
FAST SQUARE-FREE DECOMPOSITION OF INTEGERS USING
CLASS GROUPS

ERIK MULDER

Abstract. Let n = a2b, where b is square-free. In this paper we present
an algorithm based on class groups of binary quadratic forms that finds the
square-free decomposition of n, i.e. a and b, in heuristic expected time:

Õ(Lb[1/2, 1] ln(n) + Lb[1/2, 1/2] ln(n)
2).

If a, b are both primes of roughly the same cryptographic size, then our method
is currently the fastest known method to factor n. This has applications in
cryptography, since some cryptosystems rely on the hardness of factoring in-
tegers of this form.

1. Introduction

One of the classic questions in computational number theory is whether the square-
free decomposition of a given mathematical object can be computed ‘fast’. The
question for polynomials is easy to solve: given a polynomial f = f21 f2, where f2
is square-free, we can compute g = gcd(f, f ′). Then g is a multiple of f1, and with
some more care, the exact square factor f1 can be found in polynomial time [35].
For integers however, the question is still open. Given n = a2b, with b square-
free, we present a novel technique that uses class groups to find the square-free
decomposition of n, i.e. a and b. The algorithm runs in heuristic expected time

Õ(Lb[1/2, 1] ln(n) + Lb[1/2, 1/2] ln(n)
2)

where Lb is the L-notation:

Lb[α, c] = e(c+o(1)) ln(b)α(ln ln(b))1−α

.

In the special case that a = p and b = q are distinct primes and p ≈ q, our
algorithm is currently the fastest known method for computing the square-free
decomposition if q is roughly in the range [1020, 105000]. The upper bound should
be taken with a grain of salt, see Section 6.1. Numbers n of this form might seem
like a very specific case. It is true that the probability that a random large integer
n is of this form is very low. However, these numbers appear quite frequently in
cryptographic systems [25, 24, 26, 29, 33]. In these cryptosystems, the assumption
is usually made that factoring an integer n = p2q with p ≈ q is as hard as factoring
an arbitrary integer with 3 large prime factors. Our method shows that this is not
true when q is of cryptographic size. Therefore, larger moduli should be used in
these cryptosystems than advised in those articles.

Another application of our algorithm is to determine the ring of integers of
number fields, since this is polynomial time equivalent to finding the square-free
decomposition of the discriminant of the number field [11]. In [7], this equivalence

Date: January 12, 2023.
1

Submitted to Algor. Num. Th. Symp.

2 ERIK MULDER

is studied in great detail. Unfortunately, our algorithm does not run in polynomial
time, but it can be useful when the square-free part of the discriminant is not
too big. Another possible application is determining the endomorphism ring of an
elliptic curve over a finite field [2], since that algorithm requires the square part of
the discriminant of the characteristic equation of the Frobenius endomorphism.

Factoring integers that have repeated prime factors has been an area of active
research for quite some time. Lattice algorithms are quite popular [3, 13, 21, 17],
but also elliptic curves [27] and even class groups [9, 10] have been used before.
In [4] an algorithm is presented that also uses class groups, which can be used to
detect square-free numbers. Finally, it is good to mention that general purpose
factorization algorithms such as the number field sieve [18] or the elliptic curve
method [19] can of course also factor numbers of this form.

In 1984, Schnorr and Lenstra [30] presented the following algorithm to factor
an integer n, which is very similar to other factorization algorithms such as the
elliptic curve method and Pollard’s p − 1 method. Take a random form f in the
class group C(−4n) and compute g = fk, where k is a large highly composite
integer. If h(−4n) is smooth, then g ∼ e−4n, where e−4n is the identity element
of C(−4n). Schnorr and Lenstra showed how to factor n in this case. Based on
heuristic assumptions, they claimed that the expected runtime of their algorithm is
O(Ln[1/2, 1]). Unfortunately, it was later found that if n has a large square prime
divisor, then this runtime is out of reach [20].

We adapt the algorithm of Schnorr and Lenstra such that it actually becomes
faster when n = a2b has a large square divisor. We will use the fact that every
form in g ∈ C(−4n) can be derived from a unique form π(g) ∈ C(−4b). We don’t
require that g ∼ e−4n ∈ C(−4n), but instead that π(g) ∼ e−4b ∈ C(−4b). Given
such g, we show how to retrieve a, which gives the square-free decomposition of
n. Our method is successful if the class number h(−4b) is smooth. If b is not too
big, then the probability that this happens is much larger than the probability that
h(−4n) is smooth.

1.1. Outline of this paper. In Chapter 2 we will recall some basic properties
of binary quadratic forms and how forms in C(−4a2b) can be derived from forms
in C(−4b). In Chapter 3, we look at the factorization algorithm of Schnorr and
Lenstra [30] in more detail. In Chapters 4 and 5, we present our new square-
free decomposition algorithm. In Chapter 6 we compare our algorithm to other
factorization algorithms and we test its speed in practice.

Acknowledgements. The author would like to thank Wieb Bosma for the helpful
discussions and for proofreading this paper. The author is also grateful for the
comments by the anonymous referees, which greatly improved this article.

2. Class group of binary quadratic forms

2.1. Preliminaries. In this section we quickly recall important definitions from
the theory of binary quadratic forms. For more details see Cox [14], Chapters 1 to
3.

A binary quadratic form f is a polynomial of the form f(x, y) = ax2+bxy+cy2 =
(a, b, c), where a, b, c ∈ Z. We say that f represents m if there exist x, y ∈ Z such
that f(x, y) = m. The discriminant of f is D = b2 − 4ac = 0, 1 mod 4. If D < 0
and a > 0, then f is positive definite. A form is primitive if gcd(a, b, c) = 1. We

Submitted to Algor. Num. Th. Symp.

FAST SQUARE-FREE DECOMPOSITION OF INTEGERS USING CLASS GROUPS 3

will always assume that our forms are primitive and positive definite, unless stated
otherwise. Let Γ be the classical modular group of 2 × 2 matrices A with integer
coefficients and det(A) = 1. Two binary quadratic forms f, g are equivalent if there
exists a matrix A = (p q

r s) ∈ Γ such that f(x, y) = g(A·(x, y)T) = g(px+qy, rx+sy).
If this is the case, then we write f ∼ g. This implies that equivalent forms have the
same discriminant. A form (a, b, c) of discriminant D < 0 is reduced if |b| ≤ a ≤ c,
and b ≥ 0 if either |b| = a or a = c. Every form of negative discriminant is equivalent
to a unique reduced form.

The class group C(D) consists of the equivalence classes of primitive binary
quadratic forms of discriminant D, the group operation is composition of forms.
Given two forms f = (a1, b1, c2), g = (a2, b2, c2) in C(D) with gcd(a1, a2, (b1 +

b2)/2) = 1, their (Dirichlet) composition is f · g = (a1a2, B,
B2−D
4a1a2

), for a suitable
integer B. For more details about this operation, see Chapter 3 of [14]. This
composition can be computed in Õ(ln(D)) using a variant of fast GCD [31]. If
D = 0 mod 4, then the identity element of this group is eD = (1, 0, −D

4). The
class number h(D) is the order of C(D). For D < 0, on average h(D) is roughly√

|D|/π [8], page 84. A discriminant D is fundamental if either D = 1 mod 4 and
D square-free, or D = 4m for some m with m = 2, 3 mod 4 and m square-free. D
is called non-fundamental (non-fun) otherwise. In most number theory papers it
is assumed that D is fundamental, but for our purposes we will mainly focus on
non-fundamental discriminants instead.

