log2(q).
We also note that this analysis is very pessimistic; for most initial points P0, the

Submitted to Algor. Num. Th. Symp.

14 J.H. SILVERMAN

mixing will begin almost immediately, leading to many very short paths to points
in #M(Fq)y-max-hyp.

8. The Markoff Path-Finder Algorithm

We give the proof of our main result (Theorem 1.1), which we restate for the
convenience of the reader.

Theorem 8.1 (Theorem 1.1). We set the following notation:

PATH(q) = time to find a path between points in M(Fq).

DLP(q) = time to solve the DLP in F∗q .

FACTOR(N) = time to factor N .

NEGLIGIBLE(q) = tasks that take negligible (polylog) time as a function of q,
for example taking square roots in Fq, or iterations
performed (q − 1)/ϕ(q − 1) ≤ 2 log log(q) times.

Assume that Heuristics 7.1 is valid. Then with high probability, the Markoff path-
finder Algorithm described in detail as Algorithm 1 in Table 6 will find a path
between randomly given points in the graph M(Fq) in time

PATH(q) ≤ FACTOR(q − 1) + 3 · DLP(q) + NEGLIGIBLE(q). (17)

Proof. The Markoff path-finder algorithm (Algorithm 1 in Table 6) terminates with
a list of positive integers

(i1, . . . , iα), (j1, . . . , jβ), (a, b, c)

satisfying

P ′ = ρiα ◦ ρiα−1 ◦ · · · ◦ ρi2 ◦ ρi1(P) Steps 3–10

Q = ρj1 ◦ ρj2 ◦ · · · ◦ ρjβ−1
◦ ρjβ (Q′) Steps 11–18

P ′′ = ρa2(P ′), Q′ = ρb3(Q′′), Q′′ = ρc1(P ′′) Steps 26–30

We use these to compute

Q = ρj1 ◦ · · · ◦ ρjβ (Q′)

= ρj1 ◦ · · · ◦ ρjβ ◦ ρb3(Q′′)

= ρj1 ◦ · · · ◦ ρjβ ◦ ρb3 ◦ ρc1(P ′′)

= ρj1 ◦ · · · ◦ ρjβ ◦ ρb3 ◦ ρc1 ◦ ρa2(P ′)

= ρj1 ◦ · · · ◦ ρjβ ◦ ρb3 ◦ ρc1 ◦ ρa2 ◦ ρiα ◦ · · · ◦ ρi1(P).

Hence Algorithm 1 gives the a path in M(Fq) from P to Q.
We next consider the running time of each step of the algorithm. In Step 2

we factor the integer q − 1. Once this is done, the time to check whether an
element t ∈ Fq is maximally hyperbolic is negligible; see Section 6.

In Steps 3–10 and Steps 11–18, we randomly move a point around M(Fq) and
check whether one of its coordinates is maximally hyperbolic. Heuristic 7.1 says
that each of these loops needs to look at an average of 2(q − 1)/ϕ(q − 1) points
before terminating, and as already noted, checking maximal hyperbolicity takes
negligible time once we have factored q − 1. Similarly, Theorem 4.2 says that the

Submitted to Algor. Num. Th. Symp.

PATHS IN MARKOFF GRAPHS 15

loop in Step 22 is executed no more than (roughly) 4 log log q times, with the max-
imal hyperbolicity and the square root computations taking negligible time. Hence
Steps 3–25 take average time 12(q − 1)/ϕ(q − 1) multiplied by some small power
of log(q). As explained in Remark 1.5, we have 12(q − 1)/ϕ(q − 1) ≤ 24 log log(q),
which allows us to conclude that Steps 3–25 take a neglible amount of time.

Steps 26–30 use the MarkoffDLP algorithm three times, and the MarkoffDLP al-
gorithm (Algorithm 2 in Table 7) requires taking a square root in F∗q (neglible time)
and computing a discrete logarithm in F∗q . Hence the time to execute Steps 26–30
is essentially the time it takes to compute three DLPs in F∗q .

