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Abstract. In a recent work, we found formulas for the Fourier coefficients of automorphic forms
of type G2: holomorphic Siegel modular forms on Sp6 that are theta lifts from Gc

2, and cuspidal
quaternionic modular forms on split G2. We have implemented these formulas in the mathemat-
ical software SAGE. In this paper, we explain the formulas of our recent paper and the SAGE
implementation. We also deduce some theoretical consequences of our SAGE computations.
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1. Introduction

The purpose of this paper is to give computations of Fourier coefficients of automorphic forms
of type G2. The automorphic forms we compute come in two flavors. First, there are vector-valued
holomorphic Siegel modular forms on Sp6, that are exceptional theta lifts from algebraic modular
forms for the group Gc

2. Here Gc
2 is a group of type G2 that is split at every finite place and for

which Gc
2(R) is compact. The second sort of automorphic forms we work with are quaternionic

modular forms on split G2. The forms we compute arise as exceptional theta lifts from algebraic
modular forms for the group F c

4 , which is a group of type F4 that is split at every finite place
and for which F c

4 (R) is compact. In fact, quaternionic modular forms on split G2 have a weight,
which is a positive integer. In [Pol23] it is proved that every cuspidal quaternionic modular form
of even weight at least 6 arises as an exceptional theta lift from F c

4 , so not much generality is lost
by computing with these theta lifts.1

That it is possible to compute exactly the Fourier coefficients of these exceptional theta lifts is
a consequence of the results of [Pol23]. In an accompanying SAGE [Sag22] file [Pol24], we have
implemented the formulas of [Pol23] in the case where all the data that goes into the theta lift is
unramified. Consequently, in this case, the Fourier coefficients of the lift are exactly determinable
on a computer. The resulting computer calculations2 are not only satisfying–for example, they give
a partial simultaneous check on the formulas of [Dal23] and [Pol23]–but they also have theoretical
consequences.

Funding information: AP has been supported by the NSF via grant numbers 2101888 and 2144021.
1It is also very reasonable to suspect that every cuspidal quaternionic modular form of odd weight at least 5 is

an exceptional theta lift from F c
4 , but we have not proved this. The quaternionic modular forms of weights 1, 2, 3 do

not, however, arise as theta lifts from F c
4 .

2Our calculations were done on a Macbook Pro with an Apple M2 chip and 24 GB of RAM, running Sagemath
version 9.7.

1

Submitted to Algor. Num. Th. Symp.



2 AARON POLLACK

We now say a bit more about some theoretical consequences of these calculations, deferring a
discussion of the results of [Pol23] and the SAGE computations to later sections.

1.1. Siegel modular forms of genus three. Let Sp2n denote the symplectic group, consisting
of matrices g with g

(
0n 1n
−1n 0n

)
gt =

(
0n 1n
−1n 0n

)
. Holomorphic Siegel modular forms are a certain type

of automorphic forms for this group. Explicitly, set Sn the n× n symmetric matrices, and denote
by Hn = {Z = X + iY : X,Y ∈ Sn(R), Y > 0} the so-called Siegel upper half-space of degree n.
Here Y > 0 means that Y is positive-definite. The group Sp2n(R) acts on Hn via the formulas(
a b
c d

)
Z = (aZ + b)(cZ + d)−1. If g =

(
a b
c d

)
∈ Sp2n(R), and Z ∈ Hn, set J(g, Z) = cZ + d,

which lives in GLn(C). Let (ρ, V ) be a finite-dimensional algebraic representation of GLn(C). If
Γ ⊆ Sp2n(Z) is a congruence subgroup, a holomorphic Siegel modular form of weight ρ and level Γ
is a holomorphic function f : Hn → V satisfying f(γZ) = ρ(J(γ, Z))f(Z) for all γ ∈ Γ; one also
imposes a moderate growth condition.

If Γ = Sp2n(Z), we say that f has level one. Holomorphic Siegel modular forms have a Fourier
expansion, which we explicate in the level one case. Denote Sn(Z)

∨ the half-integral symmetric
n × n matrices. I.e., T ∈ Sn(Q) is in Sn(Z)

∨ if the diagonal entries of T are integers, and the
off-diagonal entries are integers divided by 2. If f is a level one Siegel modular form of weight
(ρ, V ), then one can write f(Z) =

∑
T∈Sn(Z)∨:T≥0 af (T )e

2πi(T,Z). Here T ≥ 0 means that T is

positive semi-definite, (T,Z) = tr(TZ) ∈ C, and af (T ) ∈ V . The vectors af (T ) are called the
Fourier coefficients of f . It is known [Ibu02] that, given ρ, there exists an explicitly determinable
finite set Cρ of half-integral symmetric matrices, so that if f is a level one Siegel modular form of
weight ρ and af (T ) = 0 for all T ∈ Cρ, then f = 0. Consequently, computing finitely many Fourier
coefficients of a level one Siegel modular form completely determines it.

The dual group of Sp6 is SO7(C), which receives a map from G2(C), the dual group of G2.
Langlands functoriality thus predicts a lifting of automorphic representations on groups of type G2

to automorphic representations of Sp6. One of the results of [Pol23], combined with work of Gross-
Savin [GS98], Magaard-Savin [MS97], and Gan-Savin [GS23], allows one a way to computationally
and provably produce instances of this lift. We have implemented this computation in SAGE, and
one consequence of the SAGE computations is the following theorem.

To set up the theorem, we need some results of Chenevier-Taibi [CT20]. In [CT20], the authors
have computed the dimension of the space of level one holomorphic Siegel modular forms of various
weights. The following table is built from their computations.

(k1, k2) λ = (k1 + 2k2 + 4, k1 + k2 + 4, k2 + 4) m(λ)
(0, 4) (12, 8, 8) 1
(2, 4) (14, 10, 8) 1
(3, 3) (13, 10, 7) 1
(0, 6) (16, 10, 10) 2
(3, 4) (15, 11, 8) 1
(6, 2) (14, 12, 6) 1
(5, 3) (15, 12, 7) 1
(7, 2) (15, 13, 6) 1
(9, 1) (15, 14, 5) 1
(6, 3) (16, 13, 7) 2
(8, 2) (16, 14, 6) 2

In the table, m(λ) denotes the dimension of the space of level one cuspidal Siegel modular forms
for Sp6 of weight λ. The parameter (k1, k2) has to do with algebraic modular forms on Gc

2, and
will be explained in section 3.

Theorem 1.1. If λ is in the above table, then every level one cuspidal eigenform of weight λ has
all Satake parameters in G2(C).

