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CONJUGACY CLASSES OF INTEGRAL MATRICES, AND

ABELIAN VARIETIES OVER FINITE FIELDS
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Abstract. We give an algorithm to compute representatives of the conju-
gacy classes of semisimple square integral matrices with given minimal and

characteristic polynomials. We also give an algorithm to compute the Fq-
isomorphism classes of abelian varieties over a finite field Fq which belong

to an isogeny class determined by a characteristic polynomial h of Frobenius

when h is ordinary, or q is prime and h has no real roots.

1. Introduction

The problem of classifying finitely generated modules over a commutative unitary
ring R up to isomorphism is in general very hard. It has been studied for several
classes of rings R, producing a vast literature which goes back to Eichler and Ja-
cobinski, and spans several decades. Excellent accounts can be found, for example,
in the books [CR81] and [CR87] by Curtis and Reiner, in the books [RHD70] by
Roggenkamp and Huber-Dyson, and in [Rog70] by Roggenkamp. Further references
are provided in this introduction.

In some very special cases, we do have theoretical classifications of the isomor-
phism classes of modules: this is the case, for example, when R is a field, a principal
ideal domain, or a Dedekind domain. The latter case, which is usually referred to
as Steinitz Theory [Ste12], will be the starting point of the investigation contained
in this paper.

In other cases, as explained in Section 1.3, there are algorithms to produce rep-
resentatives of the isomorphism classes. In this paper, we produce a new algorithm
that vastly supersedes the previous ones in terms of generality.

1.1. First main result. In this introduction, in order to simplify the presentation,
we will work under more restrictive hypotheses than in most of the paper. We will
give only the essential definitions and refer the reader to Section 2 for the missing
ones. The following is the first main result of this paper, which can be found as
Theorem 3.6 in Section 3.

Main Theorem 1. Let R be a Z-order in a direct product of number fields K =
K1 × · · · ×Kn. For positive integers s1, . . . , sn, consider the K-module V = Ks1

1 ⊕
· · · ⊕Ksn

n . We provide Algorithm 3.5 that computes representatives of the R-linear
isomorphism classes of Z-lattices of full rank in V that are closed under the induced
action by R.

Very briefly, Algorithm 3.5 uses the fact that all representatives of the sought
isomorphism classes can be found among the R-modules between two specific ones,
that depend on the maximal order O of K and the conductor f = (R : O) of R
in O; see Theorem 3.2. Theorem 3.2 can be interpreted as an effective version
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of the Jordan-Zassenhaus Theorem, specialized to commutative Z-orders, which
states that the number of isomorphism classes is finite. Once we have a list of these
intermediate modules, one can sieve out a minimal set of representatives of the
isomorphism classes using the work by Bley-Hofmann-Johnston [BHJ22], whose
relevance for our work is discussed in Remark 3.8. In Remark 3.9, we discuss
the running time of Algorithm 3.5. As a by-product of Algorithm 3.5, we obtain
a scheme to sort, and hence label, these modules; see Remark 3.10. From our
methodology it is also easy to see that the number of the isomorphism classes
computed in Main Theorem 1 is divisible by the size of Pic(O). See Corollary 3.7.

We pause to stress that the two facts just stated above, namely, that the classes
have representatives in the range mentioned, and that the size of Pic(O) divides
the number of the classes, are certainly known to the experts, and can be deduced
from known results about genera of modules. Recall that the genus of a mod-
ule M is the set of modules which are locally isomorphic to M at every rational
prime p; see for example [CR81, Sec. 31]. In particular, the first statement can be
deduced from [Jac68, Satz 2]; see also [Rog70, Ch. VII, Thm. 1.11]. The second
statement follows from the fact that the stable isomorphism classes of modules in
a given genus form an abelian group, which admits a surjective map onto Pic(O);
see [Wie84, Lemma 2.9]. By the Jacobinski Cancellation Theorem, stable iso-
morphism is the same as isomorphism as long as the order satisfies the Eichler
condition; see [CR87, Sec. 51]. We also mention that these results have been gen-
eralized for other classes of rings and modules in a series of papers by Guralnick;
see [Gur84], [Gur86], [Gur87]. Our proofs of Main Theorem 1 and Corollary 3.7 are
shorter and simpler. In particular, we don’t need the concepts of genera or stable
isomorphism.

1.2. Applications.
In this paper we treat two applications of Algorithm 3.5. The first one, which

is treated in Section 4, is a solution to the conjugacy classes problem for semisim-
ple r×r integral matrices. Recall that a matrix is semisimple if its minimal polyno-
mial is squarefree, that is, with no repeated irreducible factors. Two such matricesA
and B are conjugate if there exists P ∈ GLr(Z) such that PA = BP . The problem
of understanding the conjugacy classes with given minimal and characteristic poly-
nomials has a long history. The first results are due to Latimer-MacDuffee [LM33]
for matrices with squarefree characteristic polynomial. See also [Tau49]. These
two papers describe bijections between certain modules over orders and conju-
gacy classes of integral square matrices with prescribed characteristic polynomial.
Generalization of the Latimer-MacDuffee correspondence are provided by Bender
in [Ben67], Buccino in [Buc69], Estes and Guralnick in [EG84] and Brzezinski
in [Brz90]. Further results on conjugacy of matrices can be found in [Reh77],
[Gur80], [Wal84], [Sol99] and [KS24].