Adding these time estimates yields (17), which completes the proof that the
Markoff path-finding algorithm terminates in the specified time. �

9. The Markoff Path Finder Algorithm in Action: An Example

We illustrate the Markoff path-finder algorithm (Algorithm 1 in Table 6) by
computing a numerical example. We take

q = 70687, q − 1 = 2 · 33 · 7 · 11 · 17,

P = (45506, 13064, 18) ∈M(Fq),

Q = (11229, 5772, 56858) ∈M(Fq).

We use a simplified version of the algorithm in which iα = 1 for all α and jβ = 1
for all β, since in practice this almost always works. Thus Steps 3–10 say to
apply ρ1 to P until the y-coordinate is maximally hyperbolic. We do a similar
computation in Steps 11–18, except now we apply iterates of ρ−11 to Q and stop
when we reach an iterate whose z-coordinate is maximally hyperbolic. Table 3
show our computations. It lists the iterates and indicates whether the appropriate
coordinate is hyperbolic or elliptic; and if the coordinate is hyperbolic, it lists o(λ),
the order of an associated eigenvalue in F∗q . We find that

y
(
ρ21(P)

)
and z

(
ρ−151 (Q)

)
are maximally hyperbolic,

so the output from Steps 3–18 are

α = 2, i1 = i2 = 1, P ′ = ρ21(P) = (45506, 40902, 10340),

β = 15, j1 = · · · = j15 = 1, Q′ = ρ−151 (Q) = (11229, 2424, 19535).

In Steps 19–25 we randomly choose x ∈ F∗q and check whether x is maximally
hyperbolic and whether the quadratic equations

F (x, 40902, Z) = 0 and F (x, Y, 19535) = 0

have solutions y, z ∈ Fq. It took 5 tries, as listed in Table 4. So the output from
Steps 19–25 consists of the two points

P ′′ = (29896, 40902, 935) and Q′′ = (29896, 595, 19535).

In Steps 26–30 we find a path on the y-fiber from P ′ to P ′′, a path on the z-fiber
from Q′′ to P ′, and a path on the x fiber from Q′′ to P ′′. This is done using the
Markoff DLP Algorithm (Algorithm 2 in Table 7), which uses Proposition 5.1 to
convert the path problem in a maximal hyperbolic fiber into a discrete logarithm
problem in F∗q . Implementing this algorithm, we find that

P ′′ = ρ269862 (P ′), Q′ = ρ651933 (Q′′), Q′′ = ρ302871 (P ′′).

Submitted to Algor. Num. Th. Symp.

16 J.H. SILVERMAN

i= 0 P= (45506, 13064, 18) y= 13064 hyperbolic, o(λ) = 1683
i= 1 ρ1(P)= (45506, 18, 40902) y= 18 hyperbolic, o(λ) = 4158
i= 2 ρ21(P)= (45506, 40902, 10340) y= 40902 hyperbolic, o(λ) = 70686

j= 0 Q= (11229, 5772, 56858) z= 56858 elliptic

j= 1 ρ−11 (Q)= (11229, 65943, 5772) z= 5772 hyperbolic, o(λ) = 35343

j= 2 ρ−21 (Q)= (11229, 6407, 65943) z= 65943 hyperbolic, o(λ) = 10098

j= 3 ρ−31 (Q)= (11229, 29942, 6407) z= 6407 elliptic

j= 4 ρ−41 (Q)= (11229, 16944, 29942) z= 29942 elliptic

j= 5 ρ−51 (Q)= (11229, 35748, 16944) z= 16944 elliptic

j= 6 ρ−61 (Q)= (11229, 2200, 35748) z= 35748 elliptic

j= 7 ρ−71 (Q)= (11229, 66363, 2200) z= 2200 elliptic

j= 8 ρ−81 (Q)= (11229, 21119, 66363) z= 66363 elliptic

j= 9 ρ−91 (Q)= (11229, 46109, 21119) z= 21119 elliptic

j= 10 ρ−101 (Q)= (11229, 47313, 46109) z= 46109 hyperbolic, o(λ) = 594

j= 11 ρ−111 (Q)= (11229, 7133, 47313) z= 47313 elliptic

j= 12 ρ−121 (Q)= (11229, 47632, 7133) z= 7133 hyperbolic, o(λ) = 5049

j= 13 ρ−131 (Q)= (11229, 47838, 47632) z= 47632 elliptic

j= 14 ρ−141 (Q)= (11229, 19535, 47838) z= 47838 hyperbolic, o(λ) = 7854

j= 15 ρ−151 (Q)= (11229, 2424, 19535) z= 19535 hyperbolic, o(λ) = 70686

Table 3. ρ1 iterates of P until reaching a maximally hyperbolic
y-fiber and ρ−11 iterates of Q until reaching a maximally hyperbolic
z-fiber

x F (x, 40902, Z) F (x, Y, 19535)

