
COMPUTING EULER FACTORS OF GENUS 2 CURVES
AT ODD PRIMES OF ALMOST GOOD REDUCTION

CÉLINE MAISTRET, ANDREW SUTHERLAND

Abstract. We present an efficient algorithm to compute the Euler factor of a genus 2 curve C/Q
at an odd prime p that is of bad reduction for C but of good reduction for the Jacobian of C (a prime
of “almost good” reduction). Our approach is based on the theory of cluster pictures introduced by
Dokchitser, Dokchitser, Maistret, and Morgan, which allows us to reduce the problem to a short,
explicit computation over Z and Fp, followed by a point-counting computation on two elliptic curves
over Fp, or a single elliptic curve over Fp2 . A key feature of our approach is that we avoid the need
to compute a regular model for C. This allows us to efficiently compute many examples that are
infeasible to handle using the algorithms currently available in computer algebra systems such as
Magma and Pari/GP.

1. Introduction

The L-functions and modular forms database (LMFDB) [14] currently contains a database of
66 158 genus 2 curves C/Q with absolute discriminant bounded by 106 whose computation is de-
scribed in [4]. The bound on the discriminant is motivated by the fact that it also serves as a bound
on the conductor of the L-function of C. In the context of the LMFDB one naturally organizes
objects according to the conductor of their L-function, since this invariant determines the level of
the corresponding modular form predicted by the Langlands program (in the case of genus 2 curves,
a Siegel modular form that is generically a paramodular form). One prioritizes examples of small
conductor, because this makes it more feasible to compute their L-functions, and to identify other
objects in the LMFDB (including modular forms) that have the same L-function.

But bounding the discriminant is overly restrictive: genus 2 curves of small conductor need not
have small discriminant. This is also true of elliptic curves, but becomes much more pronounced
in higher genus due to the possibility that the minimal discriminant of a curve may be divisible by
primes p that do not divide the conductor of its L-function, which cannot happen in genus 1. This
necessarily happens when the Jacobian of C, reduces to a product of elliptic curves over Fp, which
forces the curve to have bad reduction. This is not an uncommon occurrence, and may happen even
when the Jacobian is geometrically simple. When this situation arises, we say that p is a prime of
almost good reduction for C.

There is work in progress to expand the genus 2 curve database in the LMFDB to include more
than five million genus 2 curves over Q with conductor below 220 ≈ 106, and more than half of
these curves have almost good reduction at some prime, including almost half a million that have
geometrically simple Jacobians [24]. The primes p involved need not be small and may substantially
exceed the conductor bound. For example, the curve

C : y2 + (x3 + x2 + x)y =− 144061786290072x6 − 23062462482396x5 − 1266273619292236x4 − 3052943051575761x3

+ 3989955132045666x2 + 50048078951052415x− 24854569174209566
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has prime conductor 270761 and minimal discriminant 270761 · 1455600122, with p = 14 556 001

a prime of almost good reduction, and there are examples with conductor less than 220 that have
primes of almost good reduction as large as 43 858 540 753.

None of the computer algebra systems Magma [2], Pari/GP [18], or SageMath [19] is able to
compute the Euler factor at p = 14 556 001 for the L-function of the curve C listed above, and
the method for computing bad Euler factors using the approximate functional equation described
in [4] cannot be feasibly applied here. In this example p is so much larger than the conductor that
the inability to compute the Euler factor is not critical (one can approximate special values and
bound the analytic rank without it), but there are hundreds of thousands of cases with p close
to the square root of the conductor, a regime where it is difficult to accurately approximate the
L-function without knowing the Euler factor at p and also difficult to guess the correct Euler factor
and heuristically check it using the functional equation. Moreover, a single genus 2 curve may have
multiple primes of almost good reduction, which complicates matters further. There are several
curves in the new dataset that have five or more primes of almost good reduction, all of which are
small enough to have a major impact on the functional equation, and the number of possibilities
for the bad Euler factors is far too large to make heuristic checking feasible. These almost good
primes have proven to be a major obstacle to attempts to expand the database of genus 2 curves in
the LMFDB, which is what motivated the work we present here. Our main result is the following.

Theorem 1.1. Let C/Q be a genus 2 curve y2 = f(x) =
∑

i fix
i ∈ Z[x] with almost good reduction

at an odd prime p. There is a deterministic algorithm that, given a nonsquare element of F×p ,
computes the L-polynomial Lp(C, T ) in time

O(‖f‖2 log2‖f‖/ log p+ log5p),

where ‖f‖ = maxi log ‖fi|. There is also a Las Vegas algorithm with the same expected running time
that does not require a nonsquare element of F×p to be provided as part of the input.

For large p the running time of this algorithm is dominated by the time to count points on elliptic
curves using Schoof’s algorithm. When p is small and the power of p dividing the discriminant is
bounded, the running time is quasi-linear in ‖f‖, which is the size of the input. The algorithm is
described in detail in Section 4, and it is easy to implement. A simple implementation of the new
algorithm in Magma is available in the GitHub repository associated to this paper [16], and it is
already a dramatic improvement over the EulerFactor function implemented in Magma.1 It took
roughly 242 CPU days to compute Euler factors at approximately 3.5 million primes of almost good
reduction arising in our small conductor dataset using the EulerFactor function, except for 489
cases where the computation did not terminate within 8 hours, an average of about 6 seconds per
Euler factor. By contrast, a simple Magma implementation of our new algorithm takes less than
1.3 CPU hours to compute every Euler factor, averaging close to one millisecond per Euler factor
with a maximum time of less than 25 milliseconds, including the 489 examples we were not able to
compute using the EulerFactor intrinsic. A low level C implementation of the new algorithm
takes only 30 CPU seconds to accomplish the same task (about 8 microseconds per Euler factor).
See Section 5 and Tables 2-5 for further details of our implementation and the tests we ran.

1We compare our algorithm to the EulerFactor intrinsic in Magma because it is the only implementation we are
aware of that gives correct results when the computation terminates without reporting an error; neither Pari/GP nor
SageMath currently support the computation of Euler factors for genus 2 curves at primes of almost good reduction.
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Our algorithm does not treat curves with almost good reduction at the prime p = 2, even though
there are many such examples, notably including the modular curve X0(22) whose Jacobian has
conductor 112, the smallest conductor possible for an abelian surface. But our algorithm is still
helpful in treating these cases because it makes it feasible to apply the methods of [4] that can
efficiently use the functional equation to compute the Euler factor at 2, provided the Euler factors
at all larger primes are known.

We expect that the cluster picture approach we use here can be extended to other types of bad
reduction for genus 2 curves, at least in a semistable setting; this is an area for future work. We
should note that while our algorithms could conceivably be extended to handle almost good primes
of genus 3 hyperelliptic curves, our method does not scale well with the genus. There is recent work
on new methods for computing regular models, notably that of Dokchitser [7] and Muselli [17] that
is likely to handle higher genus curves better than our approach, and may also allow one to treat
other reduction types, with similar efficiency.

1.1. Acknowledgments. We are grateful to Matthew Bisatt and Tim Dokchitser for helpful con-
versations. Maistret was supported by a Royal Society Dorothy Hodgkins Fellowship, and Suther-
land was supported by Simons Foundation grant 550033.

2. Background

2.1. Euler factors. Let C be a smooth projective curve of genus g ≥ 2 over Q. The L-function
of C is defined as the Euler product

L(C, s) =
∏
p

Lp(C, p
−s)−1,

where the L-polynomial Lp ∈ Z[T ] is given by

Lp(C, T ) := det
(
1− T Frob−1

p |H1
ét(C ⊗Q Qalg,Q`)

Ip
)
,

and has degree 2g at primes of good reduction for the Jacobian of C, including primes of almost
good reduction for C, and otherwise has degree strictly less than 2g.

