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Abstract. We present an algorithm that, for every fixed genus g, will enumer-

ate all hyperelliptic curves of genus g over a finite field k of odd characteristic
in quasilinear time; that is, the time required for the algorithm is Õ(q2g−1),

where q = #k. Such an algorithm already exists in the case g = 2, thanks

to work of Mestre and Cardona and Quer, and in the case g = 3, thanks to
work of Lercier and Ritzenthaler. Experimentally, it appears that our new

algorithm is about two orders of magnitude faster in practice than ones based

on their work.

1. Introduction

There are many circumstances in which one may want to enumerate all hyperel-
liptic curves of a given genus over a given finite field. One may wish to determine
whether a hyperelliptic curve with certain special properties exists — for instance,
with a certain number of points [14, p. 393], or a certain zeta function, or a certain
a-number [7, §4], or some other property of interest — and explicit enumeration
allows for a direct search. Or perhaps one may wish to gather data about all hy-
perelliptic curves of a given genus over a given finite field — for example, in order
to compute the distribution of the number of points on such curves, as in [1], or to
determine experimental results [18] that can inspire future theorems [11].

In this paper we present, for every fixed genus g > 1, an algorithm to calculate
a list of all hyperelliptic curves of genus g over a given finite field of odd character-
istic.1

Theorem 1.1. Fix an integer g > 1. Together, the algorithms we present in Sec-
tion 7 provide a method for computing a complete list of hyperelliptic curves of
genus g over Fq for odd prime powers q, with each curve appearing exactly once up
to isomorphism. The algorithms take time Õ(q2g−1) and space O(q2g−1).

From [3, Proposition 7.1] and from the fact that a generic hyperelliptic curve has
automorphism group of order 2, we see that there are roughly 2q2g−1 hyperelliptic
curves of genus g over Fq, so our algorithm runs in quasilinear time.

We also present an apparently new explicit enumeration of all monic irreducible
homogeneous bivariate quartics over a finite field k of odd characteristic, up to the
natural action of PGL2(k) (see Section 2), which may be of independent interest.
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1Hyperelliptic curves in characteristic 2 are different from those in other characteristics in some

basic ways, and, as we discuss later, there already exists an efficient algorithm for enumerating
them.
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2 EVERETT W. HOWE

Theorem 1.2. Given an odd prime power q, let γ be a nonzero element of Fq4

whose multiplicative order is 2(q2 − 1) and let ρ be an element of Fq2 \ Fq with
ρ2 ∈ Fq. Let S4 be the union of the two sets{

(γi − 1)/(γi + 1) | i odd, 1 ≤ i ≤ (q + 1)/2
}

and {
ρ(γi − 1)/(γi + 1) | i odd, 1 ≤ i ≤ (q − 1)/2

}
.

Then the homogenized minimal polynomials of the elements of S4 provide a complete
set of unique representatives for the action of PGL2(Fq) on the monic irreducible
homogeneous bivariate quartics over Fq .

We prove this in Section 3