29628 irreducible irreducible
19562 irreducible (Y − 42621)(Y − 57310)
43036 irreducible irreducible
6057 (Z − 27506)(Z − 70305) irreducible
29896 (Z − 935)(Z − 45089) (Y − 595)(Y − 6503)

Table 4. Finding a point on F (x, 40902, Z) = F (x, Y, 19535) = 0

Finally, the algorithm outputs

(1, 1), (1, 1, . . . , 1), (26986, 30287, 65193),

Submitted to Algor. Num. Th. Symp.

PATHS IN MARKOFF GRAPHS 17

where the second item is a 15-tuple. We check that this gives a path from P to Q
by computing

P = (45506, 13064, 18)

ρ21(P) = (45506, 40902, 10340)

ρ269862 ◦ ρ21(P) = (29896, 40902, 935)

ρ302871 ◦ ρ269862 ◦ ρ21(P) = (29896, 595, 19535)

ρ651933 ◦ ρ302871 ◦ ρ269862 ◦ ρ21(P) = (11229, 2424, 19535)

ρ151 ◦ ρ651933 ◦ ρ302871 ◦ ρ269862 ◦ ρ21(P) = (11229, 5772, 56858) = Q.

If we run the algorithm a second time, the randomness in Steps 19–25 means that
we are likely to obtain a different path. (And if we hadn’t simplified the choices of
the iα and jβ , that randomness would also lead to different paths.) For example,
using the same (q, P,Q) as input and running the algorithm again, we obtained the
output

(a, c, b) = (26703, 52102, 29583),

which gives the path

Q = ρ151 ◦ ρ295833 ◦ ρ521021 ◦ ρ267032 ◦ ρ21(P).

We also note that we can combine a path from P to Q with a path from Q to P
to find a non-trivial loop that starts and returns to P , since it is unlikely that the
two paths will be exact inverses of one another. Indeed, running the algorithm to
find a path from Q to P , we found

(1, 1, 1), (1, 1, . . . , 1)︸ ︷︷ ︸
11-tuple

, (389, 14491, 39906),

which gives the path

P = ρ111 ◦ ρ399063 ◦ ρ144911 ◦ ρ3892 ◦ ρ31(Q).

Combining this with the first path from P to Q that we found earlier gives the loop

P = ρ111 ◦ ρ399063 ◦ ρ144911 ◦ ρ3892 ◦ ρ181 ◦ ρ651933 ◦ ρ302871 ◦ ρ269862 ◦ ρ21(P)

where we have combined the middle ρ31 ◦ ρ151 into a single ρ181 .

10. Markoff-Type K3 Surfaces and the ECDLP

In this section we briefly discuss K3 surfaces that are analogous to the Markoff
surface. These surfaces, which were dubbed tri-involutive K3 (TIK3) surfaces
in [11], are surfaces

W ⊂ P1 × P1 × P1

given by the vanishing of a (2, 2, 2) form. With appropriate non-degeneracy con-
ditions, the three double covers W → P1 × P1 give three non-commuting involu-
tions σ1, σ2, σ3 ∈ Aut(W). If the (2, 2, 2)-form is symmetric, then W also admits
coordinate permutation automorphisms, in which case we can define the analogues
of the rotations ρ1, ρ2, ρ3 ∈ Aut(W). Fuchs, Litman, Tran, and the present au-
thor studied the orbit structure of W(Fq) for various groups of autormorphisms.
In view of [10], one might consider using the graph structure on W(Fq) induced
by {σ1, σ2, σ3} or {ρ1, ρ2, ρ3} to implement the CGL [7] hash function algorithm.
However, the three fibrations W → P1 have genus 1 fibers, the Jacobians of these

Submitted to Algor. Num. Th. Symp.