Here Frobp denotes an arithmetic Frobenius element, Ip is the inertia subgroup of a decomposition
group Dp ⊂ Gal(Qalg/Q) and ` is a prime distinct from p.

Proposition 2.1. Let C/Q be a genus 2 curve and let p be a prime of almost good reduction for C.
Let C be a Zp-model which is regular, and let C̄ denote its special fiber. Then

H1
ét(C ⊗Q Qalg,Q`)

Ip ∼= H1
ét(C̄Fp

,Q`).

Proof. Note that all the components of C̄ have multiplicity 1, since C has semistable reduction at p.
The proposition then follows directly from Proposition 2.8 in [3]. �

One can compute the Euler factor Lp(C, T ) via its connection to the zeta function of C̄/Fp,
although we note that this is not the only possible approach; see Section 1.1 of [3].

Definition 2.2. Let X/Fp be a curve. We define its zeta function by

Z(X/Fp, T ) = exp

∑
n≥1

|X(Fpn)|T
n

n

 .
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Theorem 2.3. Let C̄/Fp be the special fiber of a Zp-regular model of C/Q. Then

Z(C̄, T ) =
P1(T )

P0(T )P2(T )
,

where Pi(T ) = det(1 − TFrob−1
p |H i

ét(C̄Fp
,Q`) for i = 0, 1, 2 and some prime ` 6= p. In particular,

P1(T ) is the L-polynomial Lp(C, T ).

Proof. This is Theorem 13.1 in [22] with X = C̄, combined with Proposition 2.1. �

It follows from Theorem 2.3 that one can compute Lp(C, T ) by computing the zeta function of
the special fiber of a Zp-regular model of C/Qp. However, this may be computationally expensive;
indeed, in the 489 cases mentioned in the introduction where Magma struggled to compute Euler
factors at primes of almost good reduction, the difficulties arose while computing a regular model.

We will use the theory of cluster pictures to avoid computing a regular model. For a general
exposition of the theory of cluster pictures, we refer the interested reader to [1], where explicit
examples are used to illustrate theoretical points. In particular, [1, Section 6] provides examples of
construction of special fibers from cluster pictures.

2.2. Cluster Pictures. Let K be a local field of odd residue characteristic p, let v be a normalized
valuation with respect to K, and let C/K a hyperelliptic curve of genus g ≥ 2 given by

y2 = f(x) = c
∏
r∈R

(x− r),

where f ∈ K[x] is separable with deg(f) = 2g + 1 or 2g + 2, and where R denotes the set of roots
of f(x) in Ksep.

Definition 2.4 (Clusters and cluster pictures). A cluster is a non-empty subset s ⊆ R of the form
s = D ∩R for some disc D = {x∈Kalg | v(x− z)≥d} for some z ∈ Kalg and d ∈ Q.

For a cluster s with |s| > 1, its depth ds is the maximal d for which s is cut out by such a disc,
that is ds = minr,r′∈s v(r−r′). If moreover s 6= R, we define the parent cluster P (s) of s to be the
smallest cluster with s ( P (s). Then the relative depth of s is δs=ds−dP (s).

We refer to this data as the cluster picture of C.

Remark 2.5. The absolute Galois group of K acts on clusters via its action on the roots. This
action preserves depths and containments of clusters.

Definition 2.6. If s′ ( s is a maximal subcluster, we refer to s′ as a child of s.
For two clusters (or roots) s1, s2 write s1 ∧ s2 for the smallest cluster containing them.

Definition 2.7. A cluster s is principal except when:

• |s| ≤ 2, or
• s has a child of size 2g, or
• s = R is even and has exactly two children.

Definition 2.8. For a cluster s set

νs = v(c) +
∑
r∈R

dr∧s.
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Notation 2.9. We draw cluster pictures by drawing roots r ∈ R as , and we draw ovals around
roots to represent clusters (of size > 1), such as:

2 2 1 0

.

The subscript on the largest cluster R is its depth, while the subscripts on the other clusters are
relative depths.

Example 2.10. Consider the genus 2 curve C : y2 = x(x−p2)(x−3p2)(x−1)(x−1+p4)(x−1−p4)

where p ≥ 5 is a prime. Its cluster picture at p is given by

2 4 0

3. Cluster pictures and special fibers

Proposition 3.1. Let C/Q be a genus 2 curve and p an odd prime of almost good reduction for C.
Then the possible cluster pictures for C at p are

1) n , 2) m n , 3) n , 4) m n
,

for some integers m ≥ n, such that vp(c) and n are even in cases 1) and 3); and vp(c) ≡ m ≡
n mod 2 in cases 2) and 4).

Proof. This is Theorem 10.3 (5) in [6] which implies that clusters s 6= R in the picture must contain
an odd number of roots. This gives the classification of pictures above. The parity of the valuation
of the leading term and the depth follows from the fact that νs ∈ 2Z for principal clusters. �

Remark 3.2.

1. The assumption that p is a prime of almost good reduction for C is essential in Proposition 3.1,
as it controls the parity of vp(c). Changing the parity of vp(c) amounts to taking a quadratic
twist, which does not change the cluster picture but will force JacC to have bad reduction at p.
Our algorithms will produce the same output given C or its quadratic twist by p, but in the latter
case the input will not satisfy the necessary assumption that the Jacobian has good reduction
at p; our algorithms cannot be used to compute the L-polynomial of the quadratic twist.

2. The assumption that p is a prime of good reduction for JacC implies that the splitting field L
of f is unramified (Theorem 10.3 (5) in [6]). It follows that p is a uniformizer for L and that the
normalized valuation v extends the valuation vp of K = Qp with index 1.

3. The reduction type for C in Proposition 3.1 corresponds to Namikawa-Ueno type I0−I0−r listed
in [6] Table 18.2. One can check using Theorem 8.6 in [6] that the dual graphs of the special
fibres corresponding to the four cluster pictures are

1) 11
1
2
n

, 2) 11
1
2

(m+n)
, 3) 11

1
2
n

, 4) 11
1
2

(m−n)
.

In the drawings above, vertices represent genus 1 components. These are linked by chains of
1
2n,

1
2(m + n), 1

2n, and 1
2(m − n) edges respectively, representing genus 0 components in the

special fibre.

4. When n = m in picture 2) of Proposition 3.1, the Frobenius automorphism will permute the two
clusters of size 3 if their centers are defined over the unramified quadratic extension of Qp (and
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therefore are Galois conjugates). If this is the case we will draw a line between the two clusters
in the picture as so: n n . Note that in this case, the depths are necessarily equal.

Remark 3.3.

1. We did not specify the depth dR of the outer cluster in Proposition 3.1 as it can be arbitrary.
However, the first step of our algorithm will ensure that dR = 0.

2. We can assume without loss of generality that C : y2 = f(x) is defined by a polynomial f ∈ Z[x]

of degree 6. This will ensure that the cluster picture of C is never of type 3).

3. We can assume without loss of generality that vp(c) is 0 or 1, and in the latter case that every
coefficient of f ∈ Z[x] is divisible by p.

We will give a constructive proof of the claims made in Remark 3.3 when we present our algorithms
in the next section, but they motivate the following definition.

Definition 3.4. Let p be an odd prime. A squarefree sextic polynomial f =
∑

i fix
i ∈ Z[x]

defining a genus 2 curve C : y2 = f(x) with almost good reduction at p that satisfies dR = 0 and
vp(f6) = mini{vp(fi)} ≤ 1 is said to be p-normalized.