Submitted to Algor. Num. Th. Symp.
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1.2. Quaternionic modular forms on split G2. While the paper [Pol23] discusses the holomor-
phic Siegel modular forms of genus three, its main results concern the (quaternionic) modular forms
on split G2. The split group G2 of this Dynkin type does not have a symmetric space G2(R)/K
with a G2(R)-invariant complex structure. Thus, there is no notion of holomorphic modular forms
on this group.

A great replacement for the holomorphic modular forms was found by Gross-Wallach [GW96]
and Gan-Gross-Savin [GGS02]. To briefly describe these objects, note that the maximal compact
subgroup K of G2(R) is (SU(2)×SU(2))/µ2, where the first SU(2) is the so-called long root SU(2),
and the second is the short root SU(2). Forgetting the second SU(2) factor, one has a surjection
K → SU(2)/µ2 ≃ SO(3). For a positive integer ℓ, let Vℓ be the irreducible complex representation
of K that is the pull-back of the (2ℓ+ 1)-dimensional irreducible representation of SO(3).

If Γ ⊆ G2(R) is a congruence subgroup, a level Γ quaternionic modular form on G2 of weight ℓ
is a smooth function φ : Γ\G2(R) → Vℓ of moderate growth satisfying

(1) φ(gk) = k−1φ(g) for all k ∈ K;
(2) Dℓφ ≡ 0, for a certain linear, first-order differential operator Dℓ.

The modular form φ is cuspidal if and only if φ is bounded. We say φ is of level one if Γ = G2(Z).
The quaternionic modular forms of weight ℓ have a Fourier expansion, similar in spirit to the

Fourier expansion of holomorphic Siegel modular forms. We explicate this Fourier expansion in the
level one case: For every real binary cubic f(u, v) = au3 + bu2v+ cuv2 + dv3, there is a completely
explicit moderate growth function (defined in terms of K-Bessel functions) Wf,ℓ : G2(R) → Vℓ

satisfying properties (1), (2) of the definition of quaternionic modular forms of weight ℓ. The
function Wf,ℓ(g) is 0 if the discrimant of the cubic f is negative. And, if φ is a level one cuspidal
quaternionic modular form of weight ℓ, then φZ(g) =

∑
f integral aφ(f)Wf,ℓ(g). Here φZ(g) is a

certain compact integral transform of φ, which uniquely determines it, and the aφ(f) are complex
numbers, called the Fourier coefficients of φ.

While a priori the Fourier coefficients of cuspidal quaternionic modular forms could be tran-
scendental numbers, the main result of [Pol23] is that if ℓ ≥ 6 is even, then there is a basis of
the space of level Γ, weight ℓ cuspidal quaternionic modular forms whose Fourier coefficients all
lie in the cyclotomic extension of Q. Moreover, the proof is constructive, giving the exact Fourier
expansion of such G2-cusp forms in an explicitly computable way. More specifically, we prove that
every cuspidal quaternionic modular form of even weight ℓ ≥ 6 arises as a theta lift from the group
F c
4 , and also explicitly compute the Fourier coefficients of such theta lifts, whether the weight is

even or odd. We have implemented these explicit formulas of [Pol23] in the case when all the data
that goes into the theta lift is unramified. The result is the ability to compute, on a computer,
finitely many Fourier coefficients of some level one cuspidal quaternionic modular forms on G2.

Associated to every integral binary cubic form f is a cubic ring Sf , i.e., a commutative ring
which is rank three as a Z-module; see [GGS02]. If f1, f2 are in the same GL2(Z) orbit, then Sf1

is isomorphic to Sf2 . It follows immediately from the proof of this correspondence that, associated
to f is in fact also an orientation of the rank two Z-module Sf/Z, by which we mean a generator
of ∧2(Sf/Z). If f1 and f2 are in the same SL2(Z)-orbit, then Sf1 is isomorphic to Sf2 as oriented
cubic rings. Now, it is an easy consequence of the existence of the Fourier expansion of quaternionic
modular forms, that if f1 = g·f2 = det(g)−1f2((u, v)g) for g ∈ GL2(Z), then aφ(f1) = det(g)ℓaφ(f2).
Here the integer ℓ is the weight of φ. Thus, if S is an oriented cubic ring, we can write aφ(S) for
the associated Fourier coefficient.

Here is one theoretical consequence of our ability to compute finitely many Fourier coefficients
of some cuspidal level one quaternionic modular forms on G2. In a recent paper, Dalal [Dal23] has
given an explicit formula for the dimension of the space Sℓ(G2(Z)) of level one cuspidal quaternionic
modular forms of weight ℓ ≥ 3. It follows from his formulas that S9(G2(Z)) and S11(G2(Z)) are
each one-dimensional.

Submitted to Algor. Num. Th. Symp.



4 AARON POLLACK

Theorem 1.2. The one-dimensional spaces S9(G2(Z)) and S11(G2(Z)) contain nonzero elements
F9 ∈ S9(G2(Z)) and F11 ∈ S11(G2(Z)) for which all Fourier coefficients are integers. Moreover,
if B is an order in a quadratic étale algebra, then the Fourier coefficient aF9(Z × B) = 0 and
aF11(Z×B) = 0.

The latter part of Theorem 1.2 gives some evidence for a conjecture of Gross [Li], as we now
explain. For every level one cuspidal holomorphic modular eigenform h on PGL2 of weight 2k, the
Arthur multiplicity conjecture predicts the existence of a cuspidal lift Fh to G2, which is a level one
cuspidal quaternionic modular eigenform of weight k. Suppose now that E is a totally real etale
cubic algebra, with maximal order OE . Gross has suggested that the square Fourier coefficient
aFh

(OE)
2 should be related to the central L-value L(h⊗VE , 1/2), where VE is the two-dimensional

motive attached to E, i.e., where ζE(s) = ζ(s)L(VE , s). Suppose now that E = Q× F with F real
quadratic. Then L(h⊗ VE , s) factors as L(h, s)L(h⊗ ϵF , s) for a quadratic character ϵF . Hence if
L(h, 1/2) = 0, then L(h⊗VE , 1/2) = 0. But when k is odd, the central value L(h, 1/2) is indeed 0,
so Gross’ conjecture would predict aFh

(Z×B) = 0 for such h. As the space of level one holomorphic
cusp forms for PGL2 is one-dimensional in weights 18 and 22, and so are the spaces S9(G2(Z)) and
S11(G2(Z)), the forms F9 and F11 of Theorem 1.2 are eigenforms, and should be lifts from PGL2

as predicted by the Arthur multiplicity conjecture. Thus Theorem 1.2 gives some evidence for this
conjecture of Gross.