18 J.H. SILVERMAN

fibrations are elliptic surfaces of rank at least 1, and the action of the automor-
phisms on fibers can be described in terms of translation by a section to the elliptic
surface. See for example [3], where this geometry is explained and explicit formulas
are provided.

Thus the Markoff path-finder algorithm, with suitable tweaks, yields a K3 path-
finder algorithm whose running time is determined primarily by how long it takes
to solve three instances of the elliptic curve discrete logarithm problem. Thus
on a classical computer, the algorithm currently takes exponential time to find
paths in W(Fq), but that is reduced to polynomial time on a quantum computer.
However, since the algorithm can look at many elliptic curves lying in the fibra-
tion W(Fq)→ P1(Fq), it may well be possible to find one whose order is fairly
smooth, in which case the ECDLP becomes easier to solve. We have not pursued
this further, but it might be interesting to see if under reasonable heuristic assump-
tions, one can solve the path-finding problem in W(Fq) in subexponential time on
a classical computer.

Appendix A. Proof Sketch of a General Inclusion/Exclusion
Argument

In this section we sketch the inclusion-exclusion argument described in [4] and
isolate the crucial irreducibility assumption. For simplicity we restrict to hyperbolic
points, but it would not be hard to do something similar for elliptic points.

Remark A.1. We have stated Proposition A.2 in the language of modern algebraic
geometry, since that seems the most natural context. But we note that in the special
case that T ⊆ Ak and C ⊂ Ak+n is a family of affine curves, we may view C as
being given by a set of equations

F1(T1, . . . , Tk, X1, . . . , Xn) = · · · = Fr(T1, . . . , Tk, X1, . . . , Xn) = 0

for some polynomials

Fi(T1, . . . , Tk, X1, . . . , Xn) ∈ Z[T1, . . . , Tk, X1, . . . , Xn].

Then for any (finite) field F and any point t = (t1, . . . , tk) ∈ Ak(F), the set of F-
rational points on the fiber of C over t is the set

Ct(F) =
{

(x1, . . . , xn) ∈ An(F) : Fi(t1, . . . , tk, x1, . . . , xn) = 0 for 1 ≤ i ≤ r
}
.

It is in this setting that we apply Propsostion A.2 to prove Theorem 4.2, using the
parameter space

T =
{

(a, b) ∈ A2 : ab(a2 − 4)(b2 − 4)(a− b) 6= 0
}

and the curve C ⊂ A2 × A3 given by the two equations

X2 + a2 + Z2 − 3XaZ = X2 + Y 2 + b2 − 3XY b = 0.

Proposition A.2 (après [4]). Let T /Z be a quasi-projective regular scheme over Z,
let C/Z→ T /Z be an irreducible flat3 family of affine curves, and let x : C → A1×T
be a non-constant T -morphism. Thus for any field F and any point t ∈ T (F), the
fiber Ct is a curve defined over F, and there is a map

x : Ct(F) −→ A1(F) = F.

3Flatness implies that the fibers over any field F are 1-dimensional and have constant geometric
genus; cf. Remark A.1.

Submitted to Algor. Num. Th. Symp.

PATHS IN MARKOFF GRAPHS 19

Then for every ε > 0 there is a constant C1(C → T , x, ε) such that the following
holds:

For each prime power q, each point t ∈ T (Fq), and each n ≥ 1, define a
curve C′t[n]/Fq by

C′t[n] :=
{

(P, µ) ∈ Ct × A1 : µ2n − 3x(P)µn + 1 = 0
}
. (18)

We make the following irreducibility assumption:

Assumption: For all n | q − 1, the curve C′t[n] is irreducible. (19)

Then4

#
{
P ∈ Ct(Fq) : x(P) is maximally hyperbolic

}
≥ 1

2
ϕ(q − 1)− C1 · q

1
2+ε.