In [Mar20, Thm 8.1] we give a direct proof of a version of the Latimer-MacDuffee
Theorem that applies to all square semisimple integral matrices. This generaliza-
tion, which is recorded in the text as Theorem 4.1, when combined with Algo-
rithm 3.5, leads to the second main theorem of the paper, which can be found
below as Theorem 4.2.

Main Theorem 2. Let m1, . . . ,mn be irreducible monic polynomials in Z[x] gen-
erating pairwise coprime ideals in Q[x]. Put m = m1 · . . . ·mn and h = ms1

1 · · ·msn
n ,

where s1, . . . , sn are positive integers. Algorithm 3.5 allows us to compute the con-
jugacy classes of integral matrices with minimal polynomial m and characteristic
polynomial h.
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The second application of Algorithm 3.5 regards abelian varieties over a finite
field Fq. It constitutes the content of Section 5, and we refer the reader to that
for missing definitions. Consider an Fq-isogeny class Ih of abelian varieties over Fq

determined by a characteristic polynomial h ∈ Z[x] of Frobenius. We assume
that Ih is ordinary, or that q is prime and h has no real roots. Observe that we
make no assumptions on the factorization of h. Using results by Deligne [Del69] and
Centeleghe-Stix [CS15], we can describe these abelian varieties in terms of modules
over a certain order determined by h; see Theorem 5.1. This result, combined with
Algorithm 3.5, leads to the third main theorem of the paper, which is later reported
as Theorem 5.2.

Main Theorem 3. Let Ih be the Fq-isogeny class of abelian varieties over the
finite field Fq determined by the characteristic polynomial h of Frobenius. Assume
that h is ordinary, or that q is prime and h has no real roots. Algorithm 3.5 allows
us to compute the Fq-isomorphism classes of abelian varieties in Ih.

The above-mentioned labelling scheme for modules induces a way to sort and
label the abelian varieties we are computing in Main Theorem 3. This is interesting
if one wants to incorporate data about the isomorphism classes of such abelian
varieties in a database, like the LMFDB [LMF22].

Finally, in Section 6 we include two examples. In Example 6.1 we compute iso-
morphism classes of abelian varieties over F3 in a given isogeny class. In particular,
we exhibit 3 pairwise non-isomorphic abelian surfaces which become all isomor-
phic after taking the product with one elliptic curve. In Example 6.2 we compute
conjugacy classes of matrices.

The implementation in MAGMA [BCP97] of Algorithm 3.5 is available at

https://github.com/stmar89/AlgEt1,

together with the code to reproduce the examples (see the webpage of the author
for a precise link). Part of this implementation uses functionalities from the julia
package Nemo/Hecke [FHHJ17].

1.3. Comparison with previous and related results. Main Theorem 1 is a
generalization of the results contained in [Mar20], where we consider the case V =
K, that is, si = 1 for all i. In this case, the R-modules we are considering are
fractional R-ideals. In [Mar20], we first study the problem locally, introducing the
notion of weak equivalence between fractional ideals. Two fractional R-ideals I
and J are weakly equivalent if Ip ≃ Jp for every prime ideal p of R. As observed
in [LW85, Sec. 5], two fractional ideals are weakly equivalent if and only if they
belong to the same genus. Once we have computed the weak equivalence classes, for
every overorder S of R, we let the Picard group Pic(S) act on the weak equivalence
classes with multiplicator ring S to compute all the isomorphism classes of frac-
tional R-ideals. Computing weak equivalence classes in general requires an expen-
sive enumeration step, analogous to the one needed in Algorithm 3.5. On the other
hand, since weak equivalence is coarser than isomorphism, the quotient in which
enumeration takes places is typically smaller. Furthermore, checking whether two
ideals are weakly equivalent is faster than checking whether they are isomorphic.
Moreover, in certain cases, we can skip the enumeration part entirely. Indeed, if S is
an overorder of R which is Gorenstein, that is, every fractional R-ideal with multi-
plicator ring S is invertible in S, then there is only one weak equivalence class with
multiplicator ring S. We extend this statement in [Mar22, Sec. 6] where we clas-
sify all weak equivalence classes with multiplicator rings which are close-to-being
Gorenstein.

1at the moment of submission, the most recent commit is 4c22349
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Another case where we have a method to efficiently compute the R-modules is
when V = Ks for some positive integer s, that is, when si = s for all i, and the
order R is assumed to be Bass, which means that all overorders are Gorenstein. In
this case there is a classification of the R-modules in V due to Bass [Bas62] and
Borevič-Faddeev [BF65]. Such a classification makes them easy to compute. If R is
Bass but V is not a pure power of K then the classification of the classes becomes
immediately much more complicated; see [BS22].

In the cases V = K and V = Ks with R Bass, we used the above-mentioned re-
sults to produce algorithms to compute conjugacy classes of Z-matrices, see [Mar20,
Cor. 8.2], and isomorphism classes of abelian varieties over finite fields, see [Mar21]
and [Mar19]. For the reasons we just explained, these specialized algorithms will
typically perform better than the methods described in Main Theorems 2 and 3.

