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Abstract. The Chabauty–Kim method and its refined variant by Betts and Dogra aim to
cut out the S-integral points X(ZS) on a curve inside the p-adic points X(Zp) by producing
enough Coleman functions vanishing on them. We derive new functions in the case of the
thrice-punctured line when S contains two primes. We describe an algorithm for computing
refined Chabauty–Kim loci and verify Kim’s Conjecture over Z[1/6] for all choices of auxiliary
prime p < 10,000.
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1. Introduction

Let S be a finite set of primes and let X = P1 ∖ {0, 1,∞} be the thrice-punctured line over
the ring of S-integers ZS . By the Siegel–Mahler theorem, the set of S-integral points X(ZS) is
finite.1 Kim [Kim05] gave a new p-adic proof of this fact by constructing, for any prime p ̸∈ S,
a descending chain of subsets of X(Zp) containing X(ZS):

X(Zp) ⊇ X(Zp)S,1 ⊇ X(Zp)S,2 ⊇ . . . ⊇ X(ZS).

The set X(Zp)S,n is called the Chabauty–Kim locus of depth n. Kim showed that the sets
X(Zp)S,n eventually become finite, so that X(ZS) must be finite as well. This suggests the
following strategy for computing X(ZS): find as many points in X(ZS) as possible; then compute
X(Zp)S,n for some p ̸∈ S and n ≥ 1. This gives a lower and an upper bound. If they match, we
have found X(ZS). In order for this strategy to have a chance of succeeding we need that the
set X(Zp)S,n contains no p-adic points which are not S-integral points, at least for sufficiently

1The finiteness of X(ZS) is often referred to as Siegel’s theorem but it was first proved by Mahler [Mah33,
Folgerung 2] in 1933. He uses a generalisation of Siegel’s proof from 1921 of the finiteness of the set of integral
points X(OK) over a general number field K. Siegel’s result is not stated explicitly but it can be deduced from
[Sie21, Satz 7, Zusatz 1] which implies that the polynomial f(x) = x(1 − x) represents a unit of K only finitely
many times as x runs through the ring of integers of K. See [EG15, Summary] for a historical overview.
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large n. In other words, the inclusion X(ZS) ⊆ X(Zp)S,n should eventually be an equality. This
is the content of Kim’s Conjecture [BDKW18, Conj. 3.1 & §8.1]. The heuristic behind this is
that as n grows larger, we find more and more independent Coleman functions vanishing on
X(Zp)S,n, and any p-adic point in the intersection of their zero loci should be there for a good
reason, namely being an S-integral point.

Computing the sets X(Zp)S,n is difficult in practice and so far has only been achieved in cases
where S contains at most one prime [BDKW18; BKL23; DW16; CD20a]. In this paper we focus
on the refined Chabauty–Kim sets X(Zp)

min
S,n introduced by Betts and Dogra [BD20]. These are

potentially smaller than the sets X(Zp)S,n but still contain X(ZS). It is natural to formulate
Kim’s Conjecture also for the refined sets:

Conjecture 1.1 (Refined Kim’s Conjecture). X(Zp)
min
S,n = X(ZS) for n ≫ 0.

If Kim’s Conjecture holds for the original unrefined sets then Conjecture 1.1 also holds. Re-
cently, verifying Conjecture 1.1 (for a hyperbolic curve of any genus) has been proposed as a
strategy for proving Grothendieck’s Section Conjecture for locally geometric sections [BKL23,
Theorem A]. In this paper we verify Conjecture 1.1 for the thrice-punctured line over Z[1/6] for
many choices of the auxiliary prime p.

Theorem 1.2 (= Corollary 6.3). Conjecture 1.1 for S = {2, 3} holds in depth n = 4 for all
primes p with 5 ≤ p < 10,000.

Previously, Kim’s Conjecture for S = {2, 3} (refined or unrefined) was not known to hold for
any prime p. For S = {2}, Conjecture 1.1 can be proved for all odd primes p by purely algebraic
reasoning [BKL23, Theorem B]. In contrast, our proof of Theorem 1.2 uses a combination of
theoretical results and computer calculations.

For the most part we work with S = {2, q} for an arbitrary odd prime q. The refined Chabauty–
Kim method for such sets was first applied in depth n = 2 in [BBK+24]. There, an equation is
derived which (essentially) defines the depth 2 locus X(Zp)

min
{2,q},2 inside X(Zp). It takes the form

(1.1) log(2) log(q) Li2(z)− aτqτ2 log(z) Li1(z) = 0

for some computable p-adic constant aτqτ2 ∈ Qp. Here, log, Li1 and Li2 are p-adic (poly)logarithm
functions. One part of this paper is devoted to systematically computing the depth 2 loci
X(Zp)

min
{2,q},2 for any p and q. In §4 we describe an algorithm to achieve this. A SageMath

[Sage] implementation is available at https://github.com/martinluedtke/RefinedCK. Using
this code, we computed the depth 2 loci for many combinations of p and q. We present our find-
ings in §5 and explain the observed behaviour by analysing the Newton polygons of power series.
In particular, we are able to explain why the Chabauty–Kim loci are exceptionally large for the
auxiliary primes p = 1093 and p = 3511. This is related to the fact that these are Wieferich
primes, i.e., primes for which 2p−1 ≡ 1 mod p2.

In a few cases, notably whenever q ≥ 5 is a Mersenne prime or a Fermat prime and we take
p = 3, Conjecture 1.1 for S = {2, q} holds already in depth 2 [BBK+24, Cor. 3.15]. Most of
the time, however, Eq. (1.1) has p-adic solutions which are not S-integral points. In this case,
one has to go to higher depth in order to verify Kim’s Conjecture. We take n = 4, show that in
order to verify Conjecture 1.1 it suffices to look at a certain subset X(Zp)

(1,0)
{2,q},4 of the refined

Chabauty–Kim locus (defined in §2.2) and derive an equation which holds on this set:

Theorem 1.3. Let S = {2, q} for some odd prime q and let p ̸∈ S be an auxiliary prime. Then
every point in the refined Chabauty–Kim locus X(Zp)

(1,0)
{2,q},4 satisfies, in addition to Eq. (1.1), a
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nontrivial equation of the form

(1.2) aLi4(z) + b log(z) Li3(z) + c log(z)3 Li1(z) = 0

for certain p-adic constants a, b, c ∈ Qp.

Theorem 1.3 is a simplified version of Theorem 3.4 where more precise expressions for the
coefficients appearing in Eq. (1.2) are given; see also §3.4 about the non-triviality of the equation.
For general q, an insufficient supply of {2, q}-integral points on the thrice-punctured line makes
it difficult to determine those coefficients. Taking q = 3, however, where X(Z[1/6]) contains for
example the points −3, 3, 9, we get a completely explicit equation:

Theorem 1.4. (= Theorem 3.8) Let S = {2, 3} and p ̸∈ S. Any point z in the refined Chabauty–
Kim locus X(Zp)

(1,0)
{2,3},4 satisfies the equation

(1.3) det

Li4(z) log(z) Li3(z) log(z)3 Li1(z)
Li4(3) log(3) Li3(3) log(3)3 Li1(3)
Li4(9) log(9) Li3(9) log(9)3 Li1(9)

 = 0.

Using computations in Sage, we can verify for S = {2, 3} and many choices of p that all p-adic
points satisfying both equations (1.1) and (1.3) are in fact {2, 3}-integral points, thus proving
Theorem 1.2. This provides evidence for Kim’s Conjecture and supports the principle that, while
a single Coleman function is usually insufficient to cut out precisely the set of S-integral points,
two independent Coleman functions will often suffice.

Structure of the paper. We start by recalling in §2 the necessary background on refined
Chabauty–Kim theory for the thrice-punctured line. We then derive in §3 the Coleman functions
which vanish on the depth 4 Chabauty–Kim loci in the case S = {2, q}, proving the precise
version of Theorem 1.3 for general q, as well as Theorem 1.4 for q = 3. We then turn to the
computational aspects of this paper. In §4 we describe how to systematically compute the depth 2
loci X(Zp)

(1,0)
{2,q},2 for arbitrary p and q and analyse the obtained data in §5. Finally, in §6 we

present the computations which we use to verify instances of Kim’s Conjecture in Theorem 1.2.

Acknowledgements. I would like to thank Steffen Müller for his encouragement to write this
paper and for helpful discussions. I also thank Elie Studnia and David Lilienfeldt for feedback
on an earlier draft, and the referees for helpful comments. This work was supported by an NWO
Vidi grant.

2. Background on refined Chabauty–Kim

We start by recalling what is known about the refined Chabauty–Kim method for the thrice-
punctured line, referring to the existing literature for details. The original (unrefined) method is
studied in [Kim05; DW15; DW16; Bro17; BDKW18, §8; CD20a; CD20b], the refined variant in
[BBK+24; BKL23].