Corollary 3.5. Let p be an odd prime and let C : y2 = f(x) be a genus 2 curve defined by a
p-normalized polynomial f ∈ Z[x]. Then the cluster picture for C is one of the following:

Type 1 := n 0
, where vp(c) ≡ n mod 2 with vp(c) = 0,

Type 2a := m n 0
, where vp(c) ≡ m ≡ n mod 2 with vp(c) ≤ 1,

Type 2b := n n 0
, where vp(c) ≡ n mod 2 with vp(c) ≤ 1,

Type 4 := m n 0

, where vp(c) ≡ m ≡ n mod 2 with vp(c) ≤ 1.

Proposition 3.6. Let p be an odd prime and let C : y2 = f(x) be a genus 2 curve defined by
a p-normalized polynomial f ∈ Z[x], let f̃ = p−vp(c)f ∈ Z[x], let f̄ = f̃ mod p ∈ Fp[x], and let
c̄ = cp−vp(c) mod p ∈ Fp. Then depending on the type of the cluster picture of C at p, exactly one
of the following holds:

1) f̄ = c̄ (x− r̄)3ū for some squarefree monic cubic ū ∈ Fp[x] and r̄ ∈ Fp with ū(r̄) 6= 0.

2a) f̄ = c̄ (x− r̄)3(x− s̄)3 for some distinct r̄, s̄ ∈ Fp.
2b) f̄ = c̄ ū3 for some irreducible monic quadratic ū ∈ Fp[x].

4) f̄ = c̄ (x− r̄)5(x− s̄) for some distinct r̄, s̄ ∈ Fp.

Proof. Let α1, α2, α3, β1, β2, β3 denote the roots of f(x) ordered left to right in the cluster picture.
Types 1: Here β1, β2, β3 denote the roots in the cluster of depth n. Since v(βi − βj) = n for

i 6= j = 1, 2, 3, we have that β1 ≡ β2 ≡ β3 mod p, which gives the factor (x−r̄)3. Now v(αi−αj) = 0

so that αi 6≡ αj mod p for i 6= j = 1, 2, 3. Moreover, v(αi−βj) = 0 for i, j = 1, 2, 3, therefore αi 6≡ βj
for i, j = 1, 2, 3. It follows that ū = (x − α1)(x − α2)(x − α3) is a square free cubic in Fp[x] with
ū(r̄) 6= 0. Types 2a and 4 follow from a similar argument.

Type 2b: Here the Frobenius automorphism permutes the αs and βs pairwise. In particular, it
has order 2 so that f̃ splits into two cubic polynomials f1, f2 over the unramified quadratic extension
F of Qp. From the cluster picture we have that α1 ≡ α2 ≡ α3 mod pOF and similarly for the βs.
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It follows that f̃(x) ≡ (x− λ)3(x+ λ)3 mod p2 for some λ ∈ Fp2 . Let Λ ∈ Fp with λ2 = −Λ so that
f̃(x) ≡ (x2 + Λ)3 mod p. �

Corollary 3.7. Let C/Q be a genus 2 curve and p an odd prime of almost good reduction for C.
Then the special fiber C̄/Fp of the minimal regular model of C/Qp consists of a union of two elliptic
curves linked by a chain of P1s.

Proof. This follows directly from the list of possible cluster pictures given in Proposition 3.1 and [6,
Definition 8.5 and Theorem 8.6], where explicit models for the components of the special fibers are
constructed. One can then check that the components associated to principal clusters are indeed
elliptic curves (see the proof of Corollary 3.10 for an example of such a construction). Alternatively,
since JacC has good reduction, it follows from the work of Raynaud ([15], [9, Section 9]) that its
Néron model is an abelian scheme. Since the identity component of the special fiber of the Néron
model is Pic0C̄, this forces C̄ to be a genus 2 curve or a union of two elliptic curves. The former is
a contradiction to the prime p being of bad reduction for C. �

Remark 3.8. For cluster pictures of type 2b in Corollary 3.5, the elliptic curves are defined over Fp2
and permuted by Frobenius, hence have the same L-polynomial.

Let E1 and E2 be the two elliptic curves in C̄ given by Corollary 3.7. We now show how to
compute Lp(C, T ) from Lp(E1, T ) and Lp(E2, T ).

Proposition 3.9. Let C/Q be a genus 2 curve, p an odd prime of almost good reduction for C,
and r ≥ 0 an integer. Let E1 and E2 be the two elliptic curves linked by a chain of P1s of length r,
whose union forms the special fiber of the minimal regular model of C/Qp as given by Corollary 3.7.
Then

(1) Lp(C, T ) = Lp(E1, T )Lp(E2, T ) if both E1 and E2 are defined over Fp.
(2) Lp(C, T ) = Lp(E1/Fp2 , T 2) = Lp(E2/Fp2 , T 2) if both E1 and E2 are defined over Fp2.

Proof. (1) Suppose that E1 and E2 are defined over Fp. It follows that each individual P1 in the
chain linking E1 to E2 is also defined over Fp. Therefore P2(T ) = (1− pT )2+r, by definition, since
each component of C̄ contributes a factor (1− pT ).

Let α1, β1, α2, β2 be algebraic numbers such that Lp(Ei, T ) = (1− αiT )(1− βiT ) for i = 1, 2. In
particular, for all n ∈ Z>0, |Ei(Fpn)| = pn + 1− αni − βni . It follows that

|C̄(Fpn)| = |E1(Fpn)|+ |E2(Fpn)|+ r|P1(Fpn)| − (r + 1),

where we removed r + 1 intersection points that were counted twice. Therefore

|C̄(Fpn)| = (2 + r)(pn + 1)− αn1 − βn1 − αn2 − βn2 − (r + 1)

= (2 + r)pn − αn1 − βn1 − αn2 − βn2 + 1,

and we have

Z(C̄/Fp, T ) = exp

∑
n≥1

((2 + r)pn + 1− αn1 − βn1 − αn2 − βn2 )
Tn

n


=

(1− α1T )(1− β1T )(1− α2T )(1− β2T )

(1− T )(1− pT )2+r
=
Lp(E1, T )Lp(E2, T )

(1− T )(1− pT )2+r
.

The result then follows from Theorem 2.3.
(2) Suppose that E1 and E2 are defined over Fp2 . We have two cases.
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(i) If r is even, then all P1s in the chain linking E1 and E2 are defined over Fp2 and are permuted
by Frobenius. Therefore P2(T ) = (1− pT )

2+r
2 (1 + pT )

2+r
2 .

Let α, β be algebraic numbers such that Lp(E1, T ) = (1− αT )(1− βT ). In particular,

|C̄(Fpn)| =

{
1, if n is odd,
(2 + r)pn + 1− 2αn − 2βn, if n is even.

If we put m = (2 + r)/2, we then have

Z(C̄/Fp, T ) = exp

∑
n≥1

(
mpn + (−1)nmpn + 1− αn − (−α)n − βn − (−β)n

)Tn
n


=

(1− αT )(1 + αT )(1− βT )(1 + βT )

(1− T )(1− pT )m(1 + pT )m

=
Lp(E1/Fp2 , T 2)

(1− T )(1− pT )m(1 + pT )m
,

and the result follows from Theorem 2.3.
(ii) If r is odd, say r = 2k + 1, then the 2k P1s in the chain linking E1 and E2 are defined

over Fp2 and permuted pairwise, while the “central” P1 is defined over Fp. It follows that we have
P2(T ) = (1− pT )

2+2k
2 (1 + pT )

2+2k
2 (1− pT ).

As in (i), let α, β be algebraic numbers such that Lp(E1, T ) = (1− αT )(1− βT ). It follows that

|C̄(Fpn)| =

{
pn + 1, if n is odd,
(2k + 2)pn + pn − 2αn − 2βn − (2k + 2), if n is even.