1.3. Acknowledgements. We thank Gaetan Chenevier for fruitful exchanges related to our com-
putations and Chao Li for explaining to us Gross’s conjecture [Li]. It is also a pleasure to thank
Wee Teck Gan, Dick Gross, and Gordan Savin for inspirational mathematics upon which these
computations are built. Finally, we thank the anonymous referees for a very careful reading of the
manuscript and suggested changes which have hopefully improved the paper significantly.

2. Exceptional algebra

We explain in this section a little bit of exceptional algebra, both “theoretically” and “compu-
tationally”. The results in later sections depend upon this algebra.

2.1. Octonions. We begin by describing the octonions O with positive-definite norm form. These
are an 8-dimensional Q-vector space, with a law of composition O × O → O that is bilinear,
but neither commutative nor associative. There is an element 1 with 1 · x = x · 1 = x for all
x ∈ O. Moreover, there is a positive definite quadratic form nO : O → Q that satisfies nO(xy) =
nO(x)nO(y) for all x, y ∈ O. Let ( , ) denote the symmetric bilinear form induced by nO, so that
(x, y) = nO(x+y)−nO(x)−nO(y) for all x, y ∈ O. Let V7 ⊆ O denote the orthogonal complement of
Q ·1. Define an involution, ∗, on O so that 1∗ = 1 and x∗ = −x if x ∈ V7. Then xx∗ = x∗x = nO(x)
for all x ∈ O; (xy)∗ = y∗x∗; and x + x∗ = trO(x)1 for an element trO(x) ∈ Q. For z1, z2, z3 ∈ O,
define (z1, z2, z3) = trO(z1(z2z3)). It turns out that this quantity is equal to trO((z1z2)z3), and that
one has (z1, z2, z3) = (z2, z3, z1) = (z3, z1, z2).

One way to create O is using quaternion algebras, as follows. Let H be a quaternion Q-algebra,
arbitrary subject to being ramified at infinity. Let γ ∈ Q× be negative. Define O = H ⊕H, with
multiplication (x1, y1)(x2, y2) = (x1x2 + γy∗2y1, y2x1 + y1x

∗
2). The norm is nO((x, y)) = nH(x) −

γnH(y), the trace is trO((x, y)) = trH(x), and the involution is (x, y)∗ = (x∗,−y). Varying H and
γ, it turns out, gives isomorphic data (O, nO, 1), which is why we have dropped H and γ from the
notation of O. From now on, we take H to be Hamilton’s quaternions, i.e., the unique quaternion
Q-algebra ramified at 2 and ∞, with basis {1, i, j, k} satisfying i2 = j2 = k2 = −1 and ij = k. We
take γ = −1.

There is a maximal Z-order in O, called Coxter’s ring of integral octonions [Cox46]. We denote
this ring by R. To construct it, set e = (0, 1) and h = 1

2(i+ j + k+ e). Then, the following are a Z
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basis of R: jh, e,−h, j, ih, 1, eh, ke. These are the simple roots of the E8 root lattice, with jh the
extended node, 1 the branch vertex, and e,−h, j, ih, 1, eh, ke going along longways.

The group Gc
2 is defined as the algebraic Q-group of linear automorphisms of O that fixes 1 and

respects the multiplication. Its Lie algebra can be identified with the kernel of the map ∧2V7 → V7

given by x∧ y 7→ xy− yx; see [Pol21b] for an explicit basis. An element of ∧2V7 acts on V7 via the
formula (x ∧ y)(z) = (y, z)x− (x, z)y; this gives the Lie algebra action of g2 = Lie(Gc

2) on V7.
Let K = Q(

√
−1). Base-changing the group Gc

2 to K, it becomes split. It is helpful to have a
different basis of O⊗K, in which it is easy to write down nilpotent elements of g2 ⊗K. We define

• e2 =
1
2((0, 1)−

√
−1(0, i))

• e∗3 =
1
2((0, j)−

√
−1(0, k))

• e3 =
1
2((0,−j)−

√
−1(0, k)).

• e∗2 =
1
2((0,−1)−

√
−1(0, i))

• ϵ1 =
1
2((1, 0)−

√
−1(i, 0))

• ϵ2 =
1
2((1, 0) +

√
−1(i, 0))

• e1 =
1
2((j, 0)−

√
−1(k, 0))

• e∗1 =
1
2((−j, 0)−

√
−1(k, 0))

This basis realizes O⊗K as a split quadratic space: All the above basis elements are isotropic, and
one has (ϵ1, ϵ2) = 1, (ei, e

∗
j ) = −δij , and (ϵi, ej) = (ϵi, e

∗
j ) = 0 for all i, j.

One can define elements of Gc
2(K) by exponentiating nilpotent Lie algebra elements. For SAGE

computation below, we will use the following nilpotent elements.
Suppose u, v ∈ V7 ⊗K satisfy u2 = uv = vu = v2 = 0; such a pair is said to be null. If moreover

u, v span a two-dimensional subspace of V7, then the stabilizer of the flag {0} ⊆ Ku ⊆ Span(u, v)
is a Borel subgroup of Gc

2,K .

Lemma 2.1. The pair e∗3, e1 is null. Let B be the Borel of Gc
2,K stabilizing the flag Ke∗3 ⊆

Ke∗3+Ke1. Then the nilpotent n in g2⊗K opposite to B is spanned by the following six elements:

(1) ℓ1 = e∗1 ∧ e2,
(2) ℓ2 = (ϵ1 − ϵ2) ∧ e∗2 + e3 ∧ e1
(3) ℓ3 = [ℓ1, ℓ2]
(4) ℓ4 = [ℓ3, ℓ2]/2
(5) ℓ5 = [ℓ4, ℓ2]/3
(6) ℓ6 = [ℓ5, ℓ1].

Proof. This follows directly from [Pol21b, Section 2.2]. □

2.2. The exceptional cubic norm structure. We now describe a bigger exceptional algebraic
structure. Namely, let J = H3(O) be the 27-dimensional Q-vector space consisting of elements

X =

 c1 x3 x∗2
x∗3 c2 x1
x2 x∗1 c3

 with c1, c2, c3 ∈ Q and x1, x2, x3 ∈ O. This J is called the exceptional

cubic norm structure. The space J comes equipped with a cubic norm NJ : J → Q defined as
NJ(X) = c1c2c3 − c1nO(x1)− c2nO(x2)− c3nO(x3) + (x1, x2, x3).