Let S be a finite set of primes and let X = P1 ∖ {0, 1,∞} be the thrice-punctured line
over the ring of S-integers ZS . Let p ̸∈ S be an auxiliary prime and let U = π

ét,Qp

1 (XQ, b)

be the Qp-prounipotent étale fundamental group of X at the tangential base point b = 1⃗0,
equipped with its natural action by the absolute Galois group GQ. For any finite-dimensional
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GQ-equivariant quotient U ↠ U ′, we have the following Chabauty–Kim diagram [Kim05, §3]
[Kim09, Introduction]

(2.1)

X(ZS) X(Zp)

H1
f,S(GQ, U

′) H1
f (Gp, U

′).

jS jp

locp

Here, H1
f,S(GQ, U

′) denotes the Bloch–Kato Selmer scheme which parametrises GQ-equivariant
U ′-torsors which are unramified outside S ∪ {p} and crystalline at p; the local Selmer scheme
H1

f (Gp, U
′) parametrises crystalline Gp-equivariant U ′-torsors.2 Both the global and the local

Selmer scheme are affine Qp-schemes and the localisation map between them is algebraic. Strictly
speaking, the vertical maps in the Chabauty–Kim diagram, both of which send a point x of X
to the torsor of paths from b to x, map into the Qp-points of the schemes but this is customarily
omitted from the notation. The Chabauty–Kim locus for the fundamental group quotient U ′ is
defined as

X(Zp)S,U ′ := j−1
p (locp(H

1
f,S(GQ, U

′))),

in other words as the inverse image under jp of the scheme-theoretic image of the Selmer scheme
under the localisation map. If U ′ = Un is the maximal n-step nilpotent quotient of U , we denote
the locus by X(Zp)S,n and call it the Chabauty–Kim locus of depth n. The sets X(Zp)S,U ′

all contain the set of S-integral points X(ZS) by construction and are cut out inside X(Zp) by
Coleman functions, i.e., locally analytic functions given by iterated Coleman integrals. Whenever
f is an algebraic function on H1

f (Gp, U
′) such that loc♯p f = 0, then f ◦ jp is a Coleman function

on X(Zp) which vanishes on X(Zp)S,U ′ . Determining the Chabauty–Kim loci in practice boils
down to finding such functions.

2.1. The localisation map. One fundamental group quotient which is particularly convenient
to work with is the so-called polylogarithmic quotient of depth n, which we denote by UPL,n.
We denote the associated Chabauty–Kim loci by X(Zp)S,PL,n. The Coleman functions defining
them involve only single polylogarithms Lik (1 ≤ k ≤ n), as opposed to multiple polylogarithms
Lik1,...,kr with r ≥ 2. Thanks to prior work by Corwin and Dan-Cohen [CD20a] we can write
down the localisation map in the Chabauty–Kim diagram for UPL,n quite explicitly. The global
and local Selmer scheme are both affine spaces over Qp. Taking n = 4, the global Selmer scheme
is given by

H1
f,S(GQ, UPL,4) = Spec Qp[(xℓ)ℓ∈S , (yℓ)ℓ∈S , z3] = AS × AS × A1.

The functions xℓ and yℓ are canonical, whereas z3 depends on certain choices. In [CD20a], these
functions are denoted by xℓ = Φτℓ

e0 , yℓ = Φτℓ
e1 , z = Φσ3

e1e0e0 .
The local Selmer scheme has a canonical set of coordinates

H1
f (Gp, UPL,4) = Spec Qp[log,Li1,Li2,Li3,Li4]

coming from the non-abelian Bloch–Kato logarithm H1
f (Gp, UPL,4) ∼= UdR

PL,4. They are such that
log(jp(z)) = logp(z) is the p-adic logarithm for z ∈ X(Zp), and Lin(jp(z)) = Lipn(z) is the n-th

2Kim [Kim05; Kim09] considers the case that U ′ = Un is the maximal n-step nilpotent quotient but the
construction of the Chabauty–Kim diagram works for arbitrary GQ-equivariant quotients. Moreover, Kim writes
H1

f (GT ,−) instead of H1
f,S(GQ,−) where T = S ∪ {p} and GT is the Galois group of the maximal extension of Q

unramified outside T . This is an equivalent way of imposing the local conditions of being unramified outside T ,
cf. [BDKW18, §2.8].
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p-adic polylogarithm. (We often omit the superscript (−)p from the notation.) These coordinates
can be used to write down the localisation map

(2.2) locp : H
1
f,S(GQ, UPL,4) → H1

f (Gp, UPL,4).

Proposition 2.1. With respect to the coordinates above, the localisation map (2.2) for the poly-
logarithmic quotient in depth 4 is given as follows:

loc♯p log =
∑
ℓ∈S

aτℓxℓ,(2.3)

loc♯p Li1 =
∑
ℓ∈S

aτℓyℓ,(2.4)

loc♯p Li2 =
∑
ℓ,q∈S

aτℓτqxℓyq,(2.5)

loc♯p Li3 =
∑

ℓ1,ℓ2,q∈S

aτℓ1τℓ2τqxℓ1xℓ2yq + aσ3z3,(2.6)

loc♯p Li4 =
∑

ℓ1,ℓ2,ℓ3,q∈S

aτℓ1τℓ2τℓ3τqxℓ1xℓ2xℓ3yq +
∑
ℓ∈S

aτℓσ3xℓz3.(2.7)

Here, the au, subscripted by words in the symbols τℓ (ℓ ∈ S) and σ3, are certain p-adic constants.

Proof. This is [BKL23, Theorem 5.6] for n = 4. The formulas are originally derived in [CD20a,
Corollary 3.11] for a motivic variant of the Chabauty–Kim diagram, and transferred to the étale
setting via a comparison theorem [BKL23, Theorem 3.2]. □

Remark 2.2. The p-adic constants au appearing in the localisation map are hard to determine
in practice. In §3.5 we discuss this issue and determine the values of the constants in the case
S = {2, 3}.

2.2. Refined Selmer schemes. The refined Chabauty–Kim method by Betts and Dogra [BD20]
replaces the Selmer scheme H1

f,S(GQ, U
′) by a certain closed subscheme Selmin

S,U ′(X) called the
refined Selmer scheme. It is defined in such a way that it still fits into the commutative dia-
gram (2.1). The refined Selmer scheme for the thrice-punctured line was first studied in [BBK+24]
in depth 2 and later in [BKL23, §4] for general fundamental group quotients. If 2 ̸∈ S, then both
X(ZS) and the refined Selmer scheme are automatically empty as a consequence of X(Z2) being
empty. Conjecture 1.1 is trivially satisfied in this case. So assume 2 ∈ S from now on. Then the
refined Selmer scheme can be written as a union of 3#S closed subschemes as follows.

For each ℓ ∈ S we have the mod-ℓ reduction map

redℓ : X(ZS) ⊆ X(Qℓ) ⊆ P1(Qℓ) = P1(Zℓ) → P1(Fℓ).

Let Σ = (Σℓ)ℓ∈S ∈ {0, 1,∞}S be a tuple consisting of a choice of a boundary point Σℓ ∈ {0, 1,∞}
for each ℓ ∈ S. We call such a tuple a refinement condition. (It corresponds roughly to the notion
of reduction type of [Bet23, §6.1].) Denote by X(ZS)Σ the set of S-integral points z such that
redℓ(z) ∈ (X ∪ {Σℓ})(Fℓ) for all ℓ ∈ S. Note that each S-integral point is contained in X(ZS)Σ
for some Σ. (If the point is already S′-integral for a proper subset S′ ⊊ S, there are multiple
possible choices of Σ.) Associated to Σ we have a partial refined Selmer scheme SelΣS,U ′(X) fitting
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into a Σ-refined version of (2.1):

(2.8)

X(ZS)Σ X(Zp)

SelΣS,U ′(X) H1
f (Gp, U

′).

jS jp

locp

This diagram is used to define the Σ-refined Chabauty–Kim locus

X(Zp)
Σ
S,U ′ := j−1

p (locp(Sel
Σ
S,U ′(X))).

The total refined Selmer scheme Selmin
S,U ′(X) is the union of closed subschemes

Selmin
S,U ′(X) =

⋃
Σ

SelΣS,U ′(X),

with Σ ∈ {0, 1,∞}S running over all refinement conditions. Accordingly, the total refined
Chabauty–Kim locus X(Zp)

min
S,U ′ equals the union of the Σ-refined loci:

X(Zp)
min
S,U ′ =

⋃
Σ

X(Zp)
Σ
S,U ′ .

Diagram (2.8) implies that X(Zp)
Σ
S,U ′ contains the set X(ZS)Σ. It is natural to formulate Con-

jecture 1.1 for each refinement condition Σ separately:

Conjecture 2.3 (Σ-refined Kim’s Conjecture). X(Zp)
Σ
S,n = X(ZS)Σ for n ≫ 0.

Here, X(Zp)
Σ
S,n denotes the Σ-refined Chabauty–Kim locus for the depth n quotient Un.

Clearly, if Conjecture 2.3 holds for each refinement condition Σ, then Conjecture 1.1 for the total
refined locus X(Zp)

min
S,n also holds.

Remark 2.4. The converse is not true: for example, when q > 3 is a Fermat or Mersenne prime
then Conjecture 1.1 holds for X(Z3)

min
{2,q},2 [BBK+24, Cor. 3.15] whereas the (1, 0)-refined variant

fails, due to 2 ∈ X(Z3)
(1,0)
{2,q},2 ∖X(Z[ 1

2q ])(1,0) [BBK+24, Rmk. 3.11].

Recall from §2.1 that the Selmer scheme H1
f,S(GQ, UPL,4) ∼= AS × AS × A1 for the polyloga-

rithmic quotient of depth 4 carries canonical functions xℓ and yℓ for ℓ ∈ S. The Σ-refined Selmer
scheme can be described as a linear subspace in terms of these coordinates. The following is a
special case of [BKL23, Prop. 5.11].