Therefore

Z(C̄/Fp, T ) = exp

∑
n≥1

((k + 1)pn + (−1)n(k + 1)pn + pn + 1− αn − (−α)n − βn − (−β)n)
Tn

n


=

(1− αT )(1 + αT )(1− βT )(1 + βT )

(1− T )(1− pT )k+1(1 + pT )k+1(1− pT )

=
Lp(E1/Fp2 , T 2)

(1− T )(1− pT )k+1(1 + pT )k+1(1− pT )
,

and the result follows from Theorem 2.3. �

Corollary 3.10. Let C : y2 = f(x) and p be as in Proposition 3.6 with type 1, 2a, 4, and let
f̃ = p−vp(c)f ∈ Z[x]. Let L be the splitting field of f over Qp, let r1 ∈ OL be a root in the cluster
of depth n, and for types 2a, 4 let r2 ∈ OL be a root in the cluster of depth m. Fix s1 ∈ Z with
r1 ≡ s1 mod pnOL, and for types 2a, 4, s2 ∈ Z with r2 ≡ s2 mod pmOL. The elliptic curves E1/Fp
and E2/Fp of Proposition 3.9 may be explicitly computed as follows:

1) E1 : y2 = ḡ1(x), where ḡ1 ∈ Fp[x] is the squarefree part of f̃ mod p, and
E2 : y2 = ḡ2(x), where ḡ2(x) = f̃(pnx+ s1)/p3n mod p ∈ Fp[x].

2a) E1 : y2 = ḡ1(x), where ḡ1(x) = f̃(pnx+ s1)/p3n mod p ∈ Fp[x], and
E2 : y2 = ḡ2(x), where ḡ2(x) = f̃(pmx+ s2)/p3m mod p ∈ Fp[x].

4) E1 : y2 = ḡ1(x), where ḡ1 ∈ Fp[x] is the squarefree part of f̃(pnx+ s1)/p5n mod p, and
E2 : y2 = ḡ2(x), where ḡ2(x) = f̃(pmx+ s2)/p3m+2n mod p.
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Proof. This follows from Definition 8.5 and Theorem 8.6 in [6], where explicit models for the com-
ponents associated to principal clusters are constructed. We explicitly work out the case of Type 1,
the other types are similar. There are two principal clusters in the cluster picture of Type 1:
the full set of roots R = {α1, α2, α3, β1, β2, β3} ordered from left to right in the cluster picture,
and the cluster of depth n, say s. We now follow Definition 8.5 in [6], which associates a com-
ponent to each principal cluster. Recall that since C is semistable, vp(c) ∈ 2Z (Definition 1.8
and Theorem 1.9 in [6]), and therefore vp(c) = 0 by our assumption. For a root r, let r̄ denote
r mod pOL. We have ΓR : Y 2 = c̄(X − ᾱ1)(X − ᾱ2)(X − ᾱ3)(X − β̄1). This gives E1/Fp since
f ≡ c̄(X − ᾱ1)(X − ᾱ2)(X − ᾱ3)(X − β̄1)3 mod p. Note that β̄1 ∈ Fp but that ᾱ1, ᾱ2, ᾱ3 may be
permuted by Frobenius.

For E2, we look at the component associated to s. Choose zs = r1. We have v(r1 − αi) = 0 for
i = 1, 2, 3, thus cs = c̄(s1 − ᾱ1)(s1 − ᾱ2)(s1 − ᾱ3). Therefore

Γs : Y 2 = c̄
(
s1 − ᾱ1

)(
s1 − ᾱ2

)(
s1 − ᾱ3

)(
X − β1 − r1

pnOL

)(
X − β2 − r1

pnOL

)(
X − β3 − r1

pnOL

)
,

which is f(pnx+ s1)/p3n mod p as claimed. �

Corollary 3.11. Let C : y2 = f(x) and p be as in Proposition 3.6 with type 2b, let f̃ = p−vp(c)f ,
and let L be the splitting field of f over Qp. Let u ∈ Z[x] be any lift of the irreducible quadratic
ū ∈ Fp[x] in case 2b of Proposition 3.6, and define F := Qp[z]/(u(z)) ⊆ L, O := Z[z]/(u(z)) ⊆ OL,
and κ := Fp[z]/(ū(z)) ' Fp2 . Let r ∈ OL be a root of f , and let s ∈ O satisfy r ≡ s mod pOL.
Let f̂ denote the image of f in O[x] via the inclusion Z[z] ⊆ O[z] induced by Z ⊆ O, and let
ḡ = f̂(pnx + s)/p3n mod pO ∈ κ[x] ' Fp2 [x]. Then y2 = ḡ(x) and its Gal(κ/Fp)-conjugate are
models for the elliptic curves E1/Fp2 and E2/Fp2 of Proposition 3.9.

Proof. Denote s1 and s2 the two clusters of size 3 in the picture. As for Type 1 in the proof above,
we closely follow Definition 8.5 and Theorem 8.6 in [6]. Both s1 and s2 are principal. Since the
Frobenius automorphism permutes both clusters, the associated components (E1 and E2) must be
Galois conjugate as mentioned in Remark 3.8. We construct E1 explicitly. Denote α1, α2, α3 the
roots in s1 and β1, β2, β3 the roots in s2. Permuting indices if necessary, Frobenius permutes αi
and βi for i = 1, 2, 3. We choose r = zs1 a center for s1. In particular, r is one of the αs. Since
v(r − βi) = 0 for i = 1, 2, 3, we have cs1 = c̄(s − β̄1)(s − β̄2)(s − β̄3), where for a root β, we have
β̄ = β mod pOL. It follows that E1/Fp2 is given by

Γs1 : Y 2 = cs1

(
X − r − α1

pnOL

)(
X − r − α2

pnOL

)(
X − r − α3

pnOL

)
,

which is f̂(pnx + s)/p3n mod pO since v(r − αi) = n for i = 1, 2, 3. Now the construction of Γs2 ,
which defines E2/Fp2 , is the same as that of Γs1 with the roots αs and βs swapped. Since Frobenius
permute them pairwise, it follows that E2 is given by the Gal(κ/Fp)-conjugate of ¯g(x). �

4. Algorithms

In this section we describe our algorithm for computing Lp(C, T ) for a genus 2 curve C/Q at an
odd prime p of almost good reduction; so p divides the minimal discriminant ∆(C) ∈ Z of C but does
not divide the conductor N(C) ∈ Z of its Jacobian. Computing the set of primes that satisfy this
assumption is at least as hard as factoring ∆(C), a problem for which no polynomial-time algorithm
is known, but there are efficient algorithms to compute ∆(C) [13] and the p-adic valuation of N(C)

9

Submitted to Algor. Num. Th. Symp.



operation complexity algorithm/reference

addition/subtraction O(b) schoolbook algorithm [8]
multiplication O(b log b) fast integer multiplication [10]
reduction modulo p O(b log b) fast Euclidean division [8]
greatest common divisor O(b log2b) fast GCD [8]
Legendre symbol ( ·p) O(b log2b) fast binary GCD [5]
inversion in F×p O(b log2b) fast extended GCD [8]
square roots in F×p given s 6∈ F×2

p O(b log2b/ log log b) fast Tonelli-Shanks [23]
computing Lp(E, T ) for E/Fp or E/Fp2 O(b5) Schoof’s algorithm [20, 21]

Table 1. Asymptotic complexity bounds for arithmetic operations on ring elements
used by our algorithms. Here b denotes the number of bits used to represent the
inputs, all of which we represent using O(1) integers (as ‖f‖ tends to infinity).

at a given odd prime [12], and these have been widely implemented in computer algebra systems
such as Magma [2], Pari/GP [18], and SageMath [19]. We shall henceforth assume that any
prime p provided as an input to our algorithms is a prime of almost good reduction for C.