Proof. We consider the curve family of curves C′ → T given informally as the set
of points

C′ :=
{

(P, λ) ∈ C × A1 : λ2 − 3x(P)λ+ 1 = 0
}
,

and more generally, for each n ≥ 1 we define C′[n]→ T by5

C′[n] :=
{

(P, µ) ∈ C × A1 : µ2n − 3x(P)µn + 1 = 0
}
,

so in particular C′ = C′[1].
There are natural maps

C′[n]
Fn−−−−−→

degree n
C′ −−−−−→

degree 2
C,

(P, µ) −−−−−→ (P, µn), (P, λ) −−−−−→ P,

and for each t ∈ T (Fq), we get curves C′t[n], C′t, and Ct and corresponding maps.
We note that for n | q − 1, the field Fq contains a primitive nth root of unity, so

the map Fn, which is essentially the nth power map on one of the coordinates, has
the property that

Fn : C′t[n](Fq) −→ C′t(Fq) is exactly n-to-1, (20)

except for a negligible set of points whose cardinality is bounded independent of q.6

We first estimate the size of

C′t(Fq)prim :=
{

(P, λ) ∈ C′t(Fq) : λ generates F∗q
}
.

We replace our curves with non-singular projective models, which again introduces
a negligible set of points. Then the Riemann–Hurwitz genus formula [13, Corol-
lary 2.4] tells us that the genera of the C′t[n] satisfy

g
(
C′t[n]

)
= 1 + n

(
g(C′t)− 1

)
+

1

2

∑
γ∈C′t

(eγ − 1) = O
(
n
)
,

4We remark that an analogous calculation gives the same estimate for the number of P such
that x(P) is maximally elliptic.

5Scheme-theoretically, we define an affine scheme D[n] =
{

(µ, ξ) ∈ A2 : µ2n − 3ξµn + 1 = 0
}

,
and then C′[n] is the fiber product fitting into the diagram

C′[n] −−−−−−−−→ C
↓ ↓ x

D[n]× T
proj1 × 1T−−−−−−−−→ A1 × T

6More precisely, points where C′t[n] or C′t is singular and points where Fn is ramified over Fq ,

which may vary to some extent depending on q, but are bounded in terms of the geometry
of Fn : C′[n]→ C′ over Z.

Submitted to Algor. Num. Th. Symp.

20 J.H. SILVERMAN

where the big-O constant depends only on the genus of Ct and the degree of the
map x : Ct → P1. (We also note that the map Fn is separable over Fq, since
deg(Fn) = n < q.) Then Weil’s estimate for the number of points on irreducible
curves over finite fields yields7

#C′t[n](Fq) = q +O
(
g
(
C′t[n]

)√
q
)

= q +O(n
√
q). (21)

We note that (P, λ) ∈ C′t(Fq) satisfies:

(P, λ) ∈ Fn
(
C′t[n](Fq)

)
⇐⇒ the order of λ in F∗q divides

q − 1

n
. (22)

Ignoring a negligible number of points that are singular, “at infinity,” or ramified,
we have

C′t(Fq)prim = C′t(Fq) r
⋃
n|q−1
n 6=1

Fn
(
C′t[n](Fq)

)
. (23)

We use this to calculate (omitting an O(1) term coming from the “negligible”
points)

#C′t(Fq)prim ≈
∑
n|q−1

µ

(
q − 1

n

)
#Fn

(
C′t[n](Fq)

)
using inclusion/exclusion
with (22) and (23),

≈
∑
n|q−1

µ

(
q − 1

n

)
· 1

n
#C′t[n](Fq) from (20),

=
∑
n|q−1

µ

(
q − 1

n

)
·
(q
n

+O(
√
q)
)

from (21),

= q · ϕ(q − 1)

q − 1
+O

(
d(q − 1)

√
q
)
, (24)

where d(N) is the number of divisors of N . We note that d(N) ≤ N2/ log logN for
all N ≥ 3 (and indeed, the 2 can be improved), so in particular d(N) ≤ C2(ε)N ε.
We compute

#
{
P ∈ Ct(Fq) : x(P) is maximally hyperbolic

}
≥ 1

2
#
{

(P, λ) ∈ C′t(Fq) : λ generates F∗q
}

since the map C′t → Ct has degree 2, so the
map C′t(Fq)→ Ct(Fq) is at most 2-to-1,

=
1

2
#C′t(Fq)prim

=
qϕ(q − 1)

2(q − 1)
+O

(
d(q − 1)

√
q
)

from (24),

=
1

2
ϕ(q − 1) +Oε(q

1
2+ε) since d(N) ≤ C3(ε)N ε.