Proposition 2.5. Let Σ = (Σℓ)ℓ∈S ∈ {0, 1,∞}S be a refinement condition. The Σ-refined
Selmer scheme SelΣS,PL,4(X) is the closed subscheme of H1

f,S(GQ, UPL,4) defined by the following
equations for all ℓ ∈ S: 

yℓ = 0, if Σℓ = 0,

xℓ = 0, if Σℓ = 1,

xℓ + yℓ = 0, if Σℓ = ∞.

3. Refined Kim functions in depth 4

We now consider the case where S = {2, q} for some odd prime q. In this section we first
reduce Conjecture 1.1 in depth 4 to Conjecture 2.3 for the polylogarithmic depth 4 quotient
and for only two particular choices of the refinement condition Σ. We then determine Coleman
functions vanishing on the respective Chabauty–Kim sets, proving Theorems 1.3 and 1.4 from
the introduction.
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3.1. Reducing Kim’s conjecture.

Lemma 3.1. Assume that X(Zp)
Σ
S,PL,4 = X(ZS)Σ holds for the two refinement conditions

Σ = (1, 1) and Σ = (1, 0). Then Conjecture 2.3 holds in depth 4 for all Σ ∈ {0, 1,∞}2. In
particular, Kim’s Conjecture for the total refined locus (Conjecture 1.1) holds in depth 4.

Proof. By [BKL23, Lemma 4.11], the quotient map U4 ↠ UPL,4 from the full depth 4 quotient
to the polylogarithmic depth 4 quotient of the fundamental group induces an inclusion

X(Zp)
Σ
S,4 ⊆ X(Zp)

Σ
S,PL,4.

Thus, whenever X(Zp)
Σ
S,PL,4 = X(ZS)Σ holds, then also X(Zp)

Σ
S,4 = X(ZS)Σ. By [BKL23,

Lemma 4.12], the loci X(Zp)
Σ
S,4 are functorial with respect to the S3-action on P1 ∖ {0, 1,∞}.

Specifically, for any automorphism σ ∈ S{0,1,∞} ∼= S3, given by one of the six Möbius transfor-
mations

z, 1− z,
1

z
,

z − 1

z
,

z

z − 1
,

1

1− z
,

and for any refinement condition Σ ∈ {0, 1,∞}2, we have

σ(X(Zp)
Σ
S,4) = X(Zp)

σ(Σ)
S,4 .

In particular, if X(Zp)
Σ
S,4 = X(ZS)Σ holds for some Σ, then it also holds for σ(Σ). Any refinement

condition is either of the form σ((1, 1)) or σ((1, 0)) for some σ ∈ S3, so if Kim’s Conjecture holds
for X(Zp)

(1,1)
S,4 and X(Zp)

(1,0)
S,4 , then it holds in fact for all refinement conditions, and thus for the

total refined locus X(Zp)
min
S,4 . □

3.2. The (1, 1)-locus.

Theorem 3.2. The following equations hold on X(Zp)
(1,1)
{2,q},PL,4:

log(z) = 0, Li2(z) = 0, Li4(z) = 0.

Proof. By Proposition 2.5, the refined Selmer scheme Sel
(1,1)
S,PL,4(X) is the closed subscheme of

H1
f,S(GQ, UPL,4) defined by x2 = xq = 0. The restriction of the localisation map locp to this

refined subscheme is given by setting x2 and xq equal to zero in Proposition 2.1. The functions log,
Li2, Li4 pull back to 0 on Sel

(1,1)
S,PL,4(X), so their pullbacks along jp vanish on X(Zp)

(1,1)
{2,q},PL,4. □

Remark 3.3. The set X(Zp)
(1,1)
{2,q},PL,4 for S = {2, q} agrees with the set X(Zp)

(1)
{2},PL,4 for S = {2};

in particular, it is independent of the prime q. This reflects the fact that X(Z[ 1
2q ])(1,1) = {−1}

for all q. The two equations log(z) = 0 and Li2(z) = 0 were already derived for the depth 2 locus
in [BBK+24, Proposition 3.8]. We believe that these two functions suffice to cut out exactly the
set {−1} and we verified this computationally using the method described in Remark 3.6 of loc.
cit. for all odd primes p < 105. Thus, Conjecture 2.3 for Σ = (1, 1) holds in depth 2 for those
primes.

Using the localisation map in infinite depth [BKL23, Theorem 5.6] one sees easily that
X(Zp)

(1,1)
{2,q},PL,n = X(Zp)

(1)
{2},PL,n holds in fact for any depth n. By Corollary 5.16 of loc. cit., the

latter locus is exactly {−1} when n = max(1, p − 3). Thus, Conjecture 2.3 for S = {2, q} and
refinement condition Σ = (1, 1) holds for any choice of p in sufficiently high depth.
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3.3. The (1, 0)-locus.

Theorem 3.4. The following two equations hold on the (1, 0)-component of the refined Chabauty–
Kim locus X(Zp)

(1,0)
{2,q},PL,4:

aτ2aτq Li2(z)− aτqτ2 log(z) Li1(z) = 0,(3.1)

aσ3
a3τqaτ2 Li4(z)− a2τqaτ2aτqσ3

log(z) Li3(z)(3.2)

−
(
aσ3aτqτqτqτ2 − aτqσ3aτqτqτ2

)
log(z)3 Li1(z) = 0.

Proof. By Proposition 2.5, the refined Selmer scheme Sel
(1,0)
S,PL,4(X) is the closed subscheme of

H1
f,S(GQ, UPL,4) defined by x2 = 0 and yq = 0. Denote the inclusion by iΣ. The restriction of

the localisation map locp to this refined subscheme is given by setting x2 and yq equal to zero in
Proposition 2.1:

(locp ◦iΣ)♯ log = aτqxq,

(locp ◦iΣ)♯ Li1 = aτ2y2,

(locp ◦iΣ)♯ Li2 = aτqτ2xqy2,

(locp ◦iΣ)♯ Li3 = aτqτqτ2x
2
qy2 + aσ3z3,

(locp ◦iΣ)♯ Li4 = aτqτqτqτ2x
3
qy2 + aτqσ3xqz3.

The linear combination aτ2aτq Li2 −aτqτ2 log ·Li1 clearly pulls back to zero along locp ◦iΣ, which
yields Equation (3.1). A slightly longer calculation yields the second equation: form a linear
combination of Li4 and log ·Li3 to eliminate the variable z3, resulting in a scalar multiple of
x3
qy2. Then form a linear combination with log3 ·Li1 to get a function pulling back to zero along

locp ◦iΣ. □

Remark 3.5. Equation (3.1) alone defines the (1, 0)-refined Chabauty–Kim locus in depth two. It
was first derived in [BBK+24] and can be rewritten in a more symmetric form as aτ2τq Li2(z) =
aτqτ2 Li2(1− z).

3.4. Nontrivial Kim functions. It is not known unconditionally whether Equation (3.2) is
nontrivial for every choice of auxiliary prime p. We can however show that there is some nontrivial
equation of the same shape.

Theorem 3.6. There exists a nontrivial equation of the form

(3.3) aLi4(z) + b log(z) Li3(z) + c log(z)3 Li1(z) = 0

with a, b, c ∈ Qp which holds on the Chabauty–Kim locus X(Zp)
(1,0)
{2,q},PL,4.

Non-triviality means that the coefficients a, b, c are not all zero. In this case, the left hand
side of Eq. (3.3) is a nonzero Coleman function on X(Zp) by the Zariski-density of the p-adic
unipotent Albanese map jp [Kim09, Theorem 1].

Proof of Theorem 3.6. In the proof of Theorem 3.4, the three monomials Li4, log ·Li3, log3 ·Li1
all pull back under locp ◦iΣ to linear combinations of the two monomials x3

qy2, xqz3. This gives
a Qp-linear map from a 3-dimensional space to a 2-dimensional space, whose kernel must be
nontrivial. □
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We can make Theorem 3.6 more concrete: we know that aτ2 ̸= 0 and aτq ̸= 0, so if we knew
that aσ3 ̸= 0 as well, then the coefficient of Li4 in Equation (3.2) would be nonzero and thus the
equation would already be nontrivial. If aσ3 = 0 on the other hand, then

a2τqaτ2 Li3(z)− aτqτqτ2 log(z)
2 Li1(z) = 0

would be a nontrivial equation which holds on X(Zp)
(1,0)
{2,q},PL,4. An equation of the form (3.3)

can then be obtained by multiplying by log(z).
It is conjectured that aσ3 ̸= 0 for every choice of auxiliary prime p. Indeed, the constant aσ3

equals the p-adic zeta value ζ(3) whose non-vanishing is implied by a p-adic period conjecture
[CD20a, Conj. 2.25] [Yam10, Conj. 4]. The non-vanshing of ζ(3) is known when p is a regular
prime [Fur03, Rem. 2.20 (i)].

3.5. Explicit equations for S = {2, 3}. Determining the p-adic constants au which appear
in the equations (3.1) and (3.2) is difficult in general. It is complicated by the fact that their
values depend on a choice of free generators {τℓ : ℓ ∈ S} ∪ {σ3, σ5, . . .} for the Lie algebra of the
unipotent mixed Tate Galois group UMT

Q,S (see [CD20a, §4.1] for details). Those constants au with
a single letter as subscript are however canonical: aτℓ = log(ℓ) for ℓ ∈ S are p-adic logarithms,
and aσ3

= ζ(3) is a p-adic zeta value. The values aτqτ2 which appear in Eq. (3.1) are examples of
“Dan-Cohen–Wewers coefficients”. They are also canonical and we recall in §4.2 how to compute
them. The constants in Eq. (3.2) are not known for a general prime q. They have however been
computed in the case S = {2, 3}, exploiting the fact that −3, 3 and 9 are known Z[1/6]-integral
points of the thrice-punctured line.