As we will be working exclusively in rings of odd or zero characteristic, we may assume that C is
specified by an integral model of the form y2 = f(x), where f ∈ Z[x] is a squarefree polynomial of
degree 5 or 6 whose discriminant ∆(f) is divisible by p. We will state complexity bounds for our
algorithms in terms of the logarithmic height

‖f‖ := log max
i
{|fi|}

of the input polynomial f ∈ Z[x], and the logarithm of the prime p. The discriminant ∆(f) can be
expressed as a homogeneous polynomial in the coefficients fi of degree at most 10. It follows that
log |∆(f)| = O(‖f‖) and log p = O(‖f‖).

In our complexity analyses we will always count bit operations. For ease of reference we list
asymptotic bit-complexity bounds for various operations used by our algorithms in Table 1, in
which the parameter b bounds the bit-sizes of the inputs. We assume throughout that elements
of the finite field Fp are uniquely represented as integers in [0, p − 1], so that reduction from Z to
Fp amounts to computing a remainder modulo p. We assume that elements of Fp2 ' Fp[z]/(ḡ(z))

are explicitly represented as linear polynomials z that have been reduced modulo an irreducible
quadratic polynomial ḡ ∈ Fp[x] that will be chosen by our algorithms. The bounds in Table 1 apply
to operations on elements of Fp, Fp2 , Z, and also to polynomials over these rings that have bounded
degree (we will only consider polynomials of degree at most 6), as well as elements and polynomials
of bounded degree over the ring O := Z[z]/(g(z)), with g ∈ Z[x] an irreducible monic quadratic
that we will use to represent elements of the monogenic order O in the quadratic field Q[z]/(g(z)).

In the descriptions of our algorithms that follow we will frequently need to reduce elements of
characteristic zero rings modulo p, and also to lift elements of characteristic p rings to characteristic
zero. In our implementations all elements of characteristic p rings are represented as integers in
[0, p − 1] or lists of such integers, so there is no actual computation involved in lifting, but when
describing our algorithms we will use the notation

a = lift(ā)
10
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to indicate that a is the lift of ā from a characteristic p ring (such as Fp, Fp[x], Fp2 ' Fp[z]/(ḡ(z)),
Fp2 [x]) to the corresponding ring of characteristic zero (Z, Z[x], O = Z[z]/(g(z)), O[x]). For the
sake of clarity we use the overline notation “ ā” to indicate that ā is an element of a characteristic p
ring, and the absence of an overline in the notation “a” indicates that a lives in characteristic zero.

As can be seen from the cluster pictures in Proposition 3.1, while the polynomial f ∈ Z[x] that
defines the curve C : y2 = f(x) must be squarefree, the reduction of p−vp(c)f modulo p will typically
have repeated factors (with repeated roots defined over Fp or Fp2); these factors are made explicit
in Proposition 3.6 in the case that f is p-normalized. Efficiently determining these repeated factors
and their multiplicity plays a key role in our algorithms and motivates the following definition.

Definition 4.1. For each positive integer k and polynomial f ∈ Fp[x] we define

gcdk(f) :=
∏

monic gk|f

gvg(f)−k+1 ∈ Fp[x],

where vg(f) = max{e ∈ Z : ge|f}.

When p > deg(f) we can efficiently compute gcdk(f) via

gcdk(f) = gcd
(
f, f (1), . . . , f (k−1)

)
,

where the gcd on the right is understood to be monic. Assuming deg f = O(1) (we will always
have deg f = 6) this computation takes O(b(log b)2) time. For p ≤ deg f = O(1) we can compute
gcdk(f) in O(1) time by exhaustively testing gk|f for all monic g of degree at most bdeg f/kc.

In order to apply the main results of the previous section, which assume we are in the setting of
Corollary 3.5, we may need to adjust the model of C : y2 = f(x) to ensure that it is defined by a
p-normalized polynomial f (see Definition 3.4). This leads to our first algorithm.

Algorithm 1. Given a squarefree f(x) =
∑

i fix
i ∈ Z[x] of degree 5 or 6 and an odd prime p,

construct a polynomial g(x) =
∑

i gix
i ∈ Z[x] with vp(g6) = mini{vp(gi)} ≤ 1 for which the genus 2

curve y2 = g(x) has an outer cluster of depth zero at p and is Q-isomorphic to y2 = f(x).

1. If deg f = 5, compute f(a) for a = 0, 1, 2, . . . until f(a) 6= 0, replace f(x) by f(x + a), and
then replace f(x) by x6f(1/x) so that deg f = 6.

2. Let v = vp(f6), and if v > 1 or v 6= mini{vp(fi)} then do the following:
a. Let e = max{dv−vp(fi))

6−i e : 0 ≤ i ≤ 5}.
b. Replace f(x) by p6e−wf(x/pe) ∈ Z[x], where w = 2bv/2c, and replace v by vp(f6).

3. Let h = p−vf .
4. Repeat the following steps:

a. Let ū = gcd6(h mod p) and if deg ū = 0 then goto step 5.
b. Replace h(x) by p−6h(px+ lift(ā)) where ū = x− ā.

5. Return g = pvh.

Proposition 4.2. Algorithm 1 is correct and runs in time O(‖f‖2 log ‖f‖/ log p).

Proof. That y2 = f(x) and y2 = g(x) are Q-isomorphic follows from the fact that the sextic forms
z6f(x/z) and z6g(x/z) are related by an invertible linear transformation of P1 and multiplication
by an even power of p, neither of which changes the Q-isomorphic class of the corresponding genus 2
curves. After step 2 we have vp(f6) = mini{vp(fi)} ≤ 1, since step 2b ensures vp(f6) = v−w ∈ {0, 1}
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and vp(gi) = 6e− w − ie+ vp(fi) ≥ v − w = vp(g6) for 0 ≤ i ≤ 5. Step 2 can increase the depth of
the outer cluster by at most e = O(‖f‖/ log p).

In step 4 we have h(x) =
∑

i hix
i ∈ Z[x] with vp(h6) = 0. The outer cluster of y2 = h(x) at p will

have nonzero depth if and only if the roots of h mod p all coincide, equivalently, if and only if ū has
positive degree. If this happens then deg ū = 1 (since deg(h mod p) = 6), and ū = x − ā, where ā
has multiplicity 6 as a root of h mod p, and then replacing h(x) by p−6h(px+lift(ā)) ∈ Z[x] reduces
the depth of the outer cluster by one. Step 4 will terminate after O(‖f‖/ log p) iterations when the
depth reaches zero, and the genus 2 curve y2 = g(x) = pvh(x) has its outer cluster of depth zero.

For the time bound, let b = ‖f‖. We have a ≤ 6 in step 1, which performs O(1) ring operations
in Z, taking time O(b log b), yielding a new f ∈ Z[x] with ‖f‖ = O(b). We can compute vp(fi) in time
O(b log b), which bounds the cost of steps 2, 3, and 5. Each iteration of step 4 takes O(b log b) time,
and there are O(‖f‖/ log p) iterations, yielding a total running time of O(‖f‖2 log ‖f‖/ log p). �

Remark 4.3. For p > 5 steps 1 and 2 of Algorithm 1 can be replaced by the following: let
v = mini{vp(fi)}, test a = 0, 1, 2, . . . until f(a) 6≡ 0 mod pv+1, replace f(x) by f(x + a), then
replace f(x) by p−2bv/2cx6f(1/x). This has the virtue of not increasing the depth of the outer
cluster, which potentially saves time in step 4, but this may not work when p = 3, 5.