We conclude the introduction with two asides. Contrary to the problem of
computing representatives of the conjugacy classes of square integral matrices which
is discussed in this paper, the problem of determining whether two such matrices
are conjugate has recently received a lot of attention. Algorithms can be found
in the thesis of Husert [Hus16], in previous work of the author [Mar20], in Eick-
Hofmann-O’Brien [EHO19], and in the above-mentioned paper by Bley-Hofmann-
Johnston [BHJ22]. The first two deal with special cases, while third and the fourth
work with all square integral matrices, including the non-semisimple ones.

The second comment regards almost-ordinary abelian varietietes over finite fields
of odd characteristic. For simple isogeny classes, the work of Oswal-Shankar [OS20]
gives a description of such abelian varieties in terms of modules analogous to the
ones used to obtain Main Theorem 3. These results were generalized by Bergström-
Karemaker and the author in [BKM23, Thm. 2.12] to isogeny classes of almost-
ordinary abelian varieties in odd characteristic, with commutative endomorphism
algebras, or, equivalently, with squarefree characteristic polynomial. For this rea-
son, one should use the specialized algorithms contained in [Mar20] and [Mar21] to
compute them.

Acknowledgements. The idea of this paper took form during a collaboration
with Jonas Bergström and Valentijn Karemaker. The author is thankful for their
encouragement to write it down. The author expresses his gratitude to them and
to Tommy Hofmann for comments on a preliminary version. Special thanks go to
Robert Guralnick for suggesting improvements and several references. The author
is grateful to the anonymous referees for carefully reading the paper and suggesting
several improvements. The author was supported by Nederlandse Organisatie voor
Wetenschappelijk Onderzoek, grant number VI.Veni.202.107, and in part by Agence
Nationale de la Recherche under the MELODIA project, grant number ANR-20-
CE40-0013.

2. Notation and definitions

All rings in this paper are commutative and unitary. Let Z be a Dedekind
domain with fraction field Q. For us, fields are not Dedekind domains. Let V be
a finite dimensional Q-vector space. A lattice in V is a finitely-generated sub-Z-
module of V which contains a Q-basis of V . In particular, if L is such a lattice
then LQ = V .

Let K1, . . . ,Kn be finite field extensions of Q and let K be the direct product

K = K1 × · · · ×Kn.

An order R in K is a subring of K which is also a lattice in K. A fractional R-
ideal is a finitely generated sub-R-module of K which is also a lattice in K, or,
equivalently, which contains an invertible element of K. For example, if R is a
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domain then an ideal I of R is a fractional R-ideal if and only if I is non-zero. Two
fractional R-ideals I and J are called isomorphic if they are so as R-modules. This
is equivalent to having an invertible element λ in K such that I = λJ . Observe
that given two fractional R-ideals I and J , the sum I + J , the product IJ and the
colon

(I : J) = {x ∈ K : xJ ⊆ I}
are also fractional R-ideals. The multiplicator ring of a fractional R-ideal I is
the order (I : I). We say that a fractional R-ideal I is invertible if there exists
a fractional R-ideal J such that IJ = R. Note that if this is the case, then J
equals (R : I). We define the Picard group of R as the abelian group Pic(R) of
isomorphism classes of invertible fractional R-ideals with the operation of multipli-
cation.

Since K is commutative, the integral closure O of Z (embedded diagonally) in K
is a subring of K. More precisely, we have

O = O1 × · · · × On,

where Oi is the integral closure of Z in Ki. By the Krull-Akizuki Theorem, each Oi

is a Dedekind domain. Every element of any order is integral over Z, which implies
that O contains every order in K.

Define the conductor f of an order R in O as

f = (R : O) = {x ∈ K : xO ⊆ R} .
Note that since f is an O-ideal, we have a decomposition

f = f1 ⊕ · · · ⊕ fn,

where each fi is an Oi-ideal. One can prove that f contains an invertible element
of K if and only if O is finitely generated as a Z-module. If this is the case
then O is an order, the maximal order of K. We will assume that this is the
case for the rest of the paper. Moreover, for every fractional O-ideal I we have a
decomposition I = ⊕n

i=1Ii for fractional Oi-ideals Ii, and hence also

Pic(O) = Pic(O1)× · · · × Pic(On).

3. Isomorphism classes of lattices

Let Z, Q, K = K1 × · · · ×Kn and O = O1 × · · · × On be as in Section 2. We
assume that O is finitely generated as a Z-module. Fix positive integers s1, . . . , sn
and consider the K-module

V = Ks1
1 ⊕ · · · ⊕Ksn

n ,

where the action of K is component-wise diagonal.
Let R be an order in K. Denote by L(R, V ) the category of sub-R-modules

of V which are also lattices, with R-linear morphisms. For every M in L(R, V ),
the extension MO is also a lattice in V and hence it belongs to L(O, V ). Pick a
morphism φ :M → N in L(R, V ). Since RQ = OQ = K and MQ = NQ = V , the
morphism φ extends uniquely to a K-linear endomorphism of V , which in turns
restricts to a unique morphism MO → NO in L(O, V ). We denote the induced
morphisms also by φ.

The following is a restatement of Steinitz Theory; see [Ste12].