Proposition 3.7. For a suitable choice of σ3 we have:

aτ3τ2 = −Li2(3),

aτ3τ3τ2 = −Li3(3),

aτ3τ3τ3τ2 = −Li4(3),

aτ3σ3
=

18

13
Li4(3)−

3

52
Li4(9).

Proof. The value of aτ3τ2 is derived in [BBK+24, §3.5]. The coefficients aτ3τ3τ3τ2 and aτ3σ3
are

determined in [CD20a, §4.3.3], and a proof for aτ3τ3τ2 (using the same choice of σ3) can be found
in [DJ23, §5.11]. Note that the authors use different notation and conventions. For example
aτ3τ3τ3τ2 is written fτ2τττ in [CD20a]. A different expression for aτ3τ3τ3τ2 is given in [DJ23, §5.23]
(denoted fτvvv there) but it appears to be incorrect based on numerical evaluation. □

With this the equations for X(Zp)
(1,0)
{2,3},PL,4 from Theorem 3.4 are completely determined. It

is in principle possible to compute the constants au for more general sets S; see [Dan20] for an
algorithm which achieves this under various conjectures. But if we have enough S-integral points
available, which only is the case for S = {2, 3}, there is a different way to obtain an equation of
the form (3.3) which circumvents the problem of determining the au, and does not require any
non-canonical choices. It uses an argument similar to [Bro17, Cor. 9.1].

Theorem 3.8. Any z in the Chabauty–Kim locus X(Zp)
(1,0)
{2,3},PL,4 satisfies

(3.4) det

Li4(z) log(z) Li3(z) log(z)3 Li1(z)
Li4(3) log(3) Li3(3) log(3)3 Li1(3)
Li4(9) log(9) Li3(9) log(9)3 Li1(9)

 = 0.
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Proof. By Theorem 3.6, some nontrivial equation of the form (3.3) holds on the Chabauty–Kim
locus. This means that the vectors

(Li4(x), log(x) Li3(x), log(x)
3 Li1(x))

for x ∈ X(Zp)
(1,0)
{2,3},PL,4 lie in some 2-dimensional linear subspace of Q3

p. In particular, any three
vectors of this form are linearly dependent. Taking x = 3 and x = 9 gives two such vectors since
these points belong to X(Z[1/6])(1,0). □

Remark 3.9. In [Bro17, Cor. 9.1], determinant equations like Eq. (3.4) are derived for unrefined
Chabauty–Kim loci X(Zp)S,PL,n given a sufficient supply of S-integral points. When S has size
two, depth n = 4 is not sufficient for the unrefined Chabauty–Kim locus to be finite. One needs at
least n = 6 but then one would need more than w = 252 S-integral points to get a determinant
equation. Going to even higher depth reduces this to w = 64 but this is still too large since
X(Z[1/2q]) contains only 21 points for q = 3 and even fewer for q > 3.

4. Computing Chabauty–Kim loci in depth 2

Let S = {2, q} for any odd prime q and let p ̸∈ S be a choice of auxiliary prime. In this section
we investigate the depth 2 Chabauty–Kim loci

X(Zp)
(1,0)
{2,q},2

for various combinations of p and q. By [BBK+24, Proposition 3.9], the locus is cut out in X(Zp)
by the single equation

(4.1) aτ2aτq Li2(z)− aτqτ2 log(z) Li1(z) = 0.

This is the first of the two functions found in Theorem 3.4 above. We have an inclusion
X(Zp)

(1,1)
{2,q},2 ⊆ X(Zp)

(1,0)
{2,q},2 as the equations for the (1, 1)-locus, log(z) = Li2(z) = 0, imply

Equation (4.1). As a consequence, once we know the locus X(Zp)
(1,0)
{2,q},2, we actually know the

total refined Chabauty–Kim locus X(Zp)
min
{2,q},2 by taking S3-orbits (cf. [BBK+24, Theorem B]).

The problem of finding the solutions in X(Zp) to Equation (4.1) is resolved by the code
accompanying this paper [Lüd24]. The task can be broken down into the following steps:

1. Determine the constant aτqτ2 appearing in Eq. (4.1).
2. For each residue disc in X(Zp), compute a power series representing the Coleman function

on the left hand side of Eq. (4.1) on that disc.
3. For each residue disc, find the p-adic roots of the power series.

Concerning step 1, note that only aτqτ2 needs to be determined; the constants aτ2 = log(2)
and aτq = log(q) are simply given by p-adic logarithms.

4.1. An example. Before describing the steps of the algorithm in more detail, we demonstrate
the function

CK_depth_2_locus(p, q, N, a_q2)

of the accompanying Sage code. Assume we want to compute the locus X(Z5)
(1,0)
{2,3},2, i.e., we

are looking at the thrice-punctured line over Z[1/6] (so q = 3) and choose the auxiliary prime
p = 5. The argument N specifices the p-adic precision for the coefficients of power series, and
the argument a_q2 is the constant aτqτ2 , which in the case q = 3 is given by aτ3τ2 = −Li2(3) by
Proposition 3.7. The code
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p = 5; q = 3
a = -Qp(p)(3).polylog(2)
CK_depth_2_locus(p,q,10,a)

outputs the following list of six 5-adic numbers:

[2 + O(5^9),
2 + 4*5 + 4*5^2 + 4*5^3 + 4*5^4 + 4*5^5 + 4*5^6 + 4*5^7 + 4*5^8 + O(5^9),
3 + O(5^6),
3 + 5^2 + 2*5^3 + 5^4 + 3*5^5 + O(5^6),
4 + 4*5 + 4*5^2 + 4*5^3 + 4*5^4 + 4*5^5 + 4*5^6 + 4*5^7 + 4*5^8 + O(5^9),
4 + 5 + O(5^9)]

These form the refined Chabauty–Kim locus X(Z5)
(1,0)
{2,3},2. This locus must contain the {2, 3}-

integral points {−3,−1, 3, 9}, as these are the points in X(Z[1/6]) whose mod-2 reduction lies
in X ∪ {1} and whose mod-3 reduction lies in X ∪ {0}. Indeed, we recognise those among the
numbers in the list. We moreover observe that z = 2 satisfies Eq. (4.1) as a consequence of
Li2(2) = 0 and Li1(2) = − log(1 − 2) = 0, so it belongs to X(Z5)

(1,0)
{2,3},2 as well. It is a {2, 3}-

integral (even {2}-integral) point of X but we would not a priori expect it to be part of the
(1, 0)-refined locus because it reduces to 0, not 1, modulo 2. Indeed we will see later that it does
not survive in depth 4. Finally, there is the exceptional point

(4.2) z0 = 3+ 52 + 2 ∗ 53 + 54 + 3 ∗ 55 + O(56)

which is not a {2, 3}-integral point of X and in fact seems to be transcendental over the rationals.
As we noted at the end of [BBK+24], this point is responsible for Kim’s Conjecture not holding
in depth 2. Again, we will see later that this exceptional solution can be ruled out by going to
depth 4.

We now describe the steps for computing X(Zp)
(1,0)
{2,q},2 in general.

4.2. Computing DCW coefficients. The first step consists in computing the p-adic constant
aτqτ2 , an example of what is called a “Dan-Cohen–Wewers coefficient” (and denoted by aq,2) in
[BBK+24]. In some cases, by §3.5 and Lemma 2.2 of loc. cit., we have a simple expression for
aτqτ2 :

(1) For q = 3 we have aτ3τ2 = −Li2(3) = − 1
2 Li2(−3) = − 1

6 Li2(9).
(2) If q = 2n + 1 is a Fermat prime, we have aτqτ2 = − 1

n Li2(q).
(3) If q = 2n − 1 is a Mersenne prime, we have aτqτ2 = − 1

n Li2(−q).
For general primes q we only have an algorithm for expressing aτqτ2 as a Q-linear combination
of dilogarithms of rational numbers. In general, the DCW coefficients aτℓτq for ℓ, q ∈ S appear
in the localisation map of the Chabauty–Kim diagram (2.1). By Proposition 2.1, they are the
coefficients in the bilinear polynomial loc♯p Li2 =

∑
ℓ,q∈S aτℓτqxℓyq. An algorithm for computing

aτℓτq for any pair of primes ℓ, q ̸= p is described in [BBK+24, §2.3], slightly generalising the
original algorithm from [DW15, §11]. In short (and simplifying a bit), one considers the Q-vector
space

E := Q⊗Q×.

Submitted to Algor. Num. Th. Symp.



12 MARTIN LÜDTKE

Write [x] := 1⊗x ∈ E for x ∈ Q×. By Tate’s vanishing of the rational Milnor K-group K2(Q)⊗Q
[Mil71, Theorem 11.6], every element of E ⊗ E can be written as a Q-linear combination of
Steinberg elements [t]⊗ [1− t] where t ∈ Q∖ {0, 1}. Given such a “Steinberg decomposition” in
E ⊗ E

(4.3) [ℓ]⊗ [q] =
∑
i

ci [ti]⊗ [1− ti]

for a pair of primes (ℓ, q), a formula for the DCW coefficient aτℓτq is given by

(4.4) aτℓτq = −
∑
i

ci Li2(ti).