Remark 4.4. The loop in step 4 of Algorithm 1 which is used to decrease the depth of the outer
cluster can be viewed as computing a common initial p-adic approximation to the roots of h(x),
which all coincide modulo a power of p equal to the depth of the outer cluster. The same technique
will be used in our algorithms below which work with the inner clusters. If h mod p had a simple
root modulo p, or more generally, if we had an integer s for which vp(h(s)) > 2vp(h

′(s)), we could
use Hensel lifting to approximate a root to O(‖h‖/ log p) digits of p-adic precision in quasi-linear
time (as a function of ‖h‖), rather than the quasi-quadratic time required by step 4, since we can
double the p-adic precision of our approximation in each step, rather than simply incrementing it.
But we are in precisely the situation where Hensel’s lemma does not apply, and in general h(x) need
not have any Qp-rational roots, so there is no reason to expect that we can use Hensel lifting.

Remark 4.5. Unlike all our remaining algorithms, Algorithm 1 makes no assumptions about f(x)

other than requiring it to be squarefree of degree 5 or 6, so that C : y2 = f(x) is a genus 2 curve. Its
output is p-normalized when C has almost good reduction at p, which will be true in the context
of our main algorithm (see Algorithm 7 below) where it is used.

If f ∈ Z[x] is a p-normalized polynomial we shall refer to the type of f as the type of the cluster
picture of y2 = f(x) at p, one of 1, 2a, 2b, 4. Our next algorithm uses Proposition 3.6 to efficiently
determine the type of f .

Algorithm 2 (WhichType). Given a p-normalized f =
∑

i fix
i ∈ Z[x], determine its type.

1. Compute f̃ = p−vp(f6)f ∈ Z[x] and f̄ = f̃ mod p ∈ Fp[x].
2. Compute ḡ = gcd3(f̄).
3. If deg ḡ = 1 then return 1, and if deg ḡ = 3 then return 4.
4. If

(
∆(ḡ)
p

)
= +1 and the return 2a, and return 2b otherwise.

Proposition 4.6. Algorithm 2 is correct and runs in time O(‖f‖ log2‖f‖).

Proof. By Proposition 3.6, we have a unique triple root if we are in case 1, two triple roots if we are
in case 2a, the cube of an irreducible quadratic if we are in case 2b, and a unique quintuple root if
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we are in case 4, and these are mutually exclusive. The degree of ḡ is thus 1, 2, or 3, depending on
whether we are in case 1, 2a/2b, or 4, respectively, and the cases 2a and 2b are distinguished by
whether ḡ has Fp-rationals roots or not, equivalently, whether ∆(ḡ) is a square or not.

Let b = ‖f‖. From Table 1 we see that Step 1 takes O(b log b) time, the cost of step 3 is negligible,
and steps 2 and 4 both take O(b2 log b) time, which bounds the total complexity. �

Having determined the type of a p-normalized f ∈ Z[x], we can use Corollaries 3.10 and 3.11 to
compute the L-polynomial of C : y2 = f(x) at p. To simplify the presentation we treat each of the
four types separately.

Algorithm 3 (Type 1). Given a p-normalized polynomial f ∈ Z[x] of type 1, compute the L-
polynomial of C : y2 = f(x) at p.

1. Compute f̄ ≡ f mod p ∈ Fp[x] and gcd3(f̄) = x− r̄ ∈ Fp[x] (per Proposition 3.6).
2. Let ḡ1 = f̄(x+ r̄)/x2 ∈ Fp[x] (a quartic) and let E1 : y2 = ḡ1(x).
3. Let r = lift(r̄) and repeat the following steps:

a. Replace f with f(px+ r)/p3 ∈ Z[x] and let ḡ2 ≡ f mod p ∈ Fp[x] (a cubic).
b. If ∆(ḡ2) 6= 0, then let E2 : y2 = ḡ2(x) and go to step 4.
c. Compute gcd3(ḡ2) = x− r̄ ∈ Fp[x] and replace r with lift(r̄).

4. Return Lp(C, T ) = Lp(E1, T )Lp(E2, T ) ∈ Z[T ].

Remark 4.7. Step 3b only needs to be performed every second iteration, since the depth must be
even, by Proposition 3.1.

Proposition 4.8. Algorithm 3 is correct and runs in time O
(
‖f‖ log2‖f‖/ log p+ log5p

)
.

Proof. Step 2 computes h̄ as the squarefree part of f̄ , while step 3 iteratively computes the polyno-
mial ḡ2(x) = f(pnx+ s1)/p3n mod p, where s1 ≡ r1 mod pn for some root r1 in the inner cluster of
depth n; correctness follows from Corollary 3.10.

Let b = ‖f‖. From Table 1 we see that step 1 takes O(b log2b) time, step 2 takes O(b log b)

time, each iteration of step 3 takes O(b log2b) time, and step 4 takes O(log5p) time. There are
n = O(‖f‖/ log p) iterations of step 3, and this yields the desired complexity bound. �

Our algorithm for type 2a is the one case where it is difficult to give an efficient deterministic
algorithm because we need to compute the roots of a quadratic polynomial over Fp. This can be done
efficiently using a probabilistic algorithm, or by assuming the extended Riemann hypothesis, but
in order to give an unconditional deterministic algorithm we will assume we are given a nonsquare
s ∈ F×p . We can use s to deterministically compute the square root of any element of Fp via the
Tonelli-Shanks algorithm, which effectively computes square roots using a deterministic discrete
logarithm computation in the 2-Sylow subgroup H of F×p with respect to a given generator of H,
which we can take to be sm where p = 2em+ 1 with m odd.

Remark 4.9. The nonsquare s ∈ F×p can be precomputed in O(log2p log log p) expected time by
picking random s ∈ F×p until one finds s(p−1)/2 = −1; this computation depends only on p, not f .

Algorithm 4 (Type 2a). Given a p-normalized polynomial f =
∑

i fix
i ∈ Z[x] of type 2a and a

nonsquare s ∈ F×p , compute the L-polynomial of C : y2 = f(x) at p.

1. Compute f̃ = p−vp(f6)f ∈ Z[x] and f̄ ≡ f̃ mod p ∈ Fp[x].
2. Compute ū = gcd3(f̄) = (x− r̄1)(x− r̄2) ∈ Fp[x] (per Proposition 3.6).
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3. Compute the roots r̄1, r̄2 ∈ Fp of ū via the quadratic formula, using s to compute
√

∆(ū).
4. Use r̄1 and r̄2 to compute elliptic curves E1 and E2 as in step 3 of Algorithm 3 (using f = f̃).
5. Return Lp(C, T ) = Lp(E1, T )Lp(E2, T ) ∈ Z[T ].

Proposition 4.10. Algorithm 4 is correct and runs in time O
(
‖f‖2 log ‖f‖/ log p+ log5p

)
.

Proof. Correctness of the algorithm follows from Corollary 3.10, and the complexity analysis is as in
the proof of Proposition 4.8, once we note that step 3 takes O(b2 log2b/ log log b) time, with b = log p

in Table 1, which is bounded by the cost of step 5. �

For type 2b we work in the setting of Corollary 3.11. If we put f̃ := p−vp(f6)f ∈ Z[x] then
Proposition 3.6 implies that f̃ mod p has the form c̄ · ū3 ∈ Fp[x] with c̄ ∈ F×p and ū a monic
quadratic. We let u = lift(ū) ∈ Z[x] and define O := Z[z]/(u(z)) (an order in the quadratic field
Q[z]/(u(z))) and κ := Fp[z](ū(z)) ' O/pO ' Fp2 . The reduction map π : O → O/pO ∼→ κ sends
the image of z in O to the image of z in κ and integers to their reductions modulo p, while the map
ā 7→ lift(ā) is the unique section of π that sends elements of Fp to integers in [0, p − 1]. We use f̂
to denote the image of f̃ under the embedding Z[x] ↪→ O[x] induced by Z ↪→ O.