2.2. Non-fundamental discriminants. We will mainly follow Chapter 7 of Buell
[8] for this subsection. Let D be a discriminant and r a positive integer. We
will discuss how the class groups C(D) and C(Dr2) are related. For this we use
transformation matrices A, which are 2× 2 integer matrices with det(A) = r.

Proposition 2.1.
a) Given any primitive form f of discriminant Dr2, there exists a form g of

discriminant D and a transformation matrix A with det(A) = r such that
f(x, y) = g(A · (x, y)T).

b) If f1 and f2 are primitive equivalent forms of discriminant Dr2, then there
exists a primitive form g of discriminant D, together with transformation
matrices A1, A2 such that A1A

−1
2 ∈ Γ and:

det(A1) = det(A2) = r, g(A1 · (x, y)T) = f1, g(A2 · (x, y)T) = f2.

Proof. See Proposition 7.1 in [8]. □

Proposition 2.1 basically says that for every primitive form f in the group of
larger discriminant Dr2, there is a unique (up to equivalence) primitive form g in
the group of smaller discriminant D and a transformation matrix A of determinant
r such that f(x, y) = g(A · (x, y)T). In this case we say that f is derived from g.

Buell also makes those transformations explicit; for this he uses the following
notion. Define two transformation matrices A1 and A2 of determinant r to be
right-equivalent if there exists a matrix B ∈ Γ such that A1B = A2. It is easy to
see that this is an equivalence relation. Furthermore, if g is a form of discriminant
D and f1, f2 are forms derived from g using right-equivalent transformations, then
f1 and f2 are equivalent.

We first restrict ourselves to the case that r is a prime p. The general case will
be partially discussed in Lemma 4.4.

Submitted to Algor. Num. Th. Symp.

4 ERIK MULDER

Proposition 2.2. The right-equivalent transformations of determinant p have as
equivalence class representatives the p+ 1 transformations:(

p h
0 1

)
for 0 ≤ h ≤ p− 1 and

(
1 0
0 p

)
.

Proof. See Proposition 7.2 in [8]. □

This means that given a form g = (a, b, c) ∈ C(D) with gcd(a, p) = 1, we can
create the following p+ 1 forms of discriminant Dp2:

(2.1)
(ap2, p(b+ 2ah), ah2 + bh+ c) for 0 ≤ h ≤ p− 1

and (a, bp, cp2)

and no others, up to equivalence. In the last case, we say that h = ∞ was used in
the transformation. Note that these forms are not necessarily reduced, even when
g is reduced.

Using the formulas from (2.1), we can also define a map that goes the other
way. Given a form f ∈ C(Dp2), find a form f2 of the form (ap2, bp, c) that is
equivalent to f . Then define π(f) = (a, b, c) ∈ C(D). This map is well-defined (up
to equivalence) because of Proposition 2.1.

The next question is whether the forms from (2.1) are primitive and if they
can be equivalent to each other. We will use the Kronecker symbol ([14] page 93),
which we denote by

(
D
p

)
, for given integers D, p. Using this symbol, we can state

the relation between h(D) and h(Dp2). From this points onwards, we will focus
on negative discriminants, because the important proposition below is not true for
positive discriminants.

Proposition 2.3. Given a form (a, b, c) of discriminant D < −4 and an odd prime
p with gcd(a, p) = 1, the p + 1 representative transformations of determinant p
produce exactly p−

(
D
p

)
primitive forms of discriminant Dp2 which are all pairwise

inequivalent. It follows that:

h(Dp2) = h(D) · (p−
(
D

p

)
).

Proof. See Propositions 7.3 and 7.4 in [8]. □

By applying this formula repeatedly, we get the following corollary:

Corollary 2.4. Given a discriminant D < −4 and an odd integer r =
∏k

i=1 p
ek
k ,

define

φD(r) =

k∏
i=1

pek−1
k (pk −

(
D

pk

)
).

Then
h(Dr2) = h(D) · φD(r). □

An important property of the embedding of C(D) in C(Dr2) is that the derived-
ness property behaves well under composition of forms:

Proposition 2.5. If f1, f2 ∈ C(Dr2) are derived from g1, g2 ∈ C(D) respectively,
then f1 · f2 is derived from g1 · g2.

Proof. See Proposition 7.9 in [8]. Buell’s map 1∆ is the map π in our context. □

Submitted to Algor. Num. Th. Symp.

FAST SQUARE-FREE DECOMPOSITION OF INTEGERS USING CLASS GROUPS 5

Corollary 2.6. Suppose f ∈ C(Dr2) is derived from g ∈ C(D), where r is odd.
Let a be the order of g. Then the order of f divides a · φD(r).

Proof. The forms in C(Dr2) derived from eD ∈ C(D) form a subgroup in C(Dr2).
We know from Corollary 2.4 that the order of this subgroup is φD(r). Proposition
2.5 implies that fa is derived from eD. Therefore, fa·φD(r) = eD. □

3. Schnorr and Lenstra class group factorization

In 1984, Schnorr and Lenstra published a general purpose integer factorization
algorithm which they claimed could heuristically factor an integer n in O(Ln[1/2, 1])
[30]. We will briefly discuss how the algorithm works before showing how we can
use it in our square-free decomposition algorithm.

Let n be the number you want to factor, possibly square-free. Consider the class
group C(−4n) and take a random form f ∈ C(−4n). Construct a number k that
consists of powers of all primes up to some bound B. Now, if fk = e−4n and the
order of f is even, then g = fk/2

m

has order 2 for some integer m. Forms of order 2
are called ambiguous. They are of the form (m, 0, n

m), with gcd(m, n
m) = 1, which

makes it easy to retrieve a factor of n from them. If this was successful and if n is
not yet completely factored, then we go again with a different f and hopefully find
another factor of n, until the complete factorization is found.

This method works as long as the order of C(−4n) is smooth. If it is not
smooth, then we can try again by considering the class group C(−4ns) for some
small positive integer s. An ambiguous form in that group will still lead to the
factorization of n. We can repeat this process for different values of s until the
factorization of n is found.

Schnorr and Lenstra made the following heuristic assumptions. Assumptions a, b
are (2.1), (2.2) in [30] respectively. Assumption c is mentioned later in their article
in equation (4.3). This final assumption turned out to be wrong, which we will see
later in this chapter. Let Ψ(x, y) be the number of positive integers a ≤ x such
that a is y-smooth.

Assumptions 3.1.

a) The order of a class group of discriminant D is at least as likely to be
smooth as a random integer of size

√
D. More precisely, for all n, t:

#{m ≤ n : h(−m) |
t∏

i=1

peii }/(0.5n) ≥ #{m ≤
√
n : m |

t∏
i=1

peii }/
√
n,

where the ei are defined in Algorithm 1.
b) A significant portion of integers are smooth. More explicitly, for all n and

c ≤
√
ln(n)/ ln ln(n)) we have that Ψ(n, n1/c)/n ≥ c−c.

c) Given an integer n, the smoothness bounds of h(−4ns) are independent for
all square-free integers s.

It is good to mention that the Cohen-Lenstra heuristics [12] suggest that the
odds of finding a class group with a smooth order is actually a bit better than that
of a random integer of the same size.