Let ( , , )J be the unique symmetric trilinear form on J satisfying (X,X,X)J = 6NJ(X) for
all X ∈ J . For X ∈ J , let X# ∈ J∨ be the linear map given by (Z,X#) = 1

2(Z,X,X) for

all Z ∈ J . One says that X has rank one if X ̸= 0 but X# = 0. For X,Y ∈ J , one sets
X×Y = (X+Y )#−X#−Y #, then one has (Z,X×Y ) = (Z,X, Y ) for all Z ∈ J . If U ∈ J satisfies
NJ(U) = 1, one defines a symmetric bilinear form on J as (X,Y )U = (X,U#)(Y,U#)− (U,X, Y ).

We will write elements X of J as X = [c1, c2, c3;x1, x2, x3]. Set I = [1, 1, 1; 0, 0, 0], which has
NJ(I) = 1. Then if X = [c1, c2, c3;x1, x2, x3] and X ′ = [c′1, c

′
2, c

′
3;x

′
1, x

′
2, x

′
3], then

(1) (X,X ′)I = c1c
′
1 + c2c

′
2 + c3c

′
3 + (x1, x

′
1)O + (x2, x

′
2)O + (x3, x

′
3)O.
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Observe that this bilinear form is positive-definite. It induces an identification of J with J∨, whose
inverse we denote ι : J∨ → J . If X,X ′ are as above, then

ι(X#) = [c2c3 − n(x1), c3c1 − n(x2), c1c2 − n(x3); (x2x3)
∗ − c1x1, (x3x1)

∗ − c2x2, (x1x2)
∗ − c3x3]

ι(X ×X ′) = [c2c
′
3 + c′2c3 − (x1, x

′
1), c3c

′
1 + c′3c1 − (x2, x

′
2), c

′
1c2 + c1c

′
2 − (x3, x

′
3);

(x′2x3 + x2x
′
3)

∗ − c′1x1 − c1x
′
1, (x

′
3x1 + x3x

′
1)

∗ − c′2x2 − c2x
′
2, (x

′
1x2 + x1x

′
2)

∗ − c′3x3 − c3x
′
3].

Set JR ⊆ J to be the set consisting of those X = [c1, c2, c3;x1, x2, x3] with ci ∈ Z and xi ∈ R.
This is an integral lattice in J . Following [EG96], we distinguish two different quadratic forms
on this lattice. The first is ( , )I . For the second, define β = 1

2(−1 + i + j + k, 1 + i + j + k).

Then β2 + β + 2 = 0, so that trO(β) = −1 and nO(β) = 2. One sets E = [2, 2, 2;β, β, β], so that
NJ(E) = 1. The second quadratic form on JR is ( , )E . This form is again positive-definite [EG96].
For an explicit expression for ( , )E , observe that we have (X,X)E = (E#, X)2 − 2(E,X#), and
the individual terms in this expression are computed in Lemma 4.6.

Set M1
J to be the algebraic Q-group of linear automorphisms of J preserving the cubic norm. It

is a simply-connected group of type E6. There exists δ ∈ M1
J (Q) for which δE = I. For SAGE

computations, we will use an explicit choice of δ. To set up the result, if γ ∈ J∨ and x ∈ J , let
Φ′
γ,x : J → J be defined as Φ′

γ,x(z) = −γ × (x × z) + (γ, z)x + 1
3(γ, x)z. Then Φ′

γ,x ∈ Lie(M1
J )

[PWZ19, Proposition 1.1], [Pol20, Section 3.3].
For x, y, z ∈ O, set V (x, y, z) = [0, 0, 0;x, y, z] and V1(x) = V (x, 0, 0), V2(y) = V (0, y, 0)

and V3(z) = V (0, 0, z). Let e11 = [1, 0, 0; 0, 0, 0] and similarly define e22 = [0, 1, 0; 0, 0, 0], e33 =
[0, 0, 1; 0, 0, 0].

Lemma 2.2. For δ ∈ M1
J (Q), one can take

δ = exp(Φ′
e22,V1(−1)) exp(Φ

′
V1(3/2),e22

) exp(Φ′
e22,V1(−1)) exp(Φ

′
V1(1),e22

)

× exp(Φ′
e22,V1(−β/2)) exp(Φ

′
e11,V2(−(β+1)/2)) exp(Φ

′
V3(−β/2),e11

).

The Φ′
γ,x appearing in this product satisfy (Φ′

γ,x)
3 = 0.

Proof. The fact that the (Φ′
γ,x)

3 = 0 above follows from [PWZ19, Proposition 1.1]. That the above
δ satisfies δE = I can be verified by explicit computation in SAGE. □

Remark 2.3. The δ of Lemma 2.2 was found by partial guess and check. One first finds a product
of unipotent elements in SL3(Q(β)) that move E to I. Then, with the aid of [Pol21a, page 23, after
Proposition 3.0.9], one can express these unipotent elements in terms of the Φ′

γ,x.

Let F c
4 be the algebraic subgroup of M1

J of elements that also fix I. We define J0 to be the
subspace of elements X ∈ J with c1+ c2+ c3 = 0; equivalently, J0 is the orthogonal complement to
I under the bilinear pairing ( , )I . It is preserved by F c

4 . There is a surjective F c
4 -equivariant map

∧2J0 → f4 from ∧2J0 to the adjoint representation of F c
4 . It is given by

X ∧ Y 7→ ΦX∧Y := Φ′
ι−1(X),Y − Φ′

ι−1(Y ),X .

Let V1 be the kernel of this map. It is an irreducible representation of F c
4 of dimension 273.

We will require special vectors X!, Y! in J ⊗K. To define them, let t be the square-root of −1 in
K, to distinguish it from i ∈ H and iK ∈ HK . Then, in OK , we define the elements

• r1 =
1
2(0, 1− t · iK)

• r2 = r1
• r3 = −t(iK , 0)
• s1 = −t(0, iK)
• s2 =

1
2(0, 1 + t · iK)

• s3 = −1
2(1 + t · iK , 0).
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Now, we set X! = [1,−1, 0, r1, r2, r3] and Y! = [0,−1, 1, s1, s2, s3] as elements of J ⊗K.

Lemma 2.4. The wedge X!∧Y! ∈ ∧2J0
K sits in V1, and is a highest weight vector in V1 for a Borel

subgroup of F c
4,K .

Proof. This is proved in [Pol23, Lemma 3.1.3 and Example 3.1.4]. □

We will also need other vectors in JK , obtained from X! and Y! by F c
4 (K)-automorphisms. To

produce many such automorphisms, we use the following lemma. Recall that e11 = [1, 0, 0; 0, 0, 0],
e22 = [0, 1, 0; 0, 0, 0], and e33 = [0, 0, 1; 0, 0, 0].