Algorithm 5 (Type 2b). Given a p-normalized polynomial f ∈ Z[x] of type 2b, compute the
L-polynomial of C : y2 = f(x) at p.

1. Compute f̃ = p−vp(f6)f ∈ Z[x] and f̄ ≡ f̃ mod p ∈ Fp[x].
2. Compute ū = gcd3(f̄) = x2 + ū1x+ ū2 ∈ Fp[x] (per Proposition 3.6).
3. Let O := Z[z]/(u(z)) and κ := Fp[z]/(ū(z)), where u = lift(ū), and π : O → κ be as above.
4. Let f̂ be the image of f̃ in O[x], let r = z ∈ O, and repeat the following steps:

a. Replace f̂ with f̂(px+ r)/p3 ∈ O[x] and let ḡ = π(f̂) ∈ κ[x] ' Fp2 [x] (a cubic).
b. If ∆(ḡ) 6= 0, then let E : y2 = ḡ(x) and go to step 5.
c. Compute gcd3(ḡ) = x− r̄ ∈ κ[x] ' Fp2 [x] and replace r with lift(r̄).

5. Return Lp(C, T ) = Lp(E, T
2) ∈ Z[T ].

Proposition 4.11. Algorithm 4 is correct and runs in time O
(
‖f‖2 log ‖f‖/ log p+ log5p

)
.

Proof. Correctness follows from Corollary 3.11, and the complexity analysis is as in the proof of
Proposition 4.8; the fact that we are working in O rather than Z and κ ' Fp2 rather than Fp changes
the constant factors, but the asymptotic complexity bound is the same. �

Algorithm 6 (Type 4). Given a p-normalized polynomial f ∈ Z[x] of type 4, compute the L-
polynomial of C : y2 = f(x) at p.

1. Compute f̃ = p−vp(f6)f ∈ Z[x] and f̄ ≡ f̃ mod p ∈ Fp[x].
2. Compute gcd5(f̄) = x− r̄ ∈ Fp[x] (per Proposition 3.6).
3. Let r = lift(r̄) and repeat the following steps:

a. Replace f̃ with f̃(px+ r)/p5 ∈ Z[x] and let f̄ ≡ f̃ mod p ∈ Fp[x] (a quintic).
b. If gcd3(f̄) = (x− s̄)e has degree e = 1 then let E1 : y2 = f̄(x)/(x− s̄)2 and go to step 4.
c. Compute gcd5(f̄) = x− r̄ ∈ Fp[x] (per Proposition 3.6).

4. Let r = lift(s̄) and repeat the following steps:
a. Replace f̃ with f̃(px+ r)/p3 ∈ Z[x] and let ḡ ≡ f̃ mod p ∈ Fp[x] (a cubic).
b. If ∆(ḡ) 6= 0, then let E2 : y2 = ḡ(x) and go to step 5.
c. Compute gcd3(f̄) = x− r̄ and replace r by lift(r̄).
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5. Compute Lp(C, T ) = Lp(E1, T )Lp(E2, T ).

Proposition 4.12. Algorithm 6 is correct and runs in time O
(
‖f‖2 log ‖f‖/ log p+ log5p

)
.

Proof. Correctness follows from Corollary 3.10, and the complexity analysis is as in the proof of
Proposition 4.8; steps 3 and 4 of Algorithm 6 have the same complexity as step 3 of Algorithm 3. �

We now present our main algorithm

Algorithm 7 (Main). Given a squarefree polynomial f ∈ Z[x] of degree 5 or 6 defining a genus 2

curve C : y2 = f(x) with almost good reduction at an odd prime p, and a nonsquare s ∈ F×p , compute
the L-polynomial of C at p.

1. Use Algorithm 1 to replace f with a p-normalized polynomial f .
2. Use Algorithm 2 to determine the type of f (1, 2a, 2b, or 4).
3. Use whichever of Algorithms 3-6 matches the type to compute Lp(C, T ) ∈ Z[T ].

Proposition 4.13. Algorithm 7 is correct and runs in time O(‖f‖2log2‖f‖/log p+ log5p).

Proof. This follows immediately from Propositions 4.2, 4.6, 4.8, 4.10, 4.11, 4.12. �

Corollary 4.14. There is a probabilistic implementation of Algorithm 7 that does not require the
input s ∈ F×p and runs in O(‖f‖2log2‖f‖/log p+ log5p) ⊆ O(‖f‖5) expected time.

Proof. As noted in Remark 4.9, we can compute a nonsquare s ∈ F×p in O(log2p log log p) expected
time and then apply Algorithm 7. �

5. Implementation

A simple Magma implementation of Algorithms 1–7 is available in the Genus2Euler GitHub
repository associated to this paper [16]. There is also a low-level C implementation based on the
smalljac library [11] that is still being refined; we report preliminary timings here.

We tested our algorithms on a dataset of approximately 2.5 million genus 2 curves C/Q of small
conductor that have almost good reduction at some prime p. This dataset covers a conductor
range comparable to the current database of genus 2 curves in the LMFDB (220 versus 106), but
spans a much larger discriminant range (the largest minimal discriminant is |∆(C)| ≈ 10217 versus
|∆(C)| ≤ 106 in the LMFDB).

Many of these curves have almost good reduction at more than one odd prime, and the total
number of (C, p) pairs is 3 454 506. We attempted to compute each of the corresponding Euler
factors in three ways: (1) using the EulerFactor intrinsic in Magma [2], (2) using the Magma
implementation of Algorithm 7 available in [16], (3) using a smalljac-based C implementation
of Algorithm 7. We ran our tests on a server equipped with dual 128-core AMD EPYC 9754
CPUs running at 2.25GHz and 1.5TB memory, with at most 256 tests running in parallel to avoid
hyperthreading. All reported times are CPU times for a single core. We repeated each computation
using our Magma and C implementations of Algorithm 7 for 100 and 10 000 iterations, respectively,
to increase the accuracy of the timings (the algorithms are deterministic so there is very little
variance in running times on the same input, but it is difficult to accurately time computations that
take less than one millisecond), but we ran the computations using EulerFactor only once, due
to the time involved; we terminated 489 of the tests involving EulerFactor that did not finish
within 8 hours.
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The total, average, median, and maximum running times to compute Euler factors for the
3 454 506 pairs (C, p) are shown below, with the 489 cases not completed by EulerFactor capped
at 8 hours.

method total time average time median time maximum time

EulerFactor 242 days 6.1 seconds 0.9 seconds over 8 hours
Algorithm 7 (Magma) 1.23 hours 1.3 milliseconds 1.2 milliseconds 24 milliseconds
Algorithm 7 (C) 27.1 seconds 7.8 microseconds 3.4 microseconds 21 milliseconds

Table 2. Timings for computing 3 454 506 Euler factors of genus 2 curves C/Q of
small conductor at odd primes of almost good reduction.

The maximum time for the C implementation of Algorithm 7 is larger than one might expect
(relative to the Magma implementation of Algorithm 7) because in some of the 2b cases we need
to count points on elliptic curves over Fp2 with p ≈ 230, a regime for which the smalljac library
has not been optimized (it is much faster over prime fields); if one excludes the type 2b cases the
maximum running time for our C implementation drops to 34 microseconds, even with p ≈ 235.