Proposition 3.1. Let M be in L(O, V ). Then there are fractional Oi-ideals Ii and
there exists an O-linear isomorphism

M ≃
n⊕

i=1

(
O⊕(si−1)

i ⊕ Ii

)
.
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Moreover, the isomorphism class of M is uniquely determined by the integers si
and the isomorphism class of the fractional O-ideal I = I1 ⊕ · · · ⊕ In.

Proof. Since O = O1×· · ·×On is a direct product of rings, we have a decomposition

M =M1 ⊕ · · · ⊕Mn,

where each Mi is in L(Oi,K
si
i ). By the structure theorem for finitely generated

modules over a Dedekind domain, see [Ste12], there exists a fractional Oi-ideal Ii
such that

Mi ≃ O⊕(si−1)
i ⊕ Ii.

Furthermore, the isomorphism class of each Mi is uniquely determined by the
rank si and the isomorphism class of Ii. The same holds true after taking the
direct sum. □

We now consider L(R, V ) for a general order R. Let f = ⊕n
i=1fi be the conductor

of R in O.

Theorem 3.2. Let M be in L(R, V ). Then there exist an M ′ in L(R, V ), and
fractional Oi-ideals Ii such that

(i) M ′ ≃M as an R-module.

(ii) M ′O =
⊕n

i=1

(
O⊕(si−1)

i ⊕ Ii

)
.

(iii)
⊕n

i=1

(
f
⊕(si−1)
i ⊕ fiIi

)
⊆M ′ ⊆

⊕n
i=1

(
O⊕(si−1)

i ⊕ Ii

)
.

Proof. By Proposition 3.1, there exists an O-linear isomorphism

φ :MO ∼−→
n⊕

i=1

(
O⊕(si−1)

i ⊕ Ii

)
,

for some fractional Oi-ideals Ii. DefineM ′ = φ(M). Observe thatM ′ is in L(R, V )
and M ≃M ′ by construction. We have

M ′ ⊆M ′O = φ(M)O = φ(MO) =

n⊕
i=1

(
O⊕(si−1)

i ⊕ Ii

)
.

For the other inclusion, note that

n⊕
i=1

(
f
⊕(si−1)
i ⊕ fiIi

)
= f

(
n⊕

i=1

(
O⊕(si−1)

i ⊕ Ii

))
= fM ′O = fM ′ ⊆M ′,

where the last equality holds because fO = f, and the inclusion follows from f ⊆ R
and M ′R =M ′. □

In the rest of the section we describe how to turn Theorem 3.2 into an algorithm
to compute representatives of the isomorphism classes of modules in L(R, V ). We
will need some additional assumptions on R and O, which will be discussed in
Remark 3.3. We need to assume that:

(A) We have algorithms for working with Z-lattices in V and K and for working
with fractional R-ideals for an arbitrary order in K.

(B) We have an algorithm to compute the maximal order O of K and the
conductor (R : O) of an arbitrary order R in K.

(C) For each i, the group Pic(Oi) is finite, and we have an algorithm PicardGroup

to compute it.
(D) For each fractional O-ideal I = I1 ⊕ · · · ⊕ In, the quotient

Q(I) =
O⊕(s1−1)

1 ⊕ I1 ⊕ · · · ⊕ O⊕(sn−1)
n ⊕ In

f
⊕(s1−1)
1 ⊕ f1I1 ⊕ · · · ⊕ f

⊕(sn−1)
n ⊕ fnIn
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has finitely many sub-R-modules, and we have an algorithm called SubModules
to list them all.

(E) We have an algorithm IsIsomorphic that returns whetherM andN in L(R, V )
are isomorphic.

Remark 3.3. We will focus on the case when Q is a global field, that is, a number
field or a finite extension of a function field k(T ) where k is a finite field and T
is an indeterminate. Under this assumption, the number of isomorphism classes
of L(R, V ) is finite by the Jordan-Zassenhaus Theorem [Rei03, Thm. 26.4], which
holds in much greater generality than the case we are considering. For example,
it holds also for non-commutative orders. Nevertheless, Theorem 3.2 could be
interpreted as an effective version of the Jordan-Zassenhaus Theorem in the special
case of a commutative Z-order R in an étale Q-algebra K with Q a global field.

If Q is a global field, hypothesis (A) is satisfied by using algorithms based on
(pseudo) hermite normal form or linear algebra over finite fields. See for example
[Coh93] and [Coh00]. In the same context also hypothesis (B) is satisfied: see for
example [Bau16] for the computation of the maximal order and see [KP05, Sec. 6]
for the conductor.

Under the running assumption that Q is a global field, Pic(O) is a finite abelian
group. If Q is a number field, the problem of computing each Pic(Oi) is classical,
see [BW89]. For finite extensions of function field, see [Hes99]. Hence, in both
cases, hypothesis (C) is satisfied.