Submitted to Algor. Num. Th. Symp.

6 ERIK MULDER

Algorithm 1 Schnorr and Lenstra stage 1

1: function GeneralClassGroupFactorization(n)
2: c =

√
ln(n)/ ln ln(n))

3: B = n1/(2c) ▷ prime bound
4: compute the first t primes p1, . . . , pt up to B
5: k =

∏t
i=2 p

ei
i , where ei = max{v : pvi ≤ p2t}

6: s = 1
7: while no factorization found do
8: pick random f ∈ C(−4ns)
9: g = fk

10: if g = e−4ns then
11: go back and pick a new f
12: end if
13: for 1 ≤ i ≤ log2(

√
n) do

14: g = g2

15: if g = e−4ns then
16: construct ambiguous forms
17: return complete factorization of n
18: end if
19: end for
20: update s to be the next square-free number after s
21: end while
22: end function

We can now state the main result from Schnorr and Lenstra.

Theorem 3.2. Assume Assumptions 3.1. Then for all composite integers n, Al-
gorithm 1 will completely factor n in expected O(Ln[1/2, 1]) time.

Proof. See Theorem 5 and the run time analysis section of Chapter 4 from [30]. □

Unfortunately, in 1992 it was found by Lenstra and Pomerance [20] (Chapter
11), that the above stated run time was incorrect for a large set of numbers. Can
you guess which? Numbers that have a large prime square divisor!

Suppose that n has a divisor p2, where p is prime. Suppose furthermore that
p−1 and p+1 are both not smooth. Then by Proposition 2.3, we see that C(−4ns)
is divisible by either p− 1 or p+ 1 for all integers s. Therefore, there will be no s
such that C(−4ns) is smooth.

Interestingly enough, we will show that by adapting Lenstra’s algorithm for
integers of this form, we actually get an algorithm that is faster than the originally
claimed time bound in this special case.

We now know that assumption c is incorrect. Therefore, we will use the following
assumptions instead, where we only tweak assumption c. These new assumptions
are still just conjectures, but now at least the problem with large square divisors is
taken care of. In Section 6.2, we will give experimental results that might convince
one of the correctness of these assumptions.

Submitted to Algor. Num. Th. Symp.

FAST SQUARE-FREE DECOMPOSITION OF INTEGERS USING CLASS GROUPS 7

Assumptions 3.3.
a) The order of a class group of discriminant D is at least as likely to be

smooth as a random integer of size
√
D. More precisely, for all n, t:

#{m ≤ n : h(−m) |
t∏

i=1

peii }/(0.5n) ≥ #{m ≤
√
n : m |

t∏
i=1

peii }/
√
n,

where the ei are defined in Algorithm 1.
b) A significant portion of integers are smooth. More precisely, for all n and

c ≤
√
ln(n)/ ln ln(n)) we have that Ψ(n, n1/c)/n ≥ c−c.

c) Given a square-free integer n, the smoothness bounds of h(−4ns) are inde-
pendent for all square-free integers s.

We will rephrase Theorem 3.2 so that it uses the new assumptions and so that
it can be used for the analysis of our algorithm.

Theorem 3.4. Assume Assumptions 3.3. Let n be square-free and composite. Let

B = n1/(2c) ∈ O(Ln[1/2, 1/2])

as stated in Algorithm 1. Then per multiplier s, the algorithm performs O(B)
compositions. It takes expected O(B) tries to find a suitable s. Afterwards, another
O(ln(s)(B+s)) compositions are needed to construct the ambiguous forms. In total,
it takes expected O(B2) = O(Ln[1/2, 1]) compositions to factor n.

Proof. We again refer to the time analysis section of Chapter 4 of [30]. □

4. A new square-free decomposition algorithm

4.1. The case of prime square factor. For now, let n = p2b with p prime and
b positive, square-free and possibly composite. Later on we will allow p to be
composite as well. All our discriminants will contain a factor 4, since −n is not a
discriminant if n = 1, 2 mod 4, but −4n always is.

In this section we will introduce an algorithm that computes the square-free
decomposition of n that uses class groups with non-fundamental discriminants.
One of the main ingredients is the following proposition. This proposition contains
the very restricting condition that b > p2. But, we will see in Lemma 4.2 that we
can drop this assumption.

Proposition 4.1. Suppose we have a reduced form f ∈ C(−4n) that is derived
from e−4b = (1, 0, b) ∈ C(−4b) and f ̸∼ e−4n = (1, 0, n). Furthermore, suppose that
b > p2. Then

f = (p2, 2pk, k2 + b)

for some −p/2 ≤ k ≤ p/2.

Proof. Using the formulas from (2.1), we see that f is equivalent to

g = (p2, 2ph, h2 + b)

for some 0 ≤ h ≤ p − 1. Let’s check if g is reduced. We have h2 + b ≥ b > p2, so
that is a good start.
If h ≤ p/2 then |2ph| ≤ p2, so in this case g is reduced. Reduced forms are unique.
Therefore f = (p2, 2ph, h2 + b) (not just equivalent, really equal).
If h ≥ p/2 then we do one reduction step with A =

(
1 −1
0 1

)
:

g ∼ g2 = (p2, 2ph− 2p2, p2 − 2ph+ h2 + b) = (p2, 2p(h− p), (h− p)2 + b).

Submitted to Algor. Num. Th. Symp.

8 ERIK MULDER

Then since |2p(h − p)| ≤ |2p(p/2)| = p2, we see that g2 is reduced. Therefore
f = (p2, 2p(h− p), (h− p)2 + b). □

The main takeaway from this proposition is the following factorization strategy.
If we are able to find a non-trivial form in the larger group C(−4bp2), that is derived
from the trivial form in the smaller group C(−4b), then we can find p2 by reading
off the first coefficient of the reduced form of f . In Proposition 4.5, we will state a
version of Proposition 4.1 where the square part can be composite.

It is good to mention that this factorization strategy in a general sense is very
similar to other integer factorization algorithms. For example, in the elliptic curve
method (ECM) by Lenstra [19], a non-trivial point P on an elliptic curve E(Z/nZ)
is constructed such that P reduced mod p is the identity element in the group
E(Z/pZ) of smaller size, where p | n. By computing gcd(Px, n), the factor p of n
will be found. This will not be the last time that we compare our algorithm to the
ECM, since there are many similarities.

The assumption that b > p2 is quite limiting because then h(−4b) will be fairly
large, making the algorithm not very efficient. Fortunately, there is a great way to
circumvent this problem, by introducing an integer r with known factorization. In
the next lemma we show that we can enlarge b with a large factor r2. This will help
a lot, since then the form f in Proposition 4.1 will be reduced, even if the original
b is not large compared to p.

Lemma 4.2. Suppose g ∈ C(−4n) is derived from e−4b. Let r be a positive integer
with gcd(r, p) = 1. Lift g to some h ∈ C(−4nr2) using the formulas in (2.1). Then
l = hφ−4n(r) is not only derived from e−4b, but also from e−4br2 .

Proof. First note that h ∈ C(−4nr2) is derived from e−4b ∈ C(−4b). Suppose h is
derived from h2 ∈ C(−4br2). Then h2 is also derived from e−4b ∈ C(−4b), because
Proposition 2.1 implies that h is derived from a unique form in C(−4b). Corollary
2.6 now implies that the order of h2 divides φ−4b(r).
Write r =

∏k
i=1 p

ek
k , then since gcd(r, p) = 1,

φ−4b(r) =

k∏
i=1

pek−1
k (pk −

(
b

pk

)
) =

k∏
i=1

pek−1
k (pk −

(
n

pk

)
) = φ−4n(r).