Lemma 2.5. Suppose v′ ∈ O ⊗ K is in the set {ϵ1, ϵ2, e1, e2, e3, e∗1, e∗2, e∗3}. Then Φ′
u∧v, with

u = e11, v = V (0, v′, 0), u = e11, v = V (0, 0, v′), and u = e22, v = V (v′, 0, 0), are nilpotent elements
in the Lie algebra f4. They satisfy (Φ′

u∧v)
3 = 0.

Proof. For some context regarding these Lie algebra elements, see [Pol21a, page 23]. One can verify
in SAGE that the (Φ′

u∧v)
3 = 0. □

2.3. SAGE implementation of octonions. SAGE already has quaternion algebras implemented.
Using the Cayley-Dickson construction, i.e., realizing O as H⊕H with H equal to Hamilton’s qua-
terions, one can realize the octonions in SAGE. Namely, an octonion in SAGE is represented as a
vector consisting of two elements of the quaternion algebra H, or two elements of the quaternion
algebra H ⊗ K. Our file, g2 motives.sage, contains functions to multiply two octonions, take
their trace and conjugate, and compute the inner product of two octonions. Also included is the
trilinear form (x1, x2, x3)O.

To do computations, we have some specific bases of O and of O⊗K hard-coded into the program.
The first basis is the ordered Coxeter basis, which is a Z-basis of Coxeter’s ring R. The basis is
ordered as before: [jh, e,−h, j, ih, 1, eh, ke]. The second basis is the split basis of O⊗K, ordered as
[ϵ1, e1, e2, e3, e

∗
1, e

∗
2, e

∗
3, ϵ2]. There is some built-in code to change basis from one to another, and to

go from octonions, to vectors of length 8 of elements of Q or K. The Gram matrices for the trace
pairing and the norm pairing, with respect to the Coxeter basis, are hard-coded into the file.

2.4. SAGE implementation of the exceptional cubic norm structure. Building upon the
octonions above, we represent elements of J or J⊗K as a list of length 6, X = [c1, c2, c3, x1, x2, x3].
Here the ci ∈ Q or K and the xi ∈ O or O ⊗ K are octonions. The code contains functions to
compute the norm of an element X, the element ι(X#) or ι(X × X ′), the pairings (X,X ′)I and
(X,X ′)E , and the trilinear form (X1, X2, X3)J . The Gram matrix for the pairing (X,X)E , for
X ∈ JR, is hard-coded into the file g2 motives.sage.

3. Siegel modular forms of genus three

We begin with a discussion of results of [Pol23] that apply to Siegel modular forms of genus
three. We then discuss the SAGE implementation of the Fourier coefficient formula.

3.1. Fourier expansion of the holomorphic exceptional theta lift. In order to put Theorem
1.1 into context and to explain how it is proved, recall that this result asserts the existence of Siegel
modular forms of genus three with all Satake parameters in G2(C). The Siegel modular forms
arise as an exceptional theta lift from algebraic modular forms for the group Gc

2, as studied in
Gross-Savin [GS98]. Specifically, there is a group H of type E7, which is split at every finite place
and whose real rank is 3. The group H supports a very special automorphic representation Πmin,H

on H(A) called the minimal automorphic representation, whose study was begun by Kim [Kim93].
Gross-Savin use automorphic functions in Πmin,H to lift automorphic forms on Gc

2 to automorphic
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8 AARON POLLACK

forms on Sp6, using the fact that Sp6×Gc
2 → H. Namely, if α is an automorphic form on Gc

2(A)
and Θf ∈ Πmin,H , then one can define the lift

Θf (α)(g) =

∫
Gc

2(Q)\Gc
2(A)

Θf (gh)α(h) dh

which is an automorphic form on Sp6. It is proved in [GS98] that the automorphic forms Θf (α)
correspond to vectors in the (sp6, U(3))-module generated by a vector-valued Siegel modular form.

Gross-Savin [GS98], Magaard-Savin [MS97] and Gan-Savin [GS23] have produced numerous and
deep results on this exceptional theta lift. One question left open by these works, however, is to
determine when Θf (α) is nonzero for explicit α. One of the first main results of [Pol23] solves this
question, in the case of level one: It gives explicit formulas to determine the Fourier coefficients of
the Siegel modular form corresponding to Θf (α).

Before describing this result of [Pol23], we review some prior work on the theta lift from Gc
2

to Sp6. Let W3 denote the standard representation of GL3, with basis w1, w2, w3, and let V3 =
∧2W3 the exterior square representation, with basis v1 = w2 ∧ w3, v2 = w3 ∧ w1, v3 = w1 ∧ w2.
Every irreducible algebraic representation V of GL3(C) sits as the highest weight submodule in
Symk1(V3)⊗ Symk2(W3)⊗ det(W3)

k3 for integers k1, k2, k3 with k1, k2 ≥ 0. The highest weight of
such a V is (k1+k2+k3, k1+k3, k3). Thus, if f is a level one Siegel modular form of weight (ρ, V ),
then the Fourier coefficients of f are naturally polynomials in v1, v2, v3, w1, w2, w3 of bi-degree
(k1, k2).

For non-negative integers k1, k2, let λ(k1, k2) = (k1 + 2k2 + 4, k1 + k2 + 4, k2 + 4). For an
irreducible representation ρ of GL3(C), let MΘ

ρ (Sp6(Z)) denote that space of level Sp6(Z), weight
ρ holomorphic Siegel modular forms (not necessarily cuspidal) which arise as (vector-valued) theta
lifts Θf (α). It is proved in [GS98] that for this space to be nonzero, the highest weight of ρ must
be of the form λ(k1, k2) for some non-negative integers k1, k2. If the highest weight of ρ is λ(k1, k2),
we abuse notation and denote this space also by MΘ

k1,k2
(Sp6(Z)).

The following result can be extracted from work of Gross-Savin, Magaard-Savin, and Gan-Savin.
See [Pol23] for details.

Theorem 3.1. One has the following results concerning the space MΘ
k1,k2

(Sp6(Z)).

(1) (Gross-Savin) If k2 > 0, the space MΘ
k1,k2

(Sp6(Z)) is contained in the space of cusp forms.

(2) (Gross-Savin, Magaard-Savin, Gan-Savin) Suppose F ∈ MΘ
k1,k2

(Sp6(Z)) is a cuspidal Hecke

eigenform. Then all Satake parameters of F lie in G2(C) ⊆ SO7(C).

While powerful, Theorem 3.1 leaves open the actual calculation of the elements ofMΘ
k1,k2

(Sp6(Z)).