7We stress that this is where we use the assumption (19) that C′t[n] is irreducible, since if it were

not, then the number of Fq-rational points would be roughly q times the number of irreducible
components. Extra factors of this sort would invalidate the inclusion-exclusion argument, which

involves summing both positive and negative terms.

Submitted to Algor. Num. Th. Symp.

PATHS IN MARKOFF GRAPHS 21

q q − 1
#M(Fq)y-max-hyp

#M(Fq)
Heuristic 7.1
Experiment

17389 22 · 33 · 7 · 23 7.320 10.032
48611 2 · 5 · 4861 5.001 6.185
55163 2 · 27581 4.000 4.662
70687 2 · 33 · 7 · 11 · 17 8.181 11.507
104729 23 · 13 · 19 · 53 4.662 5.654

200560490131 2 · 3 · 5 · · · · 29 · 31 13.085 20.230

Table 5. Experiments to test Heuristic 7.1 (100000 samples)

This completes our sketch8 of the proof of Proposition A.2. �

Appendix B. Computations to Check Heuristic 7.1

Remark B.1 (Testing Heuristic 7.1). We choose a random point P in M(Fq)
and randomly apply ρ1 or ρ3 until the y-coordinate of the resulting point is max-
imally hyperbolic. For each prime in Table 5, we compute the average value
of n for 105 randomly chosen points. We compare this with the theoretical value
2(q − 1)/ϕ(q − 1), which is the theoretical expected number of trials to find a max-
imally hyperbolic element in F∗q .

Remark B.2. We note that the experimental values in Table 5 are somewhat
larger than expected, especially when q − 1 is quite smooth. We are not sure what
is causing the discrepency, possibly the “random walks” using two rotations are
somewhat less random than expected due the presence of loops caused by colli-
sions. In any case, the experimental numbers are small enough that even for q of
cryptographic size, the number of iterations of Steps 3–10 and Steps 11–18 in the
Markoff path-finder algorithm (Algorithm 1 in Table 6) will be practical.

Appendix C. The Markoff Path-Finder Algorithm and Subroutines

The following algorithms are described in Tables 6–8 in this section.

Algorithm 1 - MarkoffPathFinder: Returns a path in M(Fq) from P to Q.
Algorithm 2 - MarkoffDLP: Returns an integer n ≥ 0 so that P = ρnk (Q) in

M(Fq).
Algorithm 3 - MaximalEllipticQ: Returns true if t is maximal hyperbolic

in F∗q , i.e., if the matrix
(
3t −1
1 0

)
has order q − 1 in SL2(Fq); otherwise

returns false. It assumes that a factorization of q − 1 is known; but see
Remark 6.1.

8The reason that we call this a sketch is we have omitted rigorously tracking the sets of singular,
ramification, and at infinity points that we have asserted are negligible in the calculation.

Submitted to Algor. Num. Th. Symp.

22 J.H. SILVERMAN

Algorithm 1 MarkoffPathFinder

Input: q,P ,Q with P,Q ∈M(Fq)
1: comment: Use a factorization algorithm to factor q− 1 and store it so that it

is accessible by subroutines.
2: PrimeFactorList← {primes that divide q − 1}
3: comment: Randomly move P using ρ1 and ρ3 until the y-coordinate is maxi-

mally hyperbolic
4: P ′ ← P, α← 0
5: while MaximalEllipticQ

(
q, y(P ′)

)
= false do

6: α← α+ 1

7: iα
$←− {1, 3}

8: P ′ ← ρiα(P ′)
9: end while

10: comment: P ′ = ρiα ◦ ρiα−1
◦ · · · ◦ ρi2 ◦ ρi1(P)

11: comment: Randomly move Q using ρ−11 and ρ−12 until the z-coordinate is
maximally hyperbolic

12: Q′ ← Q, β ← 0
13: while MaximalEllipticQ

(
q, z(Q′)

)
= false do

14: β ← β + 1

15: jβ
$←− {1, 2}

16: Q′ ← ρ−1jβ (Q′)