Using Proposition 2.5, we see that l is derived from

h
φ−4n(r)
2 = h

φ−4b(r)
2 = e−4br2 . □

We can now state the first version of our algorithm. The main idea is to use
Algorithm 1 to find a form f ∈ C(−4n) that is derived from e−4b ∈ C(−4b). Using
Lemma 4.2, we are then able to find a form derived from e−4br2 ∈ C(−4br2) for a
large enough r. Finally, we use Proposition 4.1 to find the factor p2 of n. From
this the square-free decomposition can be easily computed.

In the algorithm below, n = p2b is an integer not divisible by 3 and b2 is an
upper bound for b. If no good upper bound is known, then a small value can be
used initially, and it can be increased incrementally if no factorization is found. The
first part of the algorithm is completely the same as Algorithm 1. The difference
is that if Lenstra’s algorithm is unable to find the factorization, then we do some
additional steps which might lead to the square-free decomposition of n.

Submitted to Algor. Num. Th. Symp.

FAST SQUARE-FREE DECOMPOSITION OF INTEGERS USING CLASS GROUPS 9

Algorithm 2 Square-free decomposition stage 1

1: function SquareFreeDecomposition(n, b2)
2: c =

√
ln(b2)/ ln ln(b2))

3: B = b
1/(2c)
2 ▷ prime bound

4: compute the first t primes p1, . . . , pt up to B
5: k =

∏t
i=2 p

ei
i , where ei = max{v : pvi ≤ p2t}

6: s = 1
7: r = 3⌈log3(

√
n))⌉

8: while no factorization found do
9: pick random f ∈ C(−4ns)

10: g = fk

11: if g = e−4ns then
12: go back and pick a new f
13: end if
14: for 1 ≤ i ≤ log2(

√
n) do

15: g = g2

16: if g = e−4ns then
17: construct ambiguous forms
18: return complete factorization of n
19: end if
20: end for
21: lift g to a form h ∈ C(−4nsr2) using the formulas in (2.1)
22: l = hφ−4ns(r)

23: try to find p2 using the form l and Proposition 4.1
24: if p2 is found then
25: p =

√
p2 and b = n/p2

26: return p, b
27: end if
28: update s to be the next square-free number after s
29: end while
30: end function

Theorem 4.3. Assume Assumptions 3.3. Then for all integers n = p2b, Algorithm
2 will find the square-free decomposition (and possibly the full factorization) of n in
expected time:

Õ(Lb[1/2, 1] ln(n) + Lb[1/2, 1/2] ln(n)
2).

Proof. Let’s first look at the correctness of the algorithm. We know from Theorem
3.4 that the code up to line 20 has a chance to completely factor the integer n.
This is the case if g is the trivial form in the group C(−4ns). If that is not the
case, then by using Proposition 2.5, we see that there is still a possibility that g is
derived from the trivial form in the underlying group C(−4bs).
In that case, we know from Lemma 4.2 that the form l in the larger group C(−4nsr2)
is not just derived from e−4bs ∈ C(−4bs), but also from e−4bsr2 ∈ C(−4bsr2). Thus,
we can now apply Proposition 4.1 with the form l to find p2, because

bsr2 ≥ r2 ≥ n ≥ p2.

Now let’s look at the running time of the algorithm. Until line 20, the code is the
same as Algorithm 1, except that our prime bound depends on b2 instead of n. If

Submitted to Algor. Num. Th. Symp.

10 ERIK MULDER

b2 is a good approximation of b, then Proposition 2.5 and Theorem 3.4 imply that
we can expect to get a form derived from e−4bsr2 in O(Lb[1/2, 1]) group operations,
i.e. Õ(Lb[1/2, 1] ln(n)) steps if we use a fast composition algorithm [31].
The additional lines 21 to 27 can be done in Õ(ln(n)2) per value of s that we try,
since the discriminant of h is O(−n2s) and the exponent in line 22 is O(

√
n). From

Theorem 3.4 we also know that the expected number of multipliers s that we have
to try is O(Lb[1/2, 1/2]). Hence, the total expected running time of the algorithm
in this case is

Õ(ψb(n)) := Õ(Lb[1/2, 1] ln(n) + Lb[1/2, 1/2] ln(n)
2).

If a good approximation of b is not known, then start with a small value for b2 and
try to find the factor p2 in Õ(ψb2(n)) time. If the algorithm is not successful in that
time frame, then try again with b2 = 2b2, etc. A b2 of size b is found within log2(b)

steps. Thanks to the definition of Lb, the total complexity is still Õ(ψb(n)). □

4.2. Extending to composite square factors. Now that we know how to find
the square part of integers of the form n = p2b, we will show in this subsection how
this can be extended to composite square factors as well. To do this, we need a
version of Proposition 4.1 for integers n = a2b with a, b both possibly composite.

The main difference is that the form f can now also be derived from a trivial form
that lies in a larger group than C(−4b). There can be many intermediate groups
between C(−4b) and C(−4a2b) if a has many prime factors. In the next lemma we
compose transformations from (2.1). We restrict ourselves to transformations with
h ̸= ∞, which will make sense in the proof of Proposition 4.5.

Lemma 4.4. Suppose f ∈ C(−4a2b) is derived from g ∈ C(−4b) using the following
transformations (see (2.1)), starting from left to right:(

p1 h1
0 1

)
, . . . ,

(
pr hr
0 1

)
where the pi are primes (not necessarily distinct) and p1 · · · pr = a and 0 ≤ hi ≤
pi − 1 for all i. Then the transformation matrix of determinant a that maps g to f
can be written as (

a h
0 1

)
where h =

r∑
i=1

hi

i−1∏
j=1

pj .

Furthermore, 0 ≤ h ≤ a− 1.

Proof. This can be proven by doing induction on r, the number of prime factors of
a. □

We can now state and prove the composite analogue of Proposition 4.1.

Proposition 4.5. Suppose we have a reduced form f ∈ C(−4a2b) that is derived
from e−4b = (1, 0, b) ∈ C(−4b) and f ̸∼ e−4a2b = (1, 0, a2b). Then there exists a
maximal b2 = (a

a2
)2b for some a2 | a, such that f is derived from e−4b2 , and if

b2 > a22, then
f = (a22, 2a2k, k

2 + b2)

for some −a2/2 ≤ k ≤ a2/2.

Submitted to Algor. Num. Th. Symp.

FAST SQUARE-FREE DECOMPOSITION OF INTEGERS USING CLASS GROUPS 11

Proof. Let b2 = (a
a2
)2b be maximal such that f is derived from e−4b2 . We know

that f can be derived from e−4b2 by repeatedly applying the formulas from (2.1)
for each prime factor of a2. Claim: only the transformations with h ̸= ∞ in (2.1)
are used to produce f from e−4b2 .
In the chain of transformations from e−4b2 to f , suppose we have an intermediate
form

f2 ∈ C(−4a23b2) = C(−4(
a · a3
a2

)2b)

which is produced from e−4b2 using the prime factors of a3 = p1 · · · pr | a2, and
suppose only transformations of the form(

p1 h1
0 1

)
, . . . ,

(
pr hr
0 1

)
were used up to this point. Suppose furthermore that the next prime p | a2 in
the chain does use h = ∞ to produce f3. We know from Lemma 4.4 that the
transformation from e−4b2 to f2 is of the form(

a3 h
0 1

)
with h =

r∑
i=1

hi

i−1∏
j=1

pj .