More detailed timing information broken out by type for small primes p ≤ 210 (about 90% of the
test cases) can be found in Table 3. Finally, Tables 4 and 5 list ten examples of pairs (C, p) where
Magma’s EulerFactor function struggled; Table 4 lists 10 examples where EulerFactor took
roughly an hour, and Table 5 lists 10 of the 489 examples where EulerFactor failed to terminate
within 8 hours. A complete list of these 489 cases can be found in [16].
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EulerFactor Alg 7 Magma Alg 7 C

prime(s) type count µ σ µ σ µ σ

3 1 9413 1140 270 1.290 0.079 0.001872 0.000238
2a 20863 538 519 1.284 0.072 0.002346 0.000601
2b 53815 1151 270 0.942 0.080 0.002352 0.000699
4 19699 355 429 1.212 0.052 0.002185 0.000244

5 1 65163 742 541 1.461 0.053 0.001979 0.000134
2a 35374 460 499 1.492 0.052 0.002248 0.000522
2b 145388 1163 270 1.092 0.057 0.002098 0.000604
4 36715 314 400 1.349 0.054 0.002115 0.000133

7 1 76975 572 539 1.181 0.060 0.002157 0.000092
2a 24187 361 444 1.196 0.061 0.002488 0.000468
2b 134170 1158 269 0.828 0.054 0.002829 0.000803
4 27771 249 331 1.147 0.059 0.002295 0.000109

23 − 24 1 149872 412 470 1.283 0.064 0.002166 0.000102
2a 21027 293 380 1.317 0.076 0.002461 0.000395
2b 188755 1166 271 0.989 0.080 0.005278 0.002037
4 25475 204 258 1.192 0.076 0.002299 0.000078

24 − 25 1 249467 351 443 1.228 0.057 0.002245 0.000168
2a 13877 265 359 1.254 0.056 0.002544 0.000374
2b 271493 1198 271 1.089 0.143 0.006651 0.002138
4 18862 196 245 1.108 0.080 0.002380 0.000121

25 − 26 1 191028 313 407 1.252 0.053 0.002429 0.000178
2a 3085 226 307 1.284 0.047 0.002788 0.000359
2b 174822 1217 284 1.697 0.577 0.008004 0.002155
4 5141 185 220 1.098 0.069 0.002628 0.000074

26 − 27 1 185005 290 390 1.287 0.051 0.002625 0.000178
2a 851 233 313 1.324 0.061 0.003039 0.000359
2b 161260 1379 602 1.189 0.867 0.009324 0.002153
4 2087 188 230 1.105 0.067 0.002868 0.000101

27 − 28 1 151925 288 395 1.420 0.089 0.003010 0.000213
2a 191 256 356 1.485 0.107 0.003422 0.000406
2b 133090 1858 2779 1.190 0.677 0.010872 0.002523
4 684 229 304 1.169 0.103 0.003292 0.000193

28 − 29 1 131149 286 402 1.253 0.053 0.003851 0.000357
2a 43 190 222 1.277 0.052 0.004163 0.000525
2b 108496 2623 7999 1.338 0.754 0.012742 0.002923
4 203 324 460 1.083 0.067 0.004166 0.000336

29 − 210 1 98664 314 430 1.275 0.046 0.007900 0.001029
2a 3 170 16 1.267 0.047 0.008911 0.000183
2b 80801 7051 46480 1.687 1.003 0.015652 0.003182
4 98 450 603 1.106 0.065 0.008300 0.000945

Table 3. Timings for Magma’s EulerFactor function, and implementations of
Algorithm 7 in Magma and C. Columns µ and σ are means and standard deviations
in milliseconds, running on a single core of an AMD EPYC 9754 2.25Ghz processor.

17

Submitted to Algor. Num. Th. Symp.



type p C

1 2095451 y2 = 65366932x6 + 46833852x5 + 950560081x4 + 1014328354x3 − 714563571x2 − 632448x+ 750321408
1.3 ms, 12.7µs

1 2129069 y2 = −282619x6 + 11424694x5 − 66742653x4 + 267785664x3 + 783733439x2 − 4055750250x− 6492528143
1.3 ms, 14.5µs

1 2141299 y2 = 35664905x6 − 1683266x5 + 81620201x4 − 43104564x3 − 550491952x2 + 869809612x− 867569192
1.4 ms, 12.3µs

1 2192653 y2 = −7200195x6 + 140298398x5 + 82315425x4 + 1863655712x3 + 540423460x2 − 272234940x− 11070656
1.4 ms, 12.4µs

1 2192653 y2 = −86525452x6 + 301639692x5 + 165992173x4 − 631039776x3 − 602207136x2 + 199197628x+ 586943224
1.4 ms, 13.0µs

2b 2192653 y2 = −7200195x6 + 140298398x5 + 82315425x4 + 1863655712x3 + 540423460x2 − 272234940x− 11070656
1.4 ms, 12.4µs

2b 2192653 y2 = −86525452x6 + 301639692x5 + 165992173x4 − 631039776x3 − 602207136x2 + 199197628x+ 586943224
1.4 ms, 13.0µs

2b 3356999 y2 = −69840280x6 − 88002004x5 + 527168100x4 + 947722520x3 − 3244499x2 − 2027697150x− 67561855
1.4 ms, 12.6µs

2b 3365389 y2 = 3365504x6 + 423061824x5 − 732552719x4 + 490957150x3 − 2239426319x2 − 172708548x− 1287844864
1.3 ms, 13.3µs

2b 3520511 y2 = 87716080x6 − 257007920x5 − 436267519x4 + 272523200x3 − 1361866162x2 + 320039284x− 994564803
1.4 ms, 12.6µs

Table 4. Examples that Magma’s EulerFactor intrinsic took more than an hour
to compute, with running times for Magma and C implementations of Algorithm 7.

type p C

1 2095451 y2 = 65366932x6 + 46833852x5 + 950560081x4 + 1014328354x3 − 714563571x2 − 632448x+ 750321408
1.3 ms, 12.7µs

1 2129069 y2 = −282619x6 + 11424694x5 − 66742653x4 + 267785664x3 + 783733439x2 − 4055750250x− 6492528143
1.3 ms, 14.5µs

1 2141299 y2 = 35664905x6 − 1683266x5 + 81620201x4 − 43104564x3 − 550491952x2 + 869809612x− 867569192
1.4 ms, 12.3µs

1 2192653 y2 = −7200195x6 + 140298398x5 + 82315425x4 + 1863655712x3 + 540423460x2 − 272234940x− 11070656
1.4 ms, 12.4µs

1 2192653 y2 = −86525452x6 + 301639692x5 + 165992173x4 − 631039776x3 − 602207136x2 + 199197628x+ 586943224
1.4 ms, 13.0µs

2b 2239 y2 = 2720385x6 + 58061748x5 + 239277452x4 − 714666410x3 + 196933484x2 − 986351148x+ 596368845
6.3 ms, 16.3µs

2b 2683 y2 = −6613595x6 − 33446278x5 + 32788943x4 + 45761248x3 + 96912643x2 − 3579181026x+ 9931057425
5.9 ms, 21.2µs

2b 2833 y2 = 7977728x6 + 73397364x5 + 225744772x4 + 359439708x3 − 1032070399x2 + 26023938x+ 656386269
5.7 ms, 21.5µs

2b 2957 y2 = −2208879x6 − 9568852x5 + 45531886x4 + 1710470736x3 + 1769873909x2 − 4037475972x− 1096633020
5.7 ms, 22.2µs

2b 3079 y2 = 28114349x6 + 47422758x5 − 91418589x4 − 577694296x3 + 735994923x2 + 990569722x− 1007267139
6.1 ms, 20.0µs

Table 5. Examples that Magma’s EulerFactor intrinsic was unable to compute
in 8 hours, with running times for our Magma and C implementations of Algorithm 7.
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