17: end while
18: comment: Q = ρj1 ◦ ρj2 ◦ · · · ◦ ρjβ−1

◦ ρjβ (Q′)
19: comment: Find random points with the same maximally hyperbolic x-

coordinate that can be used to connect P ′ to Q′

20: repeat

21: x
$←− F∗q

22: until MaximalEllipticQ(q, x) = true and F
(
x, y(P ′), Z

)
has a root z ∈ Fq and

F
(
x, Y, z(Q′)

)
has a root y ∈ Fq

23: P ′′ ←
(
x, y(P ′), z

)
24: Q′′ ←

(
x, y, z(Q′)

)
25: comment: • P ′′ and Q′′ are on the same maximally hyperbolic x-fiber.

• P ′ and P ′′ are on the same maximally hyperbolic y-fiber.
• Q′ and Q′′ are on the same maximally hyperbolic z-fiber.

26: comment: • Find fibral paths P ′′ → P and P ′ → Q′′ and Q′′ → P ′′.
• Proposition 5.1 ensures that such paths exist.

27: a← MarkoffDLP(q, P ′, P ′′, 2)
28: b← MarkoffDLP(q,Q′′, P ′, 3)
29: c← MarkoffDLP(q, P ′′, Q′′, 1)
30: comment: P ′′ = ρa2(P ′), Q′ = ρb3(Q′′), Q′′ = ρc1(P ′′)
Output: (i1, . . . , iα), (j1, . . . , jβ), (a, b, c)

Table 6. Returns a path in M(Fq) from P to Q

Submitted to Algor. Num. Th. Symp.

PATHS IN MARKOFF GRAPHS 23

Algorithm 2 MarkoffDLP

Input: q,P ,Q, k with P,Q ∈ M(Fq) and k ∈ {1, 2, 3} and the kth coordinate
of P maximally hyperbolic

1: comment: if k = 2 (y-fiber) or k = 3 (z-fiber), swap coordinates to use the
x-fiber

2: if k = 2 then
3: P ←

(
yP , zP , xP

)
4: Q←

(
yQ, zQ, xQ

)
5: else if k = 3 then
6: P ←

(
zP , xP , yP

)
7: Q←

(
zQ, xQ, yQ

)
8: end if
9: comment: Now xP is maximally hyperbolic.

10: λ←
(
3xP +

√
9x2P − 4

)
/2 in Fq

11: comment: The maximal hyperbolicity of xP says that λ generates F∗q .
12: b←

(
yQ − zQ/λ

)/(
yP − zP /λ

)
13: Use a DLP algorithm to find n so that λn = b in F∗q .
Output: n

Table 7. Returns an integer n ≥ 0 so that P = ρnk (Q) inM(Fq).
See Proposition 5.1 for an explanation of why this algorithm works.

Algorithm 3 MaximalEllipticQ

Input: q, t
1: result← false
2: comment: Check if T 2− 3tT + 1 has two distinct roots in Fq
3: if (9t2 − 4)(q−1)/2 = 1 in Fq then

4: λ← (3t+
√

9t2 − 4)/2 in Fq
5: result← true
6: for p ∈ PrimeFactorList do
7: if λ(q−1)/p = 1 in F∗q then
8: result← false
9: end if

10: end for
11: end if
Output: result

Table 8. Check whether t is maximally hyperbolic, or equiva-
lently, whether the matrix Lt ←

(
3t −1
1 0

)
has order q−1 in SL2(Fq),

or equivalently, whether Lt has an eigenvalue in F∗q that is a prim-
itive root.

Submitted to Algor. Num. Th. Symp.

24 J.H. SILVERMAN

References

[1] A. Baragar. The Markoff equation and equations of Hurwitz. ProQuest LLC, Ann Arbor, MI,
1991. Thesis (Ph.D.)–Brown University.

[2] E. Bellah, S. Chen, E. Fuchs, and L. Ye. Bounding lifts of markoff triples mod p, 2023.

arXiv:2311.11468.
[3] M. Bhargava, W. Ho, and A. Kumar. Orbit parametrizations for K3 surfaces. Forum Math.

Sigma, 4:Paper No. e18, 86, 2016.