Therefore, the transformation from e−4b2 to f3 can be written as(
a3 h
0 1

)(
1 0
0 p

)
=

(
a3 hp
0 p

)
.

However, there is another way to produce f3 from e−4b2 . Namely, if we instead
start with the prime p and use h = ∞ again, then we produce

f ′2 = (1, 0, p2b2) = e−4p2b2

from e. Next, we produce f ′3 by using the following transformations for the prime
factors of a3: (

p1 p · h1
0 1

)
, . . . ,

(
pr p · hr
0 1

)
where p · hi can be computed modulo pi for all i. Then using Lemma 4.4 again, we
see that the transformation from e−4b2 to f ′3 is:(

1 0
0 p

)(
a3 hp
0 1

)
=

(
a3 hp
0 p

)
.

Hence f3 = f ′3. We now see that f3 is also derived from e−4p2b2 . Therefore, f is
also derived from e−4p2b2 . This contradicts the assumption that b2 was maximal,
hence the claim is proven.
To finish the proof of the proposition, we use Lemma 4.4 one final time, together
with the claim, to see that the transformation from e−4b2 to f is of the form(

a2 l
0 1

)
for some 0 ≤ l ≤ a2 − 1.

We are now in the same situation as Proposition 4.1. By repeating the steps of
that proof we see that f is either equal to

(a22, 2a2l, l
2 + b2) or to (a22, 2a2(l − a2), (l − a2)

2 + b2). □

Submitted to Algor. Num. Th. Symp.

12 ERIK MULDER

We can now state our algorithm in full generality. Proposition 4.5 is harder to use
directly than Proposition 4.1, as there are cases where the complete square factor
can’t be read off immediately from the first coordinate. In the next proposition, we
show that it is still possible to find the complete square factor in those cases.

Proposition 4.6. Algorithm 2 can be extended to work for integers n = a2b having
composite square factors, without increasing the asymptotic complexity.

Proof. Until line 23 of Algorithm 2, we don’t have to make any adjustments. In
line 23, the x2 coefficient of l could be a2. But, we know from Proposition 4.5, that
this coefficient can also be a divisor of a2, say a22. This happens when our highly
composite integer k not only covers the prime factors of h(−4bs), but also those of
h(−4(a

a2
)2bs).

To get the full factor a of n, we can use Lenstra’s original Algorithm 1, together with
the same s and k, to completely factor b2 = (a

a2
)2b. By reading off the square part

of the factorization of b2, we get a
a2

. Combining this with the factor a2 we found
earlier, we now have computed the square-free decomposition of n = (a2

a
a2
)2b. Note

that in this case, the only part of n that we possibly don’t have the full factorization
of is a2.
We only added a single iteration of Algorithm 1 to factor b2. By looking carefully
at Theorem 3.4, we see that this only takes

Õ(ln(s) ln(b2)(Lb[1/2, 1/2] + s)) ⊆ Õ(ψb(n))

since we use the same prime bound B and multiplier s that we also applied in
Algorithm 2 with input n = a2b. Therefore, the asymptotic complexity of this
algorithm is the same as Algorithm 2. □

In some applications, we know a rough estimate of the size of a compared to b.
We can use this to formulate a neater version of the running time.

Corollary 4.7. Fix 0 ≤ α ≤ 1 and assume Assumptions 3.3. Then for all integers
n = a2b with b = nα, Algorithm 2 will find the square-free decomposition (and
possibly the full factorization) of n in expected time:

O(Lb[1/2, 1]) = O(e(1+o(1))
√

ln(b) ln ln(b)) = O(Ln[1/2,
√
α]).

Proof. First note that for any constant c

Lb[1/2, c] = Ln[1/2, c
√
α].

Therefore, we can hide the factors ln(n) of ψb(n) in the o(1) terms to get

Õ(ψb(n)) = Õ(Lb[1/2, 1] + Lb[1/2, 1/2]) = Õ(Lb[1/2, 1]).

Finally, we can drop the ∼ in Õ(Lb[1/2, 1]) for the same reason. □

Remark 4.8. Let’s make some remarks about our new factorization algorithm.
• In cryptographic applications, integers n = p2q are sometimes used, where
p, q are primes of roughly the same size. Thus a good approximation of
b ≈ n1/3 is then known. In cases like these we can also choose r smaller:
r = cn1/6, for some small c that depends on how much p and q differ. Using
this r, we still meet the requirement of Proposition 4.1.
More generally, numbers of the n = pkq are sometimes used in crypto-
graphic systems. Our algorithm is especially fast when k is even, because
then the square-free part of n is only q, compared to pq when k is odd.

Submitted to Algor. Num. Th. Symp.

FAST SQUARE-FREE DECOMPOSITION OF INTEGERS USING CLASS GROUPS 13

• The order in which we try the different multipliers s might not be optimal
in the current presentation. The optimization of this seems to be somewhat
of an art. We analyze this (experimentally) in Appendix B of the longer
version of this article [23].

• Instead of taking r = 3m, we could also take r = 2m for a suitable m (we
did not state Corollary 2.4 for this case), or r could be r = NextPrime(

√
n).

The good thing about taking r prime is that r will be only a little bit bigger
than

√
n. With r = 3m for example, you usually overshoot it by quite a bit.

Smaller r speed up the arithmetic in the group C(−4nsr2), which is not
very important for this version of the algorithm, but it will make a practical
difference in Chapter 5. However, the complexity analysis of the NextPrime
function is somewhat messy, so we left it out of this presentation.

• As mentioned before, Lenstra’s original algorithm struggled with numbers
n that have large prime square divisors. We now see that in that case we
actually have a faster way to find at least the square-free decomposition of n.
We can also restore Lenstra’s algorithm to its former glory by amending it
as follows. Given n, possibly square-free, run Algorithm 2. If an ambiguous
form is found, then compute the full factorization of n and stop. If factors
a, b are found such that n = a2b, then completely factor b using Lenstra’s
original algorithm, which is possible since b is square-free. It is possible that
a contains a square factor. Therefore, we repeat this algorithm recursively
with the input a. There are at most log2 log2(n) recursion steps. This
produces the full factorization of n in expected

O(Ln[1/2, 1] ln ln(n)) = O(Ln[1/2, 1])

which is the original running time that Schnorr and Lenstra claimed!
• After we discovered the trick of introducing the factor r, we found out

that Castagnos and Laguillaumie [10] had already discovered it in 2009.
In Theorem 3 of that article, they show how to find the square part of
the discriminant given a form that is derived from the trivial form in the
underlying group. Another article from 2009 [9] does something similar.
Using Coppersmith’s method, they show that when given a form that is
derived from a form of small norm, you can find the square part of the
discriminant. An example of such a form is of course the trivial form.
A natural question for both articles is therefore: how can we find a form
that is derived from the trivial form? As we now have seen, Lenstra’s
algorithm answers this question quite well, which raises the question why
this combination has not been spotted before. One possible explanation is
that Schnorr and Lenstra’s algorithm is from 1984, whereas these articles
are much more recent.

Now that we have a solid foundation for our factoring algorithm, we will look at
similar algorithms and try to learn from them to optimize ours.