Assume again that Q is a global field. Then the quotient Q(I) defined in (D) is
a finite abelian group. We want to list all sub-R-modules N of Q(I) with trivial
extension, that is, such that NO = Q(I). These modules are in bijection with the
modules M ′ from Theorem 3.2. We will produce them by recursively computing
the sub-R-modules of Q(I) which are maximal with respect to inclusion, as we now
explain. This procedure is an adaptation of [FHS19, Sec. 5.2]. Let N be a such a
maximal sub-R-module. Then there exists a rational prime p such that pQ(I) ⊆ N .
Hence N can be identified with a sub-Fp-vector space of Q(I)/pQ(I). Now, one can
use the MEATAXE algorithm, see [Par84] and [HEO05, Sec. 7.4], to enumerate all the
maximal sub-R-modules of Q(I)/pQ(I), which are closed under the induced action
of R. From this list we need to keep only the ones with trivial extension: indeed
if NO ≠ Q(I) then all the sub-R-modules of N will not have trivial extension as
well. Now we repeat the process with N instead of Q(I), and so on recursively until
we have all sub-R-modules of Q(I) with trivial extension.

Finally, in [BHJ22], the authors describe an algorithm IsIsomorphic that in
particular works for orders in étale algebras over Q. Hence, such orders satisfy
also assumption (E). To the best of our knowledge, there is no known analogous
algorithm when Q is an extension of a function field.

We conclude that orders in étale algebras over Q satisfy all hypotheses (A), (B),
(C), (D) and (E). Note also that if Q is a global field, then Z is Japanese, which
means that O is finitely generated as a Z-module, as required at the beginning of
the section.

We introduce now some notation that we will use throughout the rest of this
section. For any fractional O-ideal I = ⊕iIi define the quotient

Q(I) =
O⊕(s1−1)

1 ⊕ I1 ⊕ · · · ⊕ O⊕(sn−1)
n ⊕ In

f
⊕(s1−1)
1 ⊕ f1I1 ⊕ · · · ⊕ f

⊕(sn−1)
n ⊕ fnIn

,

as done before in (D). Denote by qI the quotient map onto Q(I). Define

M̃I =
{
sub-R-module Ñ of Q(I) : ÑO = Q(I)

}
,
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and

MI =
{
q−1
I (Ñ) ∈ L(R, V ) : Ñ ∈ M̃I

}
.

The following lemma will be used in Theorem 3.6 to prove the correctness of
Algorithm 3.5.

Lemma 3.4.

(i) There is an R-linear isomorphism ψ̃ : Q(O) → Q(I).

(ii) The isomorphism ψ̃ induces a bijection ψ : MO → MI defined by ψ(M) =

q−1
I (ψ̃(qO(M))).

(iii) The bijection ψ induces a bijection between the sets of R-linear isomorphism
classes in MO and in MI .

Proof. By replacing I with an isomorphic fractional O-ideal, we can assume that I
is coprime to the conductor f, that is, O = f + I; see [Coh00, Cor. 1.2.11]. This
implies that fiIi = fi ∩ Ii and fi + Ii = Oi, for every i. Therefore, for every i, we
have the following isomorphism of R-modules

Ii
fiIi

=
Ii

fi ∩ Ii
≃ Ii + fi

fi
=

Oi

fi
.

By taking direct sums, we obtain the desired isomorphism ψ̃ : Q(O)
∼→ Q(I),

completing the proof of Part (i). Part (ii) is an immediate consequence of Part (i).

For Part (iii) we argue as follows. PickM1 andM2 in MO and let φ :M1
∼→M2 be

an R-linear isomorphism. Since Q(O) =MiO⊗O (O/f), for i = 1, 2, we see that φ

induces an automorphism of Q(O). Pushing this forward via ψ̃, we obtain an
automorphism of Q(I) which then lifts to an isomorphism ψ(M1) ≃ ψ(M2). In an
analogous manner, given isomorphicM1 andM2 in MI , we obtain an isomorphism
ψ−1(M1) ≃ ψ−1(M2). Hence we obtain a bijection between the sets of R-linear
isomorphism classes in MO and in MI , as required. □

Algorithm 3.5. Assume that (A), (B),(C), (D) and (E) hold. The following steps
will return a list Lout of representatives of the isomorphism classes of L(R, V ).

(1) Compute the maximal order O of K and the conductor f = f1 ⊕ · · · ⊕ fn
of R in O.

(2) Use PicardGroup to compute representatives I(k) = ⊕n
i=1I

(k)
i of

Pic(O) =

n⊕
i=1

Pic(Oi).

(3) Form the quotient

Q(O) =
O⊕s1

1 ⊕ · · · ⊕ O⊕sn
n

f⊕s1
1 ⊕ · · · ⊕ f⊕sn

n

,

and denote by qO the natural quotient map.

(4) Use SubModules to produce a list M̃O of all the finitely many sub-R-

modules M̃ of Q(O) such that M̃O = Q(O).
(5) Initialize an empty list L.
(6) For each M̃ in M̃O do:

(a) Compute M = q−1
O (M̃).

(b) If IsIsomorphic returns that there is no module M ′ in L which is
isomorphic to M then append M to L.

(7) Initialize an empty output list Lout.
(8) For each k do:

(a) Initialize an empty list L(k).
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(b) Compute ψ̃ : Q(O)
∼→ Q(I(k)) as in Lemma 3.4.(i).

(c) For each M in L do:

(i) Compute M ′ = q−1
I (ψ̃(qO(M))).

(ii) Append M ′ to L(k).
(d) Concatenate L(k) to Lout.

(9) Return Lout.

Theorem 3.6. Algorithm 3.5 returns a minimal set of representatives of the iso-
morphism classes in L(R, V ).