In particular, for fixed k1, k2, it was not clear how to determine ifMΘ
k1,k2

(Sp6(Z)) is nonzero. Results

of [Pol23] (in theory), and of this present work (in practice) resolve these questions, at least when
k2 > 0.

We now explicate some portion of the results of [Pol23], referring to [Pol23] for more details.
Recall that we denote by O the octonion algebra over Q with positive-definite norm form and
R ⊆ O is Coxeter’s order of integral octonions. We write J = H3(O) the exceptional cubic norm
structure, which is the 27-dimensional Q-vector space consisting of 3× 3 Hermitian matrices with
“coefficients” in O and let JR be the integral lattice in J consisting of elements whose diagonal
entries are in Z and off-diagonal entries are in R. Recall we denote by V7 the elements of O with
0 trace and K = Q(

√
−1). For T ∈ J and Z ∈ S3(C) the 3 × 3 complex symmetric matrices,

define (T,Z)I ∈ C from equation (1), by viewing S3(Q) ⊆ H3(O) and extending the pairing ( , )I
by linearity from Q to C. Concretely, if T = [c1, c2, c3, x1, x2, x3] and Z = [z11, z22, z33, z23, z31, z12]
with zij ∈ C then

(T,Z)I = c1z11 + c2z22 + c3z33 + trO(x1)z23 + trO(x2)z31 + trO(x3)z12.
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COMPUTATION OF FOURIER COEFFICIENTS OF AUTOMORPHIC FORMS OF TYPE G2 9

Elements of J have a notion of rank, which is an integer in {0, 1, 2, 3}.
Suppose u, v ∈ V7 ⊗K satisfy u2 = uv = vu = v2 = 0; recall that such a pair is said to be null.

Let T ∈ J have off-diagonal entries x1, x2, x3 ∈ O. For non-negative integers k1, k2, set

Pk1,k2(T ;u, v) = ((x1, u)v1 + (x2, u)v2 + (x3, u)v3)
k1

× ((x1 ∧ x2, u ∧ v)w3 + (x2 ∧ x3, u ∧ v)w1 + (x3 ∧ x1, u ∧ v)w2)
k2 .

Here (x, u) = tr(x∗u) is the bilinear form associated to the norm on O, and (x ∧ y, u ∧ v) =
(x, u)(y, v) − (x, v)(y, u). Moreover, in case either k1 or k2 is equal to 0, rk is defined to be 1 if
k = 0, regardless of if r = 0. Fortunately, this is the convention that appears to be used by SAGE.

Finally, so long as at least one of k1, k2 is positive, set

(2) F u,v
k1,k2

(Z) =
∑

T∈JR,rank(T )=1

σ3(dT )Pk1,k2(T ;u, v)e
2πi(T,Z)I

where dT is the largest integer for which d−1
T T ∈ JR.

For T ∈ J , T = [c1, c2, c3, x1, x2, x3], set T0 = [c1, c2, c3,
1
2 trO(x1),

1
2 trO(x2),

1
2 trO(x3)], so that

T0 is a symmetric matrix, half-integral if T ∈ JR. Then if Z ∈ S3(C), (T,Z)I = (T0, Z), the latter
the usual trace pairing on symmetric matrices. Consequently, the expression (2) for F u,v

k1,k2
can be

seen as a Fourier expansion of the holomorphic function F u,v
k1,k2

on the Siegel upper half space of

degree three.

Theorem 3.2 (See [Pol23]). Let the notation be as above, with at least one of k1, k2 positive. Let
V ⊆ Symk1(V3) ⊗ Symk2(W3) ⊗ det(W3)

k2+4 be the highest weight submodule so that the highest
weight of V is (k1 + 2k2 + 4, k1 + k2 + 4, k2 + 4). Then F u,v

k1,k2
(Z) is a level one holomorphic Siegel

modular form on Sp6 of weight (ρ, V ). Moreover, if k2 > 0, then the F u,v
k1,k2

(Z) span MΘ
k1,k2

(Sp6(Z))

as u, v vary over null pairs.

Thus, combining Theorem 3.2 with Theorem 3.1 gives an explicit way of constructing cuspidal
eigenforms on Sp6, all of whose Satake parameters are in G2(C). The code implemented produces
finitely many Fourier coefficients of the F u,v

k1,k2
. Having run this code, we can obtain Theorem 1.1.

Proof of Theorem 1.1. Suppose (k1, k2) is a pair in the table above. Chenevier-Renard [CR15]
have computed the dimension m(k1, k2) of the space of algebraic modular forms on Gc

2 of weight
(k1, k2). From their computations combined with [CT20], one sees that for the (k1, k2) in the table,
m(k1, k2) = m(λ(k1, k2)). Consider now the map from level one algebraic modular forms on Gc

2 of
weight k1ω1 + k2ω2 to polynomials in v1, v2, v3, w1, w2, w3 that is the composition of the theta lift

with the T th Fourier coefficient, for T = 1
2

 2 1 1
1 2 1
1 1 2

. Computing the T th Fourier coefficient

of a few F u,v
k1,k2

, one finds a space of polynomials of dimension at least m(k1, k2) = m(λ(k1, k2)).

Consequently, the theta lift is bijective in these cases. Applying Theorem 3.1 gives the result. □

Remark 3.3. The theta lift from Gc
2 to Sp6 is not expected to be surjective onto the cusp forms

of weight λ(k1, k2), nor is it expected to be injective in general. For example, as explained to the
author by Gaetan Chenevier, for every level one cuspidal eigenform f of weight 2k for PGL2, there
should be an associated level one algebraic modular form on Gc

2 of weight (k−2)ω2. And, moreover,
when k is odd so that the central L-value L(f, 1/2) = 0, the Arthur multiplicity conjecture predicts
that this eigenform should not lift to Sp6, so that its theta lift is 0. As a specific example, when
k = 9, the dimension m(0, 7) = 1, but computing a few Fourier coefficients of the F u,v

0,7 (Z) in SAGE
for various specific u, v gives 0.
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3.2. Sage implementation to find Fourier coefficients. If T = [c1, c2, c3;x1, x2, x3] define
the projection of T to be T0 = [c1, c2, c3,

1
2 trO(x1),

1
2 trO(x2),

1
2 trO(x3)], which is a half-integral

symmetric matrix. To calculate the T0 Fourier coefficient of F u,v
k1,k2

(Z) on Sp6, one must sum

σ3(dT )Pk1,k2(T ;u, v) for all rank one T ∈ JR whose projection is T0. The SAGE code will do this
for those T0 with c1 = 1. Note that in this case, dT is always equal to 1, so the factor σ3(dT ) = 1.