5. Stage 2

5.1. Introduction. In Algorithm 2 we constructed a large k and computed g = fk

for some f ∈ C(−4ns). We then hoped that this form is derived from e−4bs. If not,
then we try the next s. Our algorithm is an example of algebraic-group factorization,

Submitted to Algor. Num. Th. Symp.

14 ERIK MULDER

which is a more general factorization strategy that works in some other groups as
well, such as finite fields and elliptic curves.

These algorithms can always be extended with a so-called ‘stage 2’. If in stage
1 we used primes up to a bound B, then in stage 2 we extend our prime bound
to B2 > B. But, instead of doing exactly the same steps with a larger k, we
now continue with the g = fk that we computed, and we check for every prime
p ∈ [B,B2] separately if gp is derived from e−4bs. The idea behind this is that if
stage 1 was unsuccessful, then there is a good chance that we are just missing one
prime factor q of the order of C(−4bs). Since we only are examining one prime p
at the time, we might be able to take B2 quite a bit larger than B, without having
to increase the runtime by a lot. If the factor q lies in the interval [B,B2], then we
find the square-free decomposition of n.

Note that if there are two (or more) primes q1, q2 ∈ [B,B2] that we are missing
from the order of C(−4bs), then we are not going to factor n using stage 2, since
we only look at one prime at the time. In stage 1 this problem does not exist.
Nevertheless, we will see that on average, having a stage 2 improves the performance
of the algorithm.

5.2. Generic stage 2. The first known ‘stage 2’ for algebraic-group factorization
algorithms was already discovered in 1974 in Pollard’s classic paper [28], Chapter
4. There, it was applied in the group (Z/nZ)∗, which uses the Chinese remainder
theorem to see that this group has a subgroup F∗

p, where p is prime and p | n.
If an element in b ∈ (Z/nZ)∗ is found that is derived from 1 ∈ F∗

p, then the
factor p can be found. Derived in this context means that b = 1 mod p, hence
gcd(b − 1, n) will provide p. Such b can be found by computing b = ak mod n
for a large highly composite k and some random a, precisely as what we saw in
Algorithms 1, 2. Because of the order of the group F∗

p, methods like Pollard’s are
called p− 1 algorithms.

After computing b = ak mod n, Pollard continues by first precomputing
b2, b4, . . . , b2m mod n, where 2m is the largest gap between two consecutive primes
in the interval [B,B2]. The best known unconditional bound on m is O(B0.525

2) [1].
However, most conjectured bounds are much smaller, for example Cramér’s bound
is O(ln(B2)

2) [15].
Let pt+1 ≤ · · · ≤ pu be the primes in the interval [B,B2]. We can now compute

br mod n for each prime r ∈ [B,B2] by first computing c = bpt+1 mod n in O(ln(B))
multiplications mod n. Afterwards, we only have to do one multiplication mod n
to compute bpt+2 = c · bpt+2−pt+1 mod n, since we precomputed bpt+2−pt+1 mod n.
Continuing like this covers all primes in the interval [B,B2] in O(π(B2) − π(B))
multiplications mod n, where π is the prime counting function.

The prime number theorem states that π(x) ≈ x/ ln(x) for all large positive
integers x. Therefore, this stage 2 takes O(B2/ ln(B2)) multiplications mod n. If
we take B2 = B ln(B) then the number of multiplications becomes O(B). This is
the same number of multiplications as in stage 1. Brent [6] (Section 9.2) mentions
that using this stage 2 improves the runtime of the p − 1 algorithm by a factor
roughly ln ln(p).

We call this the ‘generic’ stage 2 because it can be used in all groups that follow
the algebraic-group factorization strategy. So, let’s apply it to our algorithm. We
won’t state Algorithm 2 here again, Algorithm 3 will take place between lines 27
and 28 of Algorithm 2 (except for lines 2, 3 and 4, it is better if they are placed

Submitted to Algor. Num. Th. Symp.

FAST SQUARE-FREE DECOMPOSITION OF INTEGERS USING CLASS GROUPS 15

before the while loop of Algorithm 2). We will state it for integers of the form
n = a2b.

Unfortunately, the compositions of stage 2 will take place in the larger group
C(−4nsr2), because otherwise we would have to lift the form gp to this group for
every prime p in the interval [B,B2], which is slower. This is where it is useful to
take r as small as possible.

Algorithm 3 Generic stage 2 continuation

1: function Stage2(n, b2)
2: B2 = B ln(B)
3: compute the primes pt+1, . . . , pu in the interval [B,B2]
4: m = max

t+1≤i≤u−1
(pi+1 − pi)

5: precompute l2, l4, . . . , lm ∈ C(−4nsr2)
6: p−1 = 0 ▷ the previous prime
7: for p ∈ [pt+1, . . . , pu] do
8: step = p− p−1

9: l2 = l2 · lstep ▷ if p−1 ̸= 0 then lstep is precomputed
10: try to find a2 using the form l2 and Proposition 4.1 or Proposition 4.6
11: if a2 is found then
12: compute a =

√
a2 and b = n/a2

13: return a, b
14: end if
15: p−1 = p ▷ update the previous prime
16: end for
17: end function

In the next proposition we summarize what we know about Algorithm 3.

Proposition 5.1. Assume that the largest prime gap in [B,B2] is polynomial in
ln(B2). Then the generic stage 2 continuation of Algorithm 2 does not change the
complexity per s that we try. The number of class groups that have to be tried to
factor n = a2b this way is reduced by a factor roughly ln ln(b).

The generic stage 2 continuation uses B2 = B ln(B). This is not bad, but there
are methods used in other algebraic-group factorization algorithms that use a whop-
ping B2 = B2, or something close to it, and still only take O(B) group operations.
This provides a significant speedup, namely a factor of roughly ln(n)/ ln ln(n), com-
pared to only using stage 1 [30], page 300. Unfortunately, we were not able to find
such a good stage 2 for our algorithm. However, some interesting possible ap-
proaches are explored in Appendix C of [23].

6. Timings and comparison to other algorithms

6.1. Complexity comparisons. In this subsection we will compare our algorithm
to three other algorithms: the elliptic curve method (ECM), the number field sieve
(NFS) and the lattice methods mentioned in Chapter 1. Let’s start with the ECM.

As we saw in Proposition 4.6, given an integer n = a2b, we can compute the
square-free decomposition of n in expected time

Õ(Lb[1/2, 1] ln(n) + Lb[1/2, 1/2] ln(n)
2).

Submitted to Algor. Num. Th. Symp.

16 ERIK MULDER

The ECM works a bit differently, if p is the smallest prime factor of n, then the
ECM can find p in expected Õ(Lp[1/2,

√
2] ln(n)) time [19] if fast arithmetic is used.

Because of the o(1) in the exponent of the Lp function, the logarithmic improvement
provided by the better stage 2 of the ECM is not shown in the complexity.

Both algorithms hope to find a group of smooth order. In our algorithm, we
work with the class groups C(−4bs), which have size roughly

√
b. In the ECM, you

work with elliptic curves E(Fp), which have size roughly p. This is why the
√
2

term is not present in the L function of the complexity of our algorithm.
It is good to mention that just like the ECM, there is a natural way to parallelize

our algorithm. If you have m processors, give each of them a different s and try to
factor n using the class groups C(−4ns). This will provide a linear speed-up in m.