Proof. By Theorem 3.2 for every M in L(R, V ) there exist an index k and an ele-
ment M ′ of MI(k) such that M ≃M ′. By Lemma 3.4.(iii), there exists M ′′ in L(k)

such thatM ≃M ′′. In other words, the list Lout contains representatives of all iso-
morphism classes of L(R, V ). We need to show that there are no repetitions, that is,
that the elements of Lout are pairwise non-isomorphic. Again by Lemma 3.4.(iii), for
each index k, the elements of L(k) are pairwise non-isomorphic. We are left to show
that given two distinct indices k and k′, and modules M ∈ L(k) and M ′ ∈ L(k′),
there cannot be an isomorphism M ≃ M ′. Indeed, if this were the case then we
would have an isomorphism MO ≃M ′O, contradicting Proposition 3.1. □

Corollary 3.7. The number of isomorphism classes in L(R, V ) is divisible by the
size of Pic(O).

Proof. This is a consequence of the fact that the lists L(k) defined in Step (8) of
Algorithm 3.5 all have size equal to the size of the list L built in Step (6). □

Remark 3.8. In Step (6) of Algorithm 3.5, we use as a black-box the algorithm
IsIsomorphic to test whether two R-modules M and M ′ are isomorphic, where
M is fixed while M ′ loops over all elements of L. As pointed out in Remark 3.3, in
the case of orders in étale algebras over Q, we can use the algorithm provided by
[BHJ22], which we now briefly review. Set A = HomK(V, V ), X = HomR(M,M ′)
and Λ = EndR(M

′). By [BHJ22, Prop 3.1], we have thatM andM ′ are isomorphic
if and only if the Λ-lattice X is free of rank 1, and every (any) free generator of
X over Λ is an isomorphism. The number of the Steps below refers to [BHJ22,
Alg. 8.3], which returns whether X is free of rank 1 over Λ and, if so, a generator.
All outputs of Steps (1)-(4), (8)-(9) should be cached, since they depend only on
M . Moreover, following the proof of [BHJ22, Thm. 8.4], Step (5) is probabilistic
polynomial-time reducible to one call of IsPrincipal for each 1 ≤ i ≤ n. Hence,
one should also cache Pic(OKi), and also O×

Ki
since it is used in Step (10). Step

(6) is probabilistic polynomial-time reducible to computing a factorization of an
integer, which should also be stored.

Remark 3.9. We discuss here the running time of Algorithm 3.5 under the as-
sumption that R is a Z-order in an étale algebra over Q. In this case the required
operations with Z-lattices and fractional ideals (cf. hypothesis (A)) can be per-
formed in polynomial time. Steps (7) and (9) are trivial. Steps (1) and (3) have
polynomial running time in the size of the input once the computation of the
maximal order O is completed which requires to know the prime factors of the dis-
criminant of a polynomial defining K over Q. Step (2) can be achieved in heuristic
sub-exponential running time using for example [CDyDO97]. Step (8) requires the
computations of a representative coprime to the conductor which is probabilistic
polynomial time; see [BHJ22, Cor. A.2]. In Step (6), we have to run IsIsomorphic

a number of times which is bounded by above by the size of the output of Step (4)
and the size of the list L. The algorithm provided by [BHJ22] reduces in probabilis-
tic polynomial time to well known algorithm in number theory (like IsPrincipal
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and UnitGroup). It follows that the running time of Algorithm 3.5 depends on the

size of output of Step (4), the list M̃O, which is produced by SubModules using,
for example, the ideas described in Remark 3.3. In general, it is not easy to give an
upper bound for the size of this list, but a lower bound is computed as follows. Let
p be a maximal ideal of R above the conductor f of R. Write pO = P1 ⊕ · · · ⊕Pn,
where Pi is an ideal of Oi, for each i. Then the number of sub-R-modules of Q(O)
is bounded from below from the number Cp of sub-R/p-vector subspaces of the
R/p-vector space

O⊕s1
1 ⊕ · · · ⊕ O⊕sn

n

P⊕s1
1 ⊕ · · · ⊕P⊕sn

n

.

Then taking the maximum of Cp over all maximal R-ideals above f gives a lower
bound.

Remark 3.10. When R is an order in an étale algebra overQ, the process described
in Algorithm 3.5 can be used to label the isomorphism classes of lattices in L(R, V ),
as we now describe.

The representatives of each Pic(Oi) can be ordered in a deterministic way by
[CPS20]. Taking direct sums, we obtain an induced ordering on Pic(O), and hence
we can order the various quotients Q(I(k)).

To conclude it suffices to sort the sub-R-modules M̃ ofQ(O), that is, the elements

of the list M̃O. This can be done, for example, as follows. Let qO be the quotient

map onto Q(O). For each M̃ , compute the Hermite Normal Form of the matrix

representing a Z-basis of M0 := q−1
O (M̃) with respect to a fixed Q-basis of V . Then

one simply sorts these matrices to obtain the desired result. In fact, one can use
this method together with invariants that take into account the R-module structure
of M0, like, for example, the R/p-dimensions of M0 ⊗R R/p where p runs over the
finitely many primes p of R above the conductor f = (R : O).