[4] J. Bourgain, A. Gamburd, and P. Sarnak. Markoff surfaces and strong approximation, 1,
2016. arXiv:1607.01530, (updated Dec 2023, private communication).

[5] J. Bourgain, A. Gamburd, and P. Sarnak. Markoff triples and strong approximation. C. R.
Math. Acad. Sci. Paris, 354(2):131–135, 2016.

[6] A. Cerbu, E. Gunther, M. Magee, and L. Peilen. The cycle structure of a Markoff automor-

phism over finite fields. J. Number Theory, 211:1–27, 2020.
[7] D. X. Charles, K. E. Lauter, and E. Z. Goren. Cryptographic hash functions from expander

graphs. J. Cryptology, 22(1):93–113, 2009.

[8] W. Chen. Nonabelian level structures, nielsen equivalence, and Markoff triples, 2020. arXiv:
2011.12940.

[9] M. de Courcy-Ireland and M. Magee. Kesten-McKay law for the Markoff surface mod p. Ann.

H. Lebesgue, 4:227–250, 2021.
[10] E. Fuchs, K. Lauter, M. Litman, and A. Tran. A cryptographic hash function from Markoff

triples. Mathematical Cryptology, 1(1):103–121, Jan. 2022.

[11] E. Fuchs, M. Litman, J. H. Silverman, and A. Tran. Orbits on K3 surfaces of Markoff type. Ex-
perimental Math., published online 03 Aug 2023. doi.org/10.1080/10586458.2023.2239265.

[12] G. H. Hardy and E. M. Wright. An introduction to the theory of numbers. Oxford University
Press, Oxford, sixth edition, 2008. Revised by D. R. Heath-Brown and J. H. Silverman, With

a foreword by Andrew Wiles.

[13] R. Hartshorne. Algebraic geometry. Graduate Texts in Mathematics, No. 52. Springer-Verlag,
New York-Heidelberg, 1977.

[14] J. Hoffstein, J. Pipher, and J. H. Silverman. An introduction to mathematical cryptography.

Undergraduate Texts in Mathematics. Springer, New York, second edition, 2014.
[15] S. V. Konyagin, S. V. Makarychev, I. E. Shparlinski, and I. V. Vyugin. On the structure of

graphs of Markoff triples. Q. J. Math., 71(2):637–648, 2020.

[16] H. W. Lenstra, Jr. Factoring integers with elliptic curves. Ann. of Math. (2), 126(3):649–673,
1987.

[17] A. Markoff. Sur les formes quadratiques binaires indéfinies. Math. Ann., 17(3):379–399, 1880.

[18] J. B. Rosser and L. Schoenfeld. Approximate formulas for some functions of prime numbers.
Illinois J. Math., 6:64–94, 1962.

[19] P. W. Shor. Algorithms for quantum computation: discrete logarithms and factoring. In

35th Annual Symposium on Foundations of Computer Science (Santa Fe, NM, 1994), pages
124–134. IEEE Comput. Soc. Press, Los Alamitos, CA, 1994.

[20] P. W. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on a
quantum computer. SIAM J. Comput., 26(5):1484–1509, 1997.

Email address: joseph silverman@math.brown.edu

Mathematics Department, Box 1917 Brown University, Providence, RI 02912 USA.

ORCID: 0000-0003-3887-3248

Submitted to Algor. Num. Th. Symp.

arXiv:2311.11468
arXiv:1607.01530
arXiv:2011.12940
arXiv:2011.12940
doi.org/10.1080/10586458.2023.2239265

	1. Introduction
	2. A High-Level Description of the Markoff Path-Finding Algorithm
	3. Rotations on a Fiber and an Associated Matrix
	4. Some Counting Results
	5. Finding Paths in Fibers by Solving the DLP
	6. Checking If Maximally Hyperbolic
	7. A Heuristic Assumption
	8. The Markoff Path-Finder Algorithm
	9. The Markoff Path Finder Algorithm in Action: An Example
	10. Markoff-Type K3 Surfaces and the ECDLP
	Appendix A. Proof Sketch of a General Inclusion/Exclusion Argument
	Appendix B. Computations to Check Heuristic 7.1
	Appendix C. The Markoff Path-Finder Algorithm and Subroutines
	References