The algorithm described in [BBK+24] is slightly more involved in that it computes Steinberg
decompositions in the wedge square E ∧ E rather than the tensor square (for efficiency) and
takes care to avoid Steinberg elements [t] ∧ [1 − t] where t or 1 − t contains factors of p (to
avoid choosing a branch of the p-adic logarithm). In loc. cit., the right hand side of Eq. (4.3)
also contains additional terms of the form [x] ⊗ [y] + [y] ⊗ [x], but those are expressable in
terms of Steinberg elements as well, so they can be subsumed under the sum in Eq. (4.3). The
algorithm described there is implemented in Sage [KLS22]. It can be used to compute a Steinberg
decomposition of [2] ∧ [q] in E ∧E, which can then be passed to the function depth2_constant
from [Lüd24] to compute the p-adic constant aτqτ2 with precision N . For example, taking q = 19
and p = 7, the code

p = 7; q = 19
_,dec = steinberg_decompositions(bound=20, p=p)
depth2_constant(p, q, 10, dec[2,q])

computes aτ19τ2 ∈ Q7 as

aτ19τ2 = 72 + 2 ∗ 73 + 6 ∗ 74 + 3 ∗ 75 + 2 ∗ 76 + 6 ∗ 77 + 5 ∗ 78 + O(710).

4.3. Computing power series. The second step in the computation of the Chabauty–Kim
locus X(Zp)

(1,0)
{2,q},2 consists in computing on each residue disc a p-adic approximation of the power

series representing the defining Coleman function (4.1). We already discussed the computation of
the coefficients, so the problem is reduced to finding power series for the polylogarithmic functions
log(z), Li1(z), and Li2(z). Later we will also need the power series for Li3(z) and Li4(z), so we
discuss here the general problem of computing power series for Lin(z) for arbitrary n. In order
to achieve this, we adapt the work by Besser and de Jeu [BJ08] which contains an algorithm for
computing Lin(z) for any z ∈ Cp ∖ {1}. We can exploit the fact that we work in Zp rather than
Cp to improve the convergence of the power series.

For each (p− 1)-st root of unity ζ in Zp write Uζ for its residue disc, consisting of all elements
of Zp reducing to ζ modulo p. Those residue discs Uζ with ζ ̸= 1 cover X(Zp). Any element
z ∈ Uζ can be written as z = ζ + pt with t ∈ Zp and we wish to compute p-adic approximations
of the power series in the parameter t for log(ζ + pt) and for Lim(ζ + pt) for various m. We
denote the coefficients of the latter series by (am,k)k≥0, so that we have

(4.5) Lim(ζ + pt) =

∞∑
k=0

am,kt
k.
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Definition 4.1. Let f(t) =
∑∞

k=0 akt
k ∈ Qp[[t]] be a convergent power series on the unit disc

(i.e., |ak|p → 0). A p-adic approximation of order N of f(t) consists of a nonnegative integer k0
along with a polynomial f̃(t) =

∑k0−1
k=0 ãkt

k ∈ Qp[t] of degree < k0 such that vp(ak − ãk) ≥ N
for k < k0 and vp(ak) ≥ N for all k ≥ k0.

For the p-adic logarithm, computing the power series is straightforward:

Lemma 4.2. Given a prime p and a (p − 1)-st root of unity ζ ̸= 1 in Zp, the series expansion
of log(ζ + pt) on Uζ is given by

(4.6) log(ζ + pt) = −
∞∑
k=1

(−p)k

kζk
tk.

If N ∈ Z≥0 is the desired precision, let k0 be the smallest integer ≥ 1 satisfying k0−logp(k0) ≥ N .
Then for all k ≥ k0, the coefficient of tk in (4.6) has valuation ≥ N . If ζ̃ ∈ Zp is an approximation
of ζ of order N (i.e., vp(ζ − ζ̃) ≥ N), then −

∑k0−1
k=1

(−p)k

kζ̃k
tk is an approximation of (4.6) of

order N .

Proof. Since log(ζ) = 0 for roots of unity, we have

log(ζ + pt) = log(1 + pt/ζ) = −
∞∑
k=1

(−1)k

k
(pt/ζ)k = −

∞∑
k=1

(−p)k

kζk
tk

as claimed. Let ck = − (−p)k

kζk be the coefficient of tk, then since vp(k) ≤ ⌊logp(k)⌋, the valuation
of ck satisfies vp(ck) = k − vp(k) ≥ k − logp(k). The real-valued function x 7→ x − logp(x) is
increasing to the right of its minimum at x = 1/ log(p), in particular it is increasing in the range
x ≥ 1. (The assumptions on ζ imply p ≥ 3.) Therefore, if the inequality k0− logp(k0) ≥ N holds
for some k0 ≥ 1, it also holds for every k ≥ k0. This implies that truncating the power series at
the k0-th term gives an approximation of order N . Finally, if ζ̃ approximates ζ to order N , then
1/ζ̃ approximates 1/ζ to order N as well. Since vp((−p)k/k) ≥ 1 for all k ≥ 1, one can replace ζ

with ζ̃ in (4.6). □

For the polylogarithms Lim, consider the following computation problem:

Problem 4.3. Given a prime p, a (p− 1)-st root of unity ζ ̸= 1 in Zp, a nonnegative integer n ∈
Z≥0, and a precision N ∈ Z≥0, compute p-adic approximations of order N of the power series (4.5)
of Lim(ζ + pt) for m = 0, . . . , n.

This problem can be split into two subproblems. In order to compute the power series for
Lim(ζ + pt) for m = 0, . . . , n one first needs to compute the values Lim(ζ) at the root of unity ζ,
in other words, the constant coefficients of the power series. The algorithm described in [BJ08]
proceeds as follows. One considers the modified polylogarithm Li(p)m (z) := Lim(z)− 1

pm Lim(zp). It
admits a power series expansion around ∞ of the form Li(p)m (z) = gm(1/(1−z)) with gm(v) ∈ Q[[v]],
converging for |v|p < p1/(p−1). (Note that gm(v) depends on p, even though this is not apparent
from the notation.) For a (p− 1)-st root of unity ζ ̸= 1 one has

Lim(ζ) =
pm

pm − 1
Li(p)m (ζ) =

pm

pm − 1
gm(1/(1− ζ)).

So we turn attention to the following problem:
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Problem 4.4. Given a prime p, an integer n ∈ Z≥0, and a precision M ∈ Z≥0, compute p-adic
approximations of order M of gm(v) ∈ Q[[v]] for m = 0, . . . , n.

The series gm(v) can be computed recursively. For m = 0, we have

(4.7) g0(v) = −(1− v) + (1− v)p
∞∑
i=0

(pf(v))i,

where f(v) ∈ vZ[v] is the polynomial of degree p − 1 defined by (1 − v)p − (−v)p = 1 − pf(v).3

For m ≥ 1, the power series gm(v) can be computed from gm−1(v) via

(4.8) g′m(v) = −gm−1(v)

v
(1 + v + v2 + . . .)

and gm(0) = 0. We know estimates for the valuations of the coefficients of gm(v):

Lemma 4.5. [BJ08, Prop. 6.1] For m ≥ 1, let gm(v) = bm,1v+ bm,2v
2+ . . . be the power series

expansion of gm(v) ∈ Q[[v]]. The valuations of the coefficients satisfy

vp(bm,k) ≥ max

(
0,

k

p− 1
− logp(k)− c(m, k)

)
for some explicit constant c(m, p) > 0.

Here is how we solve Problem 4.4. Given p, n, and M , we first determine k0 ∈ Z≥2 such that
k

p−1 − logp(k)− c(m, p) ≥ M for all k ≥ k0 and m = 0, . . . , n. This is straightforward, exploiting
the monotonicity properties of the real-valued function x 7→ x

p−1 − logp(x) − c(m, p). Then, by
Lemma 4.5, in order to approximate gm(v) to p-adic order M it suffices to compute the first k0
terms. We start by computing those terms for g0(v) using Eq. (4.7). Then for m ≥ 1, we use the
recursive formula (4.8), which in terms of the coefficients bm,k reads

(4.9) bm,k = −1

k
(bm−1,1 + . . .+ bm−1,k) for k ≥ 1,

as well as bm,0 = 0. Even though all coefficients are rational numbers, it is more efficient to only
store p-adic approximations. We can estimate how many p-adic digits we need: going from m−1
to m, the recursive formula (4.9) for bm,k involves a division by k which decreases the precision
by vp(k). But we are only computing coefficients with k < k0, so the loss of precision can be
bounded by δ := ⌊logp(k0 − 1)⌋. Knowing g0(v) to p-adic precision M + nδ is therefore enough
to subsequently compute all of g1(v), . . . , gn(v) to precision at least M .

We now return to Problem 4.3 asking for p-adic approximations of Lim(ζ + pt). They are
computed by iterated integration, using the values Lin(ζ) as integration constants:

Lemma 4.6. The coefficients of Lim(ζ + pt) =
∑∞

k=0 am,kt
k are recursively given as follows.

For m = 0 we have

(4.10) Li0(ζ + pt) =
ζ

1− ζ
+

∞∑
k=1

pk

(1− ζ)k+1
tk.

For m ≥ 1 we have am,0 = Lim(ζ) = pm

pm−1gm(1/(1− ζ)) and

(4.11) am,k = −1

k

k−1∑
j=0

(
−p

ζ

)k−j

am−1,j for k ≥ 1.