4. Conjugacy classes of semisimple integral matrices

Let A andB be two square matrices with integer coefficients, both of dimension r.
Recall that A and B are Z-conjugate if there exists a matrix P in GLr(Z) such
that PA = BP , in which case we will write A ∼Z B. If A and B are Z-conjugate
then they have the same minimal and characteristic polynomials.

Letm be a squarefree polynomial in Z[x], that is, such that the factors appearing
in its irreducible factorization

m = m1 · · ·mn

generate pairwise coprime ideals in Q[x]. Fix positive integers s1, . . . , sn. Define

h = ms1
1 · · ·msn

n .

Denote by Matm,h the set of integral square matrices with minimal polynomial m
and characteristic polynomial h. Since m is squarefree, these matrices are semisim-
ple. Consider the étale algebra K = Q[x]/m, and the order R = Z[π], where π
denotes the class of the variable x in K. Consider

V = Ks1
1 ⊕ · · · ⊕Ksn

n .

As before, L(R, V ) denotes the category of Z-lattices in V which are R-modules.
Pick M in L(R, V ) and choose a Z-basis B of M . Define AM,B as the matrix
that represents multiplication by π on M with respect to the basis B. Since M
is an R-module, the matrix AM,B has integer entries. Denote by Ψ the function
that associates the pair (M,B) to the matrix AM,B. In previous work, we proved
the following theorem, which is a generalization of the Latimer-MacDuffee Theo-
rem [LM33].
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Theorem 4.1. [Mar20, Thm. 8.1] The function Ψ induces a bijection between the
isomorphism classes in L(R, V ) and Matm,h / ∼Z.

Combining Theorem 4.1 with Algorithm 3.5 we obtain the following theorem.

Theorem 4.2. Algorithm 3.5 allows us to compute a minimal set of representatives
of Matm,h / ∼Z.

Remark 4.3. As mentioned above, the matrices in Matm,h are semisimple. It
is known that, in general, an integral square matrix A can be written uniquely
as A = S+N , where S is semisimple, N is nilpotent and SN = NS. If A′ = S′+N ′

is another matrix, with analogous decomposition, then there exists an invertible
integral matrix P such that PA = A′P if and only if PS = S′P and there exists
an invertible integral matrix T in the stabilizer of S′ such that TPN = N ′TP .
This seems to suggest that in order to generalize Theorem 4.1, one first needs to
find a method to compute conjugacy classes of nilpotent matrices with prescribed
minimal and characteristic polynomials, where the conjugation is realized only by
matrices in a subgroup of GLn(Z). To the best of our knowledge, this problem has
not been solved yet.

Remark 4.4. Theorem 4.1 together with Remark 3.10 gives a method to label the
representatives of the conjugacy classes in Matm,h.

5. Isomorphism classes of abelian varieties over finite fields

In this section we describe how to use Algorithm 3.5 to compute the isomorphism
classes of abelian varieties over a finite field Fq belonging to isogeny classes satisfying
certain hypotheses. Here, by isogeny classes, we mean Fq-isogeny classes. Recall
that by Honda-Tate theory, see [Tat66], [Hon68] and [Tat71], such an isogeny class is
uniquely determined by the characteristic polynomial h of Frobenius of any abelian
variety in the isogeny class. We will denote the isogeny class by Ih, and turn it into
a category by considering Fq-morphisms between the objects. The polynomial h is
in Z[x], has degree 2g, where g is the dimension of any abelian variety in Ih, and
all its complex roots have norm

√
q. Recall also that Ih is ordinary if the coefficient

of xg in h is coprime to q.
Consider the factorization

h = ms1
1 · · ·msn

n

into irreducible factors, with the mi generating pairwise coprime ideals in Q[x].
Put m = m1 · · ·mn. Define Ki = Q[x]/mi for each i, and denote by π the class
of x in K = K1 × · · · ×Kn. Consider the order R = Z[π, q/π] in K. Finally, set

V = Ks1
1 ⊕ · · · ⊕Ksn

n .

As before, L(R, V ) denotes the category of Z-lattices in V which are R-modules,
with R-linear morphisms.

Theorem 5.1.

(i) Assume that h is ordinary. Then there is a categorical equivalence be-
tween Ih and L(R, V ).

(ii) Assume that q is prime and that h does not have real roots. Then there is
a categorical anti-equivalence between Ih and L(R, V ).

In both cases, we obtain a bijection between the isomorphism classes of abelian
varieties in Ih and the isomorphism classes in L(R, V ).

Proof. See [Mar19, Theorem 4.1.(a)] for a complete proof in the case where h is
a power of m. We review the main steps here for completeness. We first handle
the ordinary case. By Deligne [Del69, Sec. 7, Théorème], there is an equivalence
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between Ih and the category of pairs (T, F ) where T is a free finitely generated Z-
module and F is an endomorphism of T with characteristic polynomial h, which is
semisimple, and there is a Z-linear endomorphism V of T such that V ◦F and F ◦V
are both the multiplication-by-q map on T . A morphism between two pairs (T, F )
and (T ′, F ′) is a Z-linear morphism φ : T → T ′ such that F ′ ◦ φ = φ ◦ F .

Fix a pair (T, F ) as above. Since F is semisimple, its minimal polynomial is m.
Hence we can identify F with π and V with q/π. This identification induces an R-
module structure on T , and induces a K-linear isomorphism T ⊗Z Q ≃ V . Via this
isomorphism, we can identify T with an element of L(R, V ). Therefore we obtain
an equivalence between Ih and L(R, V ).