If the factors a, b of n are not prime, then the ECM will most likely find some
factor of n before our algorithm computes the square-free decomposition. How-
ever, the ECM might take longer to find the complete square-free decomposition,
depending on the structure of the remaining prime factors of n. If n is of the form
n = p2q, where p, q are primes, then purely looking at the asymptotic complexities,
our method will be faster than the ECM when p2 > q. In practice, we might need
p2 to be even larger compared to q, since the ECM has a better stage 2 and many
more optimizations.

From now on, we will assume that n is of the form n = p2q, where p, q are
primes of roughly the same size. We do this, because this is the hardest case
and it is probably the most common setting where our algorithm can be used.
As mentioned in Chapter 1, there are quite a few cryptographic systems that use
numbers of this form, where they rely on the assumption that these numbers are
hard to factor. In this case p2 is much larger than q, so our algorithm will be faster
than the ECM when n is large enough.

The number field sieve completely factors its input n in expected time

O(Ln[1/3, (64/9)
1/3]) = O(e(64/9+o(1))1/3 ln(n)1/3 ln ln(n)2/3)

[16], page 288. From Corollary 4.7, we know that our method takes expected time

O(Ln[1/2,
√
1/3]) = O(e(

√
1/3+o(1))

√
ln(n) ln ln(n)).

The exponent of ln(n) in the complexity of the NFS is smaller than in our algorithm.
Therefore, when n is large enough, the NFS will factor n faster than our algorithm,
even when n is in this special form. However, since the constant (64/9)1/3 ≈ 1.92 is
much bigger than

√
1/3 ≈ 0.58, our method will likely be faster up to some point.

If we solve for n in the equation

Ln[1/3, (64/9)
1/3] = Ln[1/2,

√
1/3]

then we find the massive n ≈ 105613. This should be taken with a grain of salt,
since this does not take into account any optimizations nor the o(1) terms. But,
it seems reasonable to assume that for integers n = p2q of cryptographic size, our
method will be faster than the NFS. Table 2 also supports this claim.

Finally, let’s have a look at the lattice methods that can factor integers of the
form n = prq. If p and q are primes of roughly the same size, then a lattice attack
can factor n in deterministic Õ(n1/(r+1)2) time [17], Section 1.3. This means that
for r = 2, this method takes Õ(n1/9) time, which is not sub-exponential in ln(n) and
therefore slower than our method if n is large enough. But, if r is large enough, then

Submitted to Algor. Num. Th. Symp.

FAST SQUARE-FREE DECOMPOSITION OF INTEGERS USING CLASS GROUPS 17

the lattice methods will be faster. Especially if r is odd, since then the square-free
part of n is pq instead of p, significantly slowing down our algorithm.

6.2. Speed in practice. We implemented our algorithm in Magma [5] and ran it
on a fairly standard desktop (3.35GHz). Our basic implementation can be found
in [22]. For ease of implementation, we used only one core when running each
algorithm. But, each of the algorithms below would enjoy an almost linear speed-
up in the number of cores. In this subsection we will compare the following four
algorithms:

(1) Our combined algorithm, i.e. the combination of Algorithm 2 with the
generic stage 2 continuation presented in Algorithm 3.

(2) Only stage 1 of our algorithm, i.e. Algorithm 2.
(3) The elliptic curve method (ECM). We used the optimized built-in version

of Magma.
(4) The number field sieve (NFS). We used the optimized CADO-NFS imple-

mentation [34].
In Table 1 we compare the first three of these. The numbers that are were factored
to create this table were of the form n = p2q, where p, q are primes of roughly the
same size.

q ≈ 1015 q ≈ 1020 q ≈ 1025 q ≈ 1030 q ≈ 1035

Mean time
with stage 2 0.11 0.80 5.16 30.30 135.91

Median time
with stage 2 0.07 0.50 3.54 23.04 80.52

Mean time
only stage 1 0.16 1.63 11.65 66.71 357.74

Median time
only stage 1 0.10 0.98 7.80 43.91 267.61

Mean ECM
time 0.07 1.01 14.15 141.78 1549.16

Median ECM
time 0.05 0.65 11.05 102.76 832.52

Number of
n’s factored 100 100 100 100 50

Table 1. Comparison between factorization algorithms, in sec-
onds

We see that for smaller inputs the ECM is faster than our method, but for
q ≥ 1020 our method becomes significantly faster. The fact that the ECM is faster
for smaller inputs can be explained by the many years of optimizations that were
done to improve the method.

If the reader has tried to avoid statistics as much as the author, then they might
be wondering why the mean times seem to be larger than the median times. This is
explained by the fact that in an exponential distribution, the mean is about 1/ ln(2)

Submitted to Algor. Num. Th. Symp.

18 ERIK MULDER

times the median [32]. For example, for q = 1030 we have 23.04/ ln(2) = 33.24 ≈
30.30.

Our method that picks the multipliers s is quite straightforward, start at s = 1
and after each round go to the next square-free value. In Appendix B of [23] some
heuristic arguments and numerical results are presented that suggest that there are
other strategies to choose your multipliers s that on average improve the runtime
of the algorithm. This improvement probably won’t change the complexity of the
algorithm, but it can make a difference in practice.

In the next table, we show more details about our combined algorithm and we
compare it to the NFS for large inputs. In Table 2, the numbers n = p2q that were
factored were of the same form as in Table 1. We see that if n has 150 digits, then
on average we can factor it in about 3 hours using the combined algorithm, much
faster than with the NFS.

q ≈ 1020 q ≈ 1030 q ≈ 1040 q ≈ 1050

Mean time
NFS 61.17 s 22.82 m 572.51 m ∼ 8 d 1

Mean time
combined alg. 0.72 s 33.63 s 9.74 m 174.47 m

Median time
combined alg. 0.54 s 20.55 s 7.20 m 87.69 m

Successful in
stage 1 27% 26% 20% 24%

Successful in
stage 2 73% 74% 80% 76%

Mean number
of groups 6.19 26.80 63.54 206.36

Median number
of groups 5 17 47 103

Number of
n’s factored 100 100 50 25

Table 2. Timing of Algorithm 2 extended with Algorithm 3 com-
pared to the NFS

Some notable examples: when we used

q = 37294202675688843722966391031920296857220275388239,

the combined algorithm finished within 43 seconds, this is because the very first
group that we tried was successful (in stage 2). On the contrary,

q = 53328961473418475894520883222727806445395016777723

18 days is a rough estimate by extrapolation

Submitted to Algor. Num. Th. Symp.

FAST SQUARE-FREE DECOMPOSITION OF INTEGERS USING CLASS GROUPS 19

took more than 13 hours, when finally the 965th group was successful (s = 1581).
Upon closer inspection, we see that

h = h(−4 · 1581 · q) = 184735851610543000235261184 =

28 · 3 · 19 · 113 · 349 · 6359 · 25031 · 39461 · 51109.

We used B = 229158, which is bigger than all of the prime factors of h, therefore
stage 1 was successful. However, if we had a method where we could have taken
B2 = B2, then we would have been done after 51 groups (s = 82), since

h(−4 · 82 · q) = 121744820463339475628644536 =

24 · 5 · 7 · 32633 · 35993 · 153521 · 1161878987.

We see that 1161878987 > B and also 1161878987 > 2828306 ≈ B ln(B). But,
1161878987 < 52513388964 = B2. If we had access to such a method, then this
factorization would have only taken about 45 minutes instead of 13 hours.