3Note that the formulas for g0(v) and f(v) given in the proof of [BJ08, Prop. 6.1] contain sign errors.
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Proof. We have Li0(z) =
z

1−z and dLim(z) = Lim−1
dz
z for m ≥ 1 by definition of the polylog-

arithms as iterated Coleman integrals. An easy calculation shows that this translates into the
given formulas for the power series coefficients. □

Lemma 4.7. The valuations of the coefficients am,k satisfy vp(am,0) ≥ m and vp(am,k) ≥
k −m⌊logp(k)⌋ for k ≥ 1.

Proof. For k = 0, it follows from am,0 = Lim(ζ) = pm

pm−1gm(1/(1 − ζ)) and the fact that the
coefficients of gm(v) have valuation ≥ 0 that am,0 has valuation ≥ m. For m = 0, we see from
Eq. (4.10) that the coefficient of tk has valuation exactly k. Let m ≥ 1 and assume the hypothesis
for m − 1. In the recursive formula (4.11) for computing the am,k from the am−1,j with j < k,
the summands with j ≥ 1 satisfy

vp

(
−1

k

(
−p

ζ

)k−j

am−1,j

)
= k − j − vp(k) + vp(am−1,j)

≥ k − j − vp(k) + j − (m− 1)⌊logp(j)⌋
≥ k −m⌊logp(k)⌋.

The summand for j = 0 also satisfies this since vp(am−1,0) ≥ m− 1. Hence, from Eq. (4.11) we
find vp(am,k) ≥ k −m⌊logp(k)⌋ as claimed. □

In order to compute p-adic approximations of order N to the power series of Lim(ζ + pt)
for m = 0, . . . , n, we first determine k0 ≥ 1 such that k − n⌊logp(k)⌋ ≥ N for all k ≥ k0.
Then, by Lemma 4.7, it suffices to find order N approximations of the coefficients am,k with
k < k0. In the recursive formula (4.11) for am,k, the division by k causes a loss of precision
by vp(k) ≤ ⌊logp(k0 − 1)⌋. On the other hand, each am−1,j is multiplied by at least one factor
of p. Thus, in order to compute am,k to precision N it suffices to compute the am−1,j to
precision N + δ − 1, where

δ := ⌊logp(k0 − 1)⌋.
This tells us two things: firstly, setting

M := max(N,N + n(δ − 1)),

it suffices to compute the power series gm(v) for m = 0, . . . , n to precision M . This is achieved
by the algorithm for Problem 4.4 above. Secondly, we get an estimate on how many p-digits we
need to store for each coefficient.

Lemma 4.8. In order to compute am,k for k < k0 and m = 0, . . . , n with precision N , no more
than M p-adic digits are needed for each coefficient.

Proof. If δ ≤ 1, no precision is lost and no negative valuations occur when going from m− 1 to
m, so knowing the first N (= M) p-adic digits of the coefficients a0,k ∈ Zp is enough to compute
the first N digits of am,k ∈ Zp for all m = 1, . . . , n. If δ ≥ 2 on the other hand, we compute the
a0,k ∈ Zp to precision M = N + n(δ − 1). Subsequently, each step from m − 1 to m decreases
both the precision and the valuations by up to δ − 1, so that we end at m = n with precision N
and valuation ≥ −n(δ − 1), still requiring only M digits. □

The algorithms outlined above for solving Problems 4.3 and 4.4 are implemented in the func-
tions compute_g and compute_polylog_series of the accompanying Sage code [Lüd24].
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4.4. Finding roots of power series. Consider the following problem.

Problem 4.9. Given a p-adic approximation of order N of a power series f(t) ∈ Qp[[t]] which
converges on Zp, determine the set of roots of f in Zp.

After rescaling by a power of p, one can assume that the power series has coefficients in Zp

and has nonzero reduction mod p. Then, in principle, finding the roots of f(t) is achieved by
Hensel lifting. There are however some subtleties to take into account if we are only given a
p-adic approximation of f(t).

(1) Knowing f(t) to precision N might not be enough to decide whether a root modulo pN

lifts to a root in Zp. For example, the polynomials f1(t) = t2 − 1 and f2(t) = t2 − 5 over
Z2 agree modulo 4 but the roots ±1 in Z/4Z only lift to roots in Z2 of f1, not of f2.

(2) Even if the roots of f(t) modulo pN lift to roots in Zp, those roots might be determined
only up to a lower precision. This happens if the root is not a simple root modulo p. For
example, f1(t) = t2−1 and f2(t) = t2−9 agree modulo 8 but their zero sets {1,−1} and
{−3, 3} agree only modulo 4.

The function polrootspadic of PARI/GP (which can also be called from Sage) unfortunately
does not take the aforementioned issues with inexact coefficients into account. Therefore, we im-
plemented a function Zproots ourselves, also available at https://github.com/martinluedtke/
RefinedCK, which solves Problem 4.9 while taking care of precision questions. For example, the
Sage code

K = Qp(2,prec=2)
R.<t> = K['t']
Zproots(t^2-1) # => PrecisionError

results in a PrecisionError since the precision 2 is not enough to decide whether the roots ±1
in Z/4Z lift to Z2. On the other hand, increasing the precision to 3,

K = Qp(2,prec=3)
R.<t> = K['t']
Zproots(t^2-1) # => [1 + O(2^2), 1 + 2 + O(2^2)]

correctly finds {1 + O(22), 3 + O(22)} as the set of roots in Z2, those roots being determined
modulo 4.

The precise version of Hensel’s Lemma being used is the following:

Lemma 4.10 ([Con, Theorem 8.2]). Let f(t) ∈ Zp[[t]] be a power series which converges on Zp.
Let a ∈ Zp and set d := vp(f

′(a)). If d < vp(f(a))/2, then there is a unique α ∈ a+ pd+1Zp such
that f(α) = 0. Moreover, vp(α− a) = vp(f(a))− d.

From this we obtain the following proposition which says exactly to which precision the roots
of an inexact power series can be known.

Proposition 4.11. Let f(t) and f̃(t) be two power series in Zp[[t]] which converge on Zp and
satisfy f ≡ f̃ mod pNZp[[t]]. Let a ∈ Zp and set d̃ := vp(f̃

′(a)). If d̃ < N/2 and d̃ < vp(f̃(a))/2,
then f and f̃ each have a unique root α resp. α̃ in a+ pd̃+1Zp, and the roots satisfy vp(α− α̃) ≥
N − d̃.
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Proof. Since f ≡ f̃ mod pNZp[[t]], also f ′ ≡ f̃ ′ mod pNZp[[t]] and thus f ′(a) ≡ f̃ ′(a) mod pN .
The valuation d̃ of f̃ ′(a) is smaller than N/2 < N by assumption, so we get d := vp(f

′(a)) =

vp(f̃
′(a)) = d̃. Moreover, we have

vp(f(a)) ≥ min(vp(f(a)− f̃(a)), vp(f̃(a))) ≥ min(N, vp(f̃(a))) > 2d̃ = 2d,

where both assumptions on d̃ are used in the strict inequality. Thus, by Lemma 4.10, f and
f̃ both have a unique root α resp. α̃ in a + pd̃+1Zp, proving the first part of the proposition.
We now verify the hypotheses of Lemma 4.10 for f again but with α̃ in place of a. Since
α̃ ≡ a mod pd̃+1, also f ′(α̃) ≡ f ′(a) mod pd̃+1, thus vp(f

′(α̃)) = vp(f
′(a)) = d̃. Also, we have

f(α̃) ≡ f̃(α̃) = 0 mod pN , hence vp(f(α̃)) ≥ N > 2d̃. Now, by Lemma 4.10, f has a unique
root in α̃ + pd+1Zp. But this root must necessarily be α. Now the “moreover” statement of
Lemma 4.10 yields vp(α− α̃) = vp(f(α̃))− d̃ ≥ N − d̃. □

Based on Proposition 4.11, we obtain an algorithm to resolve Problem 4.9. Assume that a
power series f(t) ∈ Zp[[t]] is given to p-adic precision N . Suppose we want to find the roots of f
in a p-adic disc a+ pmZp for some a ∈ Zp and m ≥ 0, and suppose we know that

(4.12) vp(f
′(a)) ≥ m− 1, vp(f(a)) ≥ 2(m− 1).

(At the beginning of the algorithm we take a = 0 and m = 0 to search in all of Zp.) We assume
also that N ≥ 2m− 1. For any a+ pmb in a+ pmZp, using vp(f

′(a)) ≥ m− 1 we have

f(a+ pmb) ≡ f(a) + pmbf ′(a) ≡ f(a) mod p2m−1,

therefore f(a) ≡ 0 mod p2m−1 is a necessary condition for the existence of roots in a + pmZp.
Since f is known to precision N and we have N ≥ 2m−1, we can check whether this condition is
satisfied. Assume that this is the case. Then we check whether d := vp(f

′(a)) is equal to m− 1.
If yes, then by Hensel’s Lemma, there is a unique root in a + pmZp, and by Proposition 4.11,
knowing f to precision N determines this root to precision N − d. It is computed by Newton
iteration, starting with the value a. If d ≥ m on the other hand, the congruence f(a+pmb) ≡ f(a)
holds even modulo p2m, so if f(a) ̸≡ 0 mod p2m (which requires N ≥ 2m to check), then we can
conclude that there are no roots in a+pmZp. Otherwise, we continue to search in the smaller discs
a+ ipm+ pm+1Zp for i = 0, . . . , p− 1, which form a partition of a+ pmZp. The conditions (4.12)
are satisfied for each of these smaller discs where a is replaced by a+ ipm and m is replaced by
m + 1. Assuming that N ≥ 2m + 1, we can proceed as before for each of them. Overall, this
leads to the search space Zp being explored in a tree-like manner, recursively subdividing into
smaller and smaller discs until we can either decide that they don’t contain a root, that they
contain exactly one root, or they have become too small relative to the precision N to detect the
roots, in which case the algorithm will fail with a PrecisionError.