Applying the same argument to the result of Centeleghe-Stix [CS15, Thm. 1],
with arrows reversed, induces the anti-equivalence in the case where q is prime
and h has no real roots. □

Combining Theorem 5.1 with Algorithm 3.5 we obtain the following result.

Theorem 5.2. Assume that h is ordinary, or that q is prime and h has no real
roots. Algorithm 3.5 allows us to compute all the representatives of the isomorphism
classes of abelian varieties in Ih.

Remark 5.3. Theorem 5.2 together with Remark 3.10 gives a method to label
abelian varieties in the isogeny class Ih.

6. Examples

Algorithm 3.5 has been implemented in MAGMA [BCP97]. Such implementation
is available at https://github.com/stmar89/AlgEt2, together with the code to
reproduce the examples (see the webpage of the author for a precise link). Even if
it is possible run the code using only MAGMA, it is much faster to combine it with
the implementation of IsIsomorphic from [BHJ22] which is included in the julia
package Nemo/Hecke [FHHJ17]. Detailed instructions are included in the code.

Example 6.1. Consider the polynomials

m1 = x2 − x+ 3 and m2 = x2 + x+ 3.

Put Ki = Q[x]/mi for i = 1, 2 and let πi be the class of x in Ki. Consider the
isogeny classes Im1 and Im2 of ordinary elliptic curves over F3 determined by m1

and m2. Since both O1 = Z[π1] and O2 = Z[π2] are maximal and have trivial
Picard group, we see that both isogeny classes contain a unique isomorphism class
of elliptic curves. We will denote the representatives by E1 and E2, respectively.

Now we consider the product

m = m1m2 = x4 + 5x2 + 9.

Put K = K1 × K2 and denote by π the class of x in K. Put R = Z[π, 3/π].
Using Algorithm 3.5, we see that there are 4 isomorphism classes in L(R,K). Note
that such modules are fractional R-ideals in K, so in fact it is more efficient to
use the specialized code from [Mar20]. The only overorder of R is the maximal
order O = O1 × O2 of K. Among the 4 classes, 3 come from Pic(R), and the
last one from Pic(O), which is trivial. These isomorphism classes correspond to 4
isomorphism classes of abelian varieties in Im by Theorem 5.1. More precisely,
the isomorphism classes in Im are represented by 3 abelian surfaces, A1, A2, A3, all
with endomorphism ring isomorphic to R, and then the class of E1 × E2. Since
the order R is not a direct product of orders from K1 and K2, we deduce that no
surface Ai is isomorphic to a product of elliptic curves.

2at the moment of submission, the most recent commit is 4c22349

Submitted to Algor. Num. Th. Symp.

https://github.com/stmar89/AlgEt


MODULES OVER ORDERS 13

Consider the isogeny class Ih of abelian threefolds determined by

h = m2
1m2 = x6 − x5 + 8x4 − 5x3 + 24x2 − 9x− 27.

Algorithm 3.5 shows that there are 2 isomorphism classes in L(R,K2
1 ⊕K2), rep-

resented by O1 × R and O1 ×O1 ×O2. By Theorem 5.1, these correspond to the
isomorphism classes of abelian varieties in Ih, represented by

A1 × E1 and E2
1 × E2.

In particular, we have F3-isomorphisms

A1 × E1 ≃ A2 × E1 ≃ A3 × E1.

Example 6.2. In this example we consider again the polynomials

m1 = x2 − x+ 3,

m2 = x2 + x+ 3,

m = m1m2 = x4 + 5x2 + 9,

h = m2
1m2 = x6 − x5 + 8x4 − 5x3 + 24x2 − 9x− 27.,

from Example 6.1. For i = 1, 2, define K1 = Q[x]/mi. Put K = K1×K2 as before,
but now we consider the order E = Z[π], where π is the class of x in K (instead
of R = Z[π, 3/π] as in Example 6.1).

We want to compute the representatives of Z-conjugacy classes of integral matri-
ces having minimal polynomialm and characteristic polynomial h, that is, in the no-
tation from Section 4, we want to compute representatives of Matm,h / ∼Z. By The-
orem 4.1 we have to compute the isomorphism classes of modules in L(E,K2

1 ⊕K2).
Algorithm 3.5 returns that there are 4 classes, represented by the following matrices.

0 1 0 0 0 0
−3 1 0 0 0 0
0 0 0 1 0 0
0 0 −3 1 0 0
0 0 0 0 0 1
0 0 0 0 −3 −1

 ,


0 1 0 0 0 0
−3 1 0 0 0 −1
0 0 0 1 −2 0
0 0 −3 1 −1 2
0 0 0 0 0 1
0 0 0 0 −3 −1




0 1 0 0 0 2
−3 1 0 0 2 0
0 0 0 1 0 1
0 0 −3 1 1 0
0 0 0 0 0 3
0 0 0 0 −1 −1

 ,


0 1 0 0 0 1
−3 1 0 0 1 −1
0 0 0 1 −1 2
0 0 −3 1 2 3
0 0 0 0 0 3
0 0 0 0 −1 −1

 .
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