References

[1] Roger C. Baker, Glyn Harman, and János Pintz. The difference between consecutive primes,
II. Proceedings of the London Mathematical Society, 83(3):532–562, 2001.

[2] Gaetan Bisson and Andrew V. Sutherland. Computing the endomorphism ring of an ordinary
elliptic curve over a finite field. Journal of Number Theory, 131(5):815–831, 2011.

[3] Dan Boneh, Glenn Durfee, and Nick Howgrave-Graham. Factoring N = prq for large r. In
Advances in Cryptology-CRYPTO’99, pages 326–337, Berlin, Heidelberg, 1999. Springer.

[4] Andrew R. Booker, Ghaith A. Hiary, and Jon P. Keating. Detecting squarefree numbers.
Duke Mathematical Journal, 2015.

[5] Wieb Bosma, John Cannon, and Catherine Playoust. The Magma algebra system. I. The user
language. J. Symbolic Comput., 24(3-4):235–265, 1997. Computational algebra and number
theory (London, 1993). URL: http://dx.doi.org/10.1006/jsco.1996.0125.

[6] Richard P. Brent. Some integer factorization algorithms using elliptic curves, 1998. Accessed
on: 2023-4-18. URL: https://arxiv.org/abs/1004.3366.

[7] Johannes A. Buchmann and Hendrik W. Lenstra Jr. Approximating rings of integers in
number fields. Journal de théorie des nombres de Bordeaux, 6(2):221–260, 1994.

[8] Duncan A. Buell. Binary quadratic forms: classical theory and modern computations.
Springer Science & Business Media, 1989.

[9] Guilhem Castagnos, Antoine Joux, Fabien Laguillaumie, and Phong Q. Nguyen. Factoring pq2

with quadratic forms: Nice cryptanalyses. In Asia-crypt, volume 9, pages 469–486. Springer,
2009.

[10] Guilhem Castagnos and Fabien Laguillaumie. On the security of cryptosystems with qua-
dratic decryption: the nicest cryptanalysis. In Advances in Cryptology-EUROCRYPT 2009:
28th Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Cologne, Germany, April 26-30, 2009. Proceedings 28, pages 260–277. Springer,
2009.

[11] Alexander Leonidovich Chistov. The complexity of the construction of the ring of integers of
a global field. In Doklady Akademii Nauk, volume 306:5, pages 1063–1067. Russian Academy
of Sciences, 1989.

[12] Henri Cohen and Hendrik W. Lenstra Jr. Heuristics on class groups of number fields. In
Number Theory Noordwijkerhout 1983: Proceedings of the Journées Arithmétiques held at
Noordwijkerhout, The Netherlands July 11–15, 1983, pages 33–62. Springer, 2006.

[13] Jean-Sébastien Coron, Jean-Charles Faugère, Guénaël Renault, and Rina Zeitoun. Factoring
N = prqs for large r and s. In Topics in Cryptology-CT-RSA 2016: The Cryptographers’
Track at the RSA Conference 2016, San Francisco, CA, USA, February 29-March 4, 2016,
Proceedings, pages 448–464. Springer, 2016.

[14] David A. Cox. Primes of the Form x2 + ny2: Fermat, Class Field Theory, and Complex
Multiplication. John Wiley & Sons, 2nd edition, 2013.

Submitted to Algor. Num. Th. Symp.

20 ERIK MULDER

[15] Harald Cramér. On the order of magnitude of the difference between consecutive prime num-
bers. Acta arithmetica, 2:23–46, 1936.

[16] Richard E. Crandall and Carl Pomerance. Prime numbers: a computational perspective.
Springer, 2nd edition, 2005.

[17] David Harvey and Markus Hittmeir. A deterministic algorithm for finding r-power divisors.
Research in Number Theory, 8(4):94, 2022.

[18] Arjen K. Lenstra and Hendrik W. Lenstra Jr. The development of the number field sieve,
volume 1554. Springer Science & Business Media, 1993.

[19] Hendrik W. Lenstra Jr. Factoring integers with elliptic curves. Annals of mathematics, pages
649–673, 1987.

[20] Hendrik W. Lenstra Jr and Carl Pomerance. A rigorous time bound for factoring integers.
Journal of the American Mathematical Society, 5(3):483–516, 1992.

[21] Alexander May. Using LLL-reduction for solving RSA and factorization problems. In The
LLL Algorithm: Survey and Applications, pages 315–348. Springer, 2009.

[22] Erik Mulder. Computing the square-free decomposition of integers, 2023. URL: https://
github.com/erik-math/squarefree_decomposition.

[23] Erik Mulder. Fast square-free decomposition of integers using class groups, 2023. Accessed
on: 2023-12-23. URL: https://arxiv.org/abs/2308.06130.

[24] Tatsuaki Okamoto. A fast signature scheme based on congruential polynomial operations.
IEEE Transactions on Information Theory, 36(1):47–53, 1990.

[25] Tatsuaki Okamoto and Shigenori Uchiyama. A new public-key cryptosystem as secure as
factoring. In Advances in Cryptology—EUROCRYPT’98: International Conference on the
Theory and Application of Cryptographic Techniques Espoo, Finland, May 31–June 4, 1998
Proceedings 17, pages 308–318. Springer, 1998.

[26] Sachar Paulus and Tsuyoshi Takagi. A new public-key cryptosystem over a quadratic order
with quadratic decryption time. Journal of Cryptology, 13:263–272, 2000.

[27] René Peralta and Eiji Okamoto. Faster factoring of integers of a special form. IEICE transac-
tions on fundamentals of electronics, communications and computer sciences, 79(4):489–493,
1996.

[28] John M. Pollard. Theorems on factorization and primality testing. In Mathematical Pro-
ceedings of the Cambridge Philosophical Society, volume 76(3), pages 521–528. Cambridge
University Press, 1974.

[29] Katja Schmidt-Samoa. A new Rabin-type trapdoor permutation equivalent to factoring. Elec-
tronic Notes in Theoretical Computer Science, 157(3):79–94, 2006.

[30] C.P. Schnorr and Hendrik W. Lenstra Jr. A Monte Carlo factoring algorithm with linear
storage. Mathematics of Computation, 43(167):289–311, 1984.

[31] Arnold Schönhage. Fast reduction and composition of binary quadratic forms. In Proceedings
of the 1991 international symposium on Symbolic and algebraic computation, pages 128–133,
1991.

[32] Joram Soch. Proof: Median of the exponential distribution. Accessed on: 2023-4-18. URL:
https://statproofbook.github.io/P/exp-med.

[33] Tsuyoshi Takagi. Fast RSA-type cryptosystem modulo pkq. In Advances in Cryptol-
ogy—CRYPTO’98: 18th Annual International Cryptology Conference Santa Barbara, Cali-
fornia, USA August 23–27, 1998 Proceedings 18, pages 318–326. Springer, 1998.

[34] The CADO-NFS Development Team. CADO-NFS, an implementation of the number field
sieve algorithm. Development version 3.0.0. URL: http://cado-nfs.inria.fr/.

[35] David Y. Y. Yun. On square-free decomposition algorithms. In Proceedings of the third ACM
symposium on Symbolic and algebraic computation, pages 26–35, 1976.

Email address: erik-baltasar@live.nl

Submitted to Algor. Num. Th. Symp.