Remark 4.12. In finite precision, a power series with a repeated root in Zp cannot be distinguished
from a power series which has two roots lying very close to each other. The algorithm will always
raise a PrecisionError in this case. If on the other hand f has only simple roots in Zp, the
outlined algorithm will be able to determine those roots when f is specified with sufficiently large
precision.

5. Analysis of depth 2 loci

Using the methods described in §4, we have computed the Chabauty–Kim loci X(Zp)
(1,0)
{2,q},2

for many p and q. Complete data can be found on GitHub [Lüd24].
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p 5 7 11 13 17 19 23 29 31 . . . 1091 1093 1097 . . .
#X(Zp)

(1,0)
{2,3},2 6 8 18 16 22 20 20 26 36 . . . 1076 2154 1078 . . .

Table 5.1. Sizes of the depth 2 Chabauty–Kim loci X(Zp)
(1,0)
{2,3},2 for various

choices of auxiliary prime p

p 3 5 7 11 13 17 19 23 29 31 37 41 43 47
#X(Zp)

(1,0)
{2,5},2 3 – 6 10 8 12 18 24 38 28 36 34 50 44

#X(Zp)
(1,0)
{2,7},2 3 6 – 10 12 15 18 22 32 38 36 44 38 44

#X(Zp)
(1,0)
{2,11},2 3 6 6 – 8 14 18 18 38 28 40 34 36 48

#X(Zp)
(1,0)
{2,19},2 2 4 8 8 18 20 – 20 30 26 36 44 78 44

Table 5.2. Sizes of the depth 2 Chabauty–Kim loci X(Zp)
(1,0)
{2,q},2 for q =

5, 7, 11, 19 and p < 50

5.1. Observations. Taking q = 3, Table 5.1 shows the size of X(Zp)
(1,0)
{2,3},2 for a few choices of

auxiliary prime p. We have computed these loci for all primes p < 5000 and made the following
observations:

(1) The size of the locus is even in each case.
(2) Each residue disc of X(Zp) contains either 0 or 2 points of X(Zp)

(1,0)
{2,3},2.

(3) For most primes, the locus is roughly of size p, so the p− 2 residue discs are split more
or less evenly between containing two points and containing no points of the locus.

(4) When p is equal to one of the two known Wieferich primes 1093 and 3511, the locus is of
size ≈ 2p. For p = 1093 only 14 residue discs contain no points. These are stable under
the S3-action and include the residue discs of i =

√
−1 and the primitive 6-th roots of

unity ζ6. For p = 3511, only 2 residue discs contain no points of the locus, namely those
of ζ6 and ζ−1

6 .
Similar observations hold for primes q other than 3. We have computed the size of the depth 2

loci X(Zp)
(1,0)
{2,q},2 for all q < 100 and p < 1000; an excerpt is shown in Table 5.2. For p = 3, the

locus always has size 2 or 3. This is a general fact proved in [BBK+24, Prop. 3.14]. For p ≥ 5,
most of the time the size of the locus is even, but it can occasionally be odd; for example the
size is 15 for p = 17 and q = 7. Also, the size is usually close to p, but in a few cases it is close
to 2p. The latter always occurs if p is one of the known Wieferich primes 1093 and 3511, but
occasionally it happens for non-Wieferich p as well; for example, Table 5.2 shows that the locus
for q = 19 and p = 43 has size 78.

5.2. Newton polygon analysis. We can explain many of these observations by analysing the
Newton polygons of the power series defining the Chabauty–Kim locus X(Zp)

(1,0)
{2,q},2. Setting

a :=
aτqτ2

aτ2aτq
, this locus is defined in X(Zp) by the function

(5.1) f(z) := Li2(z)− a log(z) Li1(z).
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Lemma 5.1. Let ζ ̸= 1 be a (p − 1)-st root of unity in Zp. Then the first three coefficients of
the power series f(ζ + pt) =

∑∞
k=0 ckt

k ∈ Qp[[t]] are given by

c0 = Li2(ζ),

c1 = p(1− a)
Li1(ζ)

ζ
,

c2 = p2(1− 2a)
1

2ζ(1− ζ)
− p2(1− a)

Li1(ζ)

2ζ2
.

Proof. The k-th coefficient of f(ζ + pt) is given by pkf (k)(ζ)/k!. Computing the first two
derivatives of f(z) is straightforward using the differential equations Li′2(z) = Li1(z)/z and
Li′1(z) = 1/(1− z). Plugging in ζ and using log(ζ) = 0 gives the claimed formulas. □

Proposition 5.2. Let q be an odd prime and let p ≥ 5 be a prime not equal to q. Set a :=
aτqτ2

aτ2
aτq

and assume that vp(a) < 0 or a ̸≡ 1
2 mod p. Then the Chabauty–Kim set X(Zp)

(1,0)
{2,q},2 contains

at most 2 points from each residue disc.

Proof. Let ν := vp(a) and assume first that ν = vp(a) < 0. Let ζ ̸= 1 be a (p−1)-st root of unity
in Zp. By Lemma 5.1, the valuations of the first three coefficients of f(ζ + pt) are ≥ 2, ≥ 2 + ν,
= 2+ν, respectively. It follows from Lemma 4.7 that the k-th coefficients of both Li2(ζ+pt) and
log(ζ + pt) Li1(ζ + pt) have valuation ≥ k − 2⌊logp(k)⌋. For k ≥ 3 this is always ≥ 3, so that all
coefficients of f(ζ + pt) for k ≥ 3 have valuation ≥ 3 + ν. In conclusion, the minimal valuation
of all coefficients is equal to 2 + ν; it is attained at the t2-coefficient and this is the last time it
is attained. By Strassmann’s Theorem it follows that f(z) has at most 2 zeros on Uζ .

Assume now that ν = vp(a) ≥ 0 and a ̸≡ 1
2 mod p. In this case the first three coefficients

of f(ζ + pt) have valuations ≥ 2, ≥ 2, = 2, respectively, and all other coefficients have larger
valuation. We conclude again by Strassmann’s Theorem. □

Remark 5.3. From [Bet23, Lemma 7.0.5] one has an a priori bound of

#X(Zp)
(1,0)
{2,q},2 ≤ 8(p− 2) +

8(p− 1)

log(p)

for all p ̸= q. When Proposition 5.2 applies, we get the improved bound

#X(Zp)
(1,0)
{2,q},2 ≤ 2(p− 2)

since there are p− 2 residue discs, each containing at most 2 points of the locus. This bound is
sometimes attained, e.g., #X(Z29)

(1,0)
{2,41},2 = 54 = 2 · (29− 2).

In Proposition 5.2, the valuation of a =
aτqτ2

aτ2
aτq

is determined by the valuation of aτqτ2 and the
valuations of the p-adic logarithms aτ2 = log(2) and aτq = log(q). About the first we can show
the following:

Lemma 5.4. For fixed q, we have vp(aτqτ2) ≥ 2 for all but finitely many p.

Proof. Recall from §4.2 that there are rational numbers ci ∈ Q and ti ∈ Q∖ {0, 1} (independent
of p) such that aτqτ2 = −

∑
i ci Li2(ti). Analysing the coefficients of the power series of Li2(ζ+pt)

as in the proof of Proposition 5.2, one sees that for p ≥ 3 all coefficients have valuation ≥ 2, so
that vp(Li2(x)) ≥ 2 for all x ∈ Zp with x ̸≡ 0, 1 mod p. In particular, if p is not any of the finitely
many primes occuring in the prime factorisation of ci, ti or 1− ti, then vp(aτqτ2) ≥ 2. □
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The valuation of a p-adic logarithm is related to the Wieferich property. Recall that p is
called a base-b Wieferich prime if bp−1 ≡ 1 mod p2. A base-2 Wieferich prime is simply called a
Wieferich prime.

Lemma 5.5. Let p be an odd prime and let b > 1 be an integer not divisible by p. The valuation
of the p-adic logarithm log(b) is given by vp(log(b)) = vp(b

p−1 − 1). In particular, vp(log(b)) > 1
if and only if p is a base-b Wieferich prime.

Proof. We have log(b) = 1
p−1 log(b

p−1), hence the p-adic valuation of log(b) agrees with the
valuation of log(bp−1). By Fermat’s little theorem, bp−1 ≡ 1 mod p. For x ∈ 1 + pZp one has
vp(log(x)) = vp(x− 1). The claim follows. □

It is conjectured that infinitely many Wieferich primes exist, although they occur very scarcely.
Heuristically, the number of Wieferich primes below x grows like log(log(x)). The only currently
known Wieferich primes are 1093 and 3511. Interestingly, it is also not known whether there are
infinitely many non-Wieferich primes, although this would follow from the abc conjecture [Sil88].