To find those T ∈ Jrk=1
R with proj(T ) = T0, the code implicitly uses the following easy lemma.

Lemma 3.4. Suppose T = [1, b, c;x1, x2, x3] ∈ J . Then T is rank one if and only if n(x2) = c,
n(x3) = b and x1 = (x2x3)

∗.

The SAGE code takes in an element T0 ∈ S3(Z)
∨, with c1(T0) = 1 and finds all rank one

T with projection equal to T0 using Lemma 3.4. Then, for each such T , the code computes
Pk1,k2(T ;u, v) for a given choice of u, v, provided by the user, and sums up the results. The output
is a polynomial in the variables v1, v2, v3, w1, w2, w3. To aid the user in constructing null pairs
u, v, the user need only enter 6 elements of K, [r1, r2, r3, r4, r5, r6]. The code will then produce for

you unew = exp(n)e∗3, vnew = exp(n)e1, where n =
∑6

j=1 rjℓj in the notation of Lemma 2.1. The
elements unew, vnew again form a null pair.

4. Quaternionic modular forms on G2

In this section, we give our results on quaternionic modular forms on split G2. We begin by
explaining some of the results of [Pol23] in this setting, and then explain the proof of Theorem 1.2.
The proof of this theorem uses SAGE computations, which are also explained in this section.

4.1. Fourier expansion of the quaternionic exceptional theta lift. To set up the first result,
recall K = Q(

√
−1). Let J∨ denote the Q dual of J , and let J∨

R denote the Z-dual of JR. Set
WJ = Q ⊕ J ⊕ J∨ ⊕Q, and define WJ(Z) = Z ⊕ JR ⊕ J∨

R ⊕ Z, so that WJ(Z) is a lattice in the
56-dimensional Q vector space WJ . If w = (a, b, c, d) ∈ WJ , define prI(w)(u, v) to be the binary
cubic form given as prI(w)(u, v) = au3+(b, I#)u2v+(c, I)uv2+dv3. Set JK = J⊗K and J0

K to be
the trace 0 elements of JK . For w ∈ WJ(Z), let dw be the largest integer so that d−1

w w ∈ WJ(Z).
If X,Y ∈ JK , set Pm,I(w;X,Y ) = ((b,X)I(c, Y )− (b, Y )I(c,X))m. Here (c, Y ), (c,X) indicate the
natural pairing between J and J∨. Finally, recall that V1 denotes the irreducible representation of
F c
4 of dimension 273.

Theorem 4.1 (See [Pol23]). Suppose X,Y ∈ J0
K are singular in the sense that X ∧ Y ∈ ∧2J0

K is
a highest weight vector of V1 for some Borel. Let m ≥ 1 be an integer. Then there is a cuspidal
quaternionic modular form ΘI(X,Y ;m) on G2 of level one and of weight 4 + m with Fourier
expansion

ΘI(X,Y ;m)Z(g) =
∑

w=(a,b,c,d)∈WJ (Z)rk=1

σ4(dw)Pm,I(w;X,Y )WprI(w),4+m(g).

For the cubic norm structure (JR, E), there is an analogous result. Fix δ ∈ M1
J (Q) with δE = I,

as in subsection 2.2. Set (u, v)E = 1
4(E,E, u)(E,E, v)− (E, u, v). For w = (a, b, c, d) ∈ WJ , define

prE(w) = au3 + (b, E#)u2v + (c, E)uv2 + dv3. Similar to the above, define Pm,E(w;XE , YE) =
((b,XE)E(c, YE)− (b, YE)E(c,XE))

m.

Theorem 4.2 (See [Pol23]). Suppose X,Y ∈ J0
K are singular in the sense that X ∧ Y ∈ ∧2J0

K

is a highest weight vector of V1 for some Borel. Let m ≥ 1 be an integer, and set XE = δ−1X,
YE = δ−1Y . Then there is a cuspidal quaternionic modular form ΘE(XE , YE ;m) on G2 of level
one and of weight 4 +m with Fourier expansion

ΘE(XE , YE ;m)Z(g) =
∑

w=(a,b,c,d)∈WJ (Z)rk=1

σ4(dw)Pm,E(w;XE , YE)WprE(w),4+m(g).
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Remark 4.3. The forms ΘI(X,Y ;m) and ΘE(X,Y ;m) arise as theta lifts from F c
4 . If m ≥ 1, it

is reasonable to expect that they span the set of level one cuspidal quaternionic modular forms of
weight 4+m on G2. However, we do not know this at the time of writing. What one knows is that
the cuspidal modular forms ΘI(X,Y ;m) and ΘE(X,Y ;m) can be generalized to arbitrary level,
and that the general-level versions of these functions span the space of all cuspidal quaternionic
modular forms of even weight at least 6. However, we do not know, at this time, the analogous
statement in odd weight. And, in even weight, it could be that a linear combination of these
“general level” analogues of ΘI(X,Y ;m) and ΘE(X,Y ;m) is needed to produce some fixed level
one form. That being said, the data we have collected at this time supports the hypothesis that
the ΘI(X,Y ;m) and ΘE(X,Y ;m) span the level one, weight at least 5 cuspidal modular forms on
G2.

Fix an integral binary cubic form f(u, v) = au3 + bu2v + cuv2 + dv3. Let Ωf,I = {w ∈ WJ(Z) :
rk(w) = 1, prI(w) = f} and likewise for Ωf,E . Observe that the f -Fourier coefficient of ΘI(X,Y ;m)
is a sum over elements of the set Ωf,I , and likewise the f -Fourier coefficient of ΘE(XE , YE ;m) is
a sum over elements of the set Ωf,E . In order for the above theorems to make sense, one needs
to know that the sets Ωf,I and Ωf,E are finite. This is true. To make the SAGE implementation
work, we need an explicit form of this finiteness, which we give in the following lemma for the case
when the binary cubic form f is monic, i.e., when a = 1.

Lemma 4.4. Suppose f(u, v) is as above, with a = 1. Then

Ωf,I = {(1, T, T#, nJ(T )) : (T, I
#) = b, (T#, I) = c, nJ(T ) = d}

and

Ωf,E = {(1, T, T#, nJ(T )) : (T,E
#) = b, (T#, E) = c, nJ(T ) = d}.

Moreover, if (1, T, T#, nJ(T )) ∈ Ωf,I , then (T, T )I = b2−2c. Likewise, if (1, T, T#, nJ(T )) ∈ Ωf,E,
then (T, T )E = b2 − 2c.

Note that the lemma implies the finiteness in an explicit way, because the quadratic forms
(T, T )I and (T, T )E are positive-definite. The lemma is an easy consequence of properties of rank
one elements (see, for instance, [Pol21a]) and the definitions.

We can now explain the proof of Theorem 1.2, which uses our SAGE implementation to compute
finitely many Fourier coefficients of the ΘE(XE , YE ;m).

Proof of Theorem 1.2. Letm = 5 orm = 7. Computing a single Fourier coefficient of ΘE(XE , YE ;m)
for a somewhat randomly chosen XE , YE , one sees that these quaternionic modular forms are
nonzero. Thus, by Dalal’s dimension formula [Dal23], these quaternionic modular forms must span
S9(G2(Z)) and S11(G2(Z)). We prove in general in [Pol23] that the span of the ΘE(XE , YE ;m)
and ΘI(X,Y ;m) have integral Fourier coefficients, so this gives the first part of the theorem.

For the part of the theorem regarding the Fourier coefficients corresponding to cubic rings Z×B, it
is always true that all Fourier coefficients of ΘE(XE , YE ;m) corresponding to cubic rings S = Z×B
are 0. To see this, we have that if f(u, v) is an integral binary cubic form, then the f Fourier
coefficient of ΘE(XE , YE ;m) is a sum over the set Ωf,E . However, when f corresponds to a cubic
ring of the form Z × B, the set Ωf,E turns out to be empty. This latter fact follows from [EG96,
Proposition 5.5]. (This is special to Ωf,E , it does not apply to Ωf,I .). This concludes the proof. □

Besides functions that compute finitely many Fourier coefficients of the ΘI(X,Y ;m) and the
ΘE(XE , YE ;m), the SAGE file g2 motives.sage also includes the function Dalal dim k(k), that
takes Dalal’s explicit formula [Dal23] for the dimension of the space of level one QMFs on G2 of
weight k ≥ 3 and puts it into the computer. The smallest weight in which there is a nonzero cusp
form, according to Dalal’s formula, is in weight k = 6. In this case, the space of weight 6 level one
quaternionic modular forms is one-dimensional, spanned by an element F6. Computing with the
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SAGE code, one finds the F6 can be normalized to have the following Fourier coefficients. (The
computation took about one hour on my laptop.). In the table, the ordered 3-tuple is the (b, c, d)
of the monic binary cubic f(u, v) = u3 + bu2v + cu2v + dv3.

f(u, v) = u3 + bu2v + cu2v + dv3 a(f)
(0,−3,−1) 48600
(0,−3, 0) 1620
(0,−2,−1) 15
(0,−2, 0) 1680
(0,−1, 0) −7
(1,−3,−3) −10080
(1,−3,−2) 25575
(1,−3,−1) 28800
(1,−3, 0) −1485
(1,−2,−2) −30
(1,−2,−1) 12600
(1,−2, 0) −63

4.2. SAGE implementation: (JR, I). To make the formulas used in Theorem 4.1 explicit, so
that it can be put into SAGE, one uses the following easy lemma.

Lemma 4.5. Let T = [u1, u2, u3, v1, v2, v3], X = [x0, x1, x2;x3, x4;x5] and Y = [y0, y1, y2; y3, y4, y5].

(1) (T, T )I = u21 + u22 + u23 + 2n(v1) + 2n(v2) + 2n(v3).
(2) (T, I#) = u1 + u2 + u3
(3) (T#, I) = u1u2 + u2u3 + u3u1 − n(v1)− n(v2)− n(v3)
(4) det(T ) = u1u2u3 − u1n(v1)− u2n(v2)− u3n(v3) + (v1, v2, v3)O.
(5) (X,T )I = x0u1 + x1u2 + x2u3 + (v1, x3) + (v2, x4) + (v3, x5)
(6) (X,T#) = A1 −A2 +A3 where

(a) A1 = x0(u2u3 − n(v1)) + x1(u3u1 − n(v2)) + x2(u1u2 − n(v3))
(b) A2 = u3(x5, v3) + u2(x4, v2) + u1(x3, v1)
(c) A3 = (x3, v2, v3) + (x4, v3, v1) + (x5, v1, v2).

One has similar formulas for (Y, T )I and (Y, T#).

Now every piece of the computation of Pm,I((1, T, T
#, nJ(T ));X,Y ) is completely explicit, in-

cluding how to find all T with prI((1, T, T
#, nJ(T ))) = f(u, v). Indeed, to find all such T , it suffices

to find all u1, u2, u3 ∈ Z and v1, v2, v3 ∈ R with u21 + u22 + u23 + 2n(v1) + 2n(v2) + 2n(v3) = b2 − 2c.
Because this quadratic form is visibly decomposable, to find such ui and vj , one can do it piecewise
for the quadratic forms x 7→ x2 for x ∈ Z and v 7→ nO(v) for v ∈ R. This fact leads to our
implementation to compute the Fourier coefficients of ΘI being faster than its ΘE counterpart.

To find various suitable singular pairs X,Y to use as inputs, the code has implemented the
exponential of the elements Φ′

u∧v of Lemma 2.5.

4.3. SAGE implementation: (JR, E). To implement the formulas in Theorem 4.2, one uses the
following straightforward lemma:

Lemma 4.6. Suppose T = [c1, c2, c3;x1, v2, v3]. Then (E#, T ) = 2(c1+ c2+ c3)+ (β∗, x1+ v2+ v3)
and

(E, T#) = 2(c1c2 + c2c3 + c3c1 − n(x1)− n(v2)− n(v3))− (β, c1x1 + c2v2 + c3v3)

+ (β, v2, v3) + (β, v3, x1) + (β, x1, v2).

Moreover, the value (T,X)E can be computed using the Gram matrix for the quadratic form (T, T )E.

Submitted to Algor. Num. Th. Symp.
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Remark 4.7. The x1 in the above lemma is not a typo; we have called that octonion x1, instead
of v1, so that the variables used in the lemma are similar to those used in the SAGE code (which,
unfortunately, are not completely parallel.)

To compute the f(u, v) Fourier coefficient of ΘE(XE , YE ;m), one first finds all T ∈ JR with
(T, T )E = b2 − 2c. This uses SAGE’s short vector list up to length function. Then, having
found all such T = [c1, c2, c3;x1, x2, x3], we group them by those that have the same c1, c2, c3 and
x1. This allows some of the computation implicit in Lemma 4.6 that is identical for multiple T
to be done once, instead of repeatedly. SAGE computes each Pm,E(w;XE , YE) and sums up the
results.

To find various suitable singular pairs XE , YE one again uses the exponential of the elements
Φ′
u∧v of Lemma 2.5, together with the element δ−1

E , which is also implemented in SAGE.
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