5.3. Large loci. We can explain the observation that #X(Zp)
(1,0)
{2,q},2 ≈ 2p when p is a base-2

or base-q Wieferich prime. Usually the inequality vp(aτqτ2) ≥ 2 from Lemma 5.4 is an equality.
In this case, the Wieferich property and Lemma 5.5 imply that the valuation ν of a =

aτqτ2

aτ2
aτq

is negative. For most ζ we have vp(Li1(ζ)) = 1 (the primitive 6-th roots of unity being an
exception). Then the first three coefficients of f(ζ + pt) from Lemma 5.1 have valuations ≥ 2,
= 2+ ν, = 2+ ν, respectively, and all subsequent coefficients have larger valuation. The Newton
polygon has then exactly two segments of non-positive slope: negative slope from 0 to 1 and
slope zero from 1 to 2. It follows that f(z) has exactly two roots in the residue disc Uζ . With
most of the p− 2 residue discs containing 2 points, the Chabauty–Kim locus contains roughly 2p
points in total.

This explains why the Chabauty–Kim loci are exceptionally large when p = 1093 or p = 3511
since these are base-2 Wieferich primes. It also explains why the locus for q = 19 and p = 43 is
exceptionally large since 43 is a base-19 Wieferich prime. Another large locus (of size 42) occurs
for q = 47 and p = 23. This one is not explained by a Wieferich property but rather the fact
that the valuation v23(aτ47τ2) = 1 is smaller than expected. The prime p = 23 belongs to the
finitely many exceptions in Lemma 5.4, causing ν = vp(a) = −1 to be negative.

5.4. Typical loci. We can also explain heuristically why #X(Zp)
(1,0)
{2,q} ≈ p almost always when p

is not a base-2 or base-q Wieferich prime. Typically, aτqτ2 has valuation 2, so that a =
aτqτ2

aτ2
aτq

has

valuation ν = 0. Consider first the case that a ̸≡ 1
2 mod p. For most ζ we have vp(Li2(ζ)) = 2.

On the residue discs of such ζ, the valuations of the first three coefficients of f(ζ + pt) given in
Lemma 5.1 are then = 2,≥ 2,= 2, respectively, and all subsequent coefficients have valuation ≥ 3.
After normalising, the power series reduces to a polynomial in Fp[t] of degree 2 with nonzero
constant coefficient. If its discriminant behaves like a random element in Fp, the cases of having
two simple roots or no roots in Fp should occur about half of the time each, with a small leftover
probability of 1/p of having a double root. By Hensel’s lemma, we can therefore expect the
p − 2 residue discs to be split roughly evenly between containing 0 points and 2 points of the
Chabauty–Kim locus, amounting to ≈ p points in total.

Assume now that a ≡ 1
2 mod p. In this case, using that vp(Li1(ζ)) = 1 for most (p−1)-st roots

of unity ζ (primitive 6-th roots of unity being an exception), the Newton polygon of f(ζ + pt)
usually has just a single non-positive slope, so that almost all residue discs contain exactly 1
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point of the locus. The total size is then ≈ p as well, despite distributing differently over the
residue discs than in the case a ̸≡ 1

2 mod p.

6. Verifying Kim’s Conjecture

We now verify instances of Conjecture 1.1 for the thrice-punctured line over Z[1/6] in depth 4,
saying that the refined Chabauty–Kim locus X(Zp)

min
{2,3},4 consists exactly of the 21 points

X(Z[1/6]) =
{
2,

1

2
,−1, 3,

1

3
,
2

3
,
3

2
,−1

2
,−2, 4,

1

4
,
3

4
,
4

3
,−1

3
,−3, 9,

1

9
,
8

9
,
9

8
,−1

8
,−8

}
.

(Finding X(Z[1/6]) boils down to finding all pairs of consecutive integers containing only the
prime factors 2 and 3. The fact that (1, 2), (2, 3), (3, 4), (8, 9) is a complete list of such pairs was
proved in 1342 by Gersonides, also known as Levi ben Gershon. The proof was published in his
book The Harmony of Numbers.)

Recall from Lemma 3.1 that it suffices to verify Conjecture 2.3 for the polylogarithmic depth 4
quotient of the fundamental group and for the two refinement conditions Σ = (1, 1) and Σ = (1, 0).
Recall also that the conjecture for Σ = (1, 1) was already checked for all p < 105 in [BBK+24,
Remark 3.6] (and is proved in higher depth for arbitrary p, see Remark 3.3.) Therefore it is
enough to look at the case Σ = (1, 0) and show that the inclusion

{−3,−1, 3, 9} = X(Z[1/6])(1,0) ⊆ X(Zp)
(1,0)
{2,3},PL,4

is an equality. As shown in §3, the locus in question is defined by the two equations

f2(z) := log(2) log(3) Li2(z) + Li2(3) log(z) Li1(z) = 0,(6.1)

f4(z) := det

Li4(z) log(z) Li3(z) log(z)3 Li1(z)
Li4(3) log(3) Li3(3) log(3)3 Li1(3)
Li4(9) log(9) Li3(9) log(9)3 Li1(9)

 = 0.(6.2)

The first equation (6.1) defines the depth 2 Chabauty–Kim locus X(Zp)
(1,0)
{2,3},2 and we explained

in §4 how it can be computed. In order to verify Kim’s Conjecture in depth 4 it suffices to check
that f4(z) ̸= 0 for every point z of the depth 2 locus which is not in {−3,−1, 3, 9}.

We demonstrate this for p = 5, continuing the example from §4.1. There we found that the
depth 2 locus contains two points in addition to {−3,−1, 3, 9}: one of them is z = 2 and the
other is given in (4.2). In Sage, we can define the depth 4 function f4 from Eq. (6.2) as follows:

# p-adic polylogarithms
K = Qp(5)
log = lambda z: K(z).log()
Li = [lambda z,n=n: K(z).polylog(n) for n in range(5)]

# our depth-4 function
def f(z):

rows = [[Li[4](x), log(x)*Li[3](x), log(x)^3*Li[1](x)] for x in [z,3,9]]
return matrix(rows).determinant()

We can check that the depth 4 function does indeed vanish on −3,−1, 3, 9:
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f(-3) # => O(5^20)
f(-1) # => O(5^28)
f(3) # => O(5^20)
f(9) # => O(5^20)

Now we verify that the function does not vanish on the extra points 2 and z0:

f(2)
# => 4*5^13 + 4*5^14 + 3*5^15 + 5^16 + 3*5^18 + 3*5^19 + O(5^20)
f(3 + 5^2 + 2*5^3 + 5^4 + 3*5^5 + 5^6 + 5^7 + 5^9 + 2*5^10 + 3*5^11 + 2*5^12 + O(5^13))
# => 4*5^13 + O(5^14)

This shows that Conjecture 1.1 holds for S = {2, 3} and p = 5.
The accompanying Sage code has a function

CK_depth_4_locus(p, q, N, coeffs)

which computes an approximation of the locus X(Zp)
(1,0)
{2,q},PL,4 for any p and q. It takes the tuple

of p-adic coefficients (aτqτ2 , a, b, c) as an argument, where aτqτ2 is the DCW coefficient appearing
in the depth 2 function (1.1), and (a, b, c) are the coefficients in the depth 4 function (1.2). At
the moment we only know all these constants explicitly in the case q = 3 where aτ3τ2 = −Li2(3)
and for (a, b, c) one can either use the formulas from Proposition 3.7 or 2 × 2-minors of the
matrix in (6.2). The code is however flexible enough to compute the Chabauty–Kim loci for
other primes q in the future. The function Z_one_sixth_coeffs(p,N) can be used to compute
the p-adic coefficients for q = 3 conveniently. Let us use this to determine the depth 4 locus for
p = 7:

p = 7; q = 3; N = 10
coeffs = Z_one_sixth_coeffs(p,N)
CK_depth_4_locus(p,q,N,coeffs)

This outputs the following list of 7-adic numbers:

[2 + 7 + O(7^9),
3 + O(7^9),
4 + 6*7 + 6*7^2 + 6*7^3 + 6*7^4 + 6*7^5 + 6*7^6 + 6*7^7 + 6*7^8 + O(7^9),
6 + 6*7 + 6*7^2 + 6*7^3 + 6*7^4 + 6*7^5 + 6*7^6 + 6*7^7 + O(7^8)]

These are precisely the {2, 3}-integral points 9, 3,−3,−1, which shows that Kim’s Conjecture for
S = {2, 3} also holds with the auxiliary prime p = 7.

Remark 6.1. Computing the common zero set of two inexact functions is not a well-posed prob-
lem. For the locus defined by f2(z) = f4(z) = 0 we can only compute approximations of the
roots of f2 and check whether f4(z) is indistinguishable from 0 up to the given precision. If the
precision is chosen too low one might not be able to rule out certain points to be roots of f4
and end up with a too large set. However, in all cases we considered, increasing the precision if
necessary, we were always able to eliminate all points other than the four points {−3,−1, 3, 9}
which we know to be common zeros of f2 and f4.
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Computing depth 4 loci by the methods layed out in this paper we have verified:

Theorem 6.2. Kim’s Conjecture for S = {2, 3} and refinement condition Σ = (1, 0) holds for
the polylogarithmic depth 4 quotient, i.e., the inclusion

{−3,−1, 3, 9} = X(Z[1/6])(1,0) ⊆ X(Zp)
(1,0)
{2,3},PL,4

is an equality, for all auxiliary primes p with 5 ≤ p < 10,000.

Corollary 6.3. Conjecture 1.1 for S = {2, 3} holds in depth 4 for all auxiliary primes p with
5 ≤ p < 10,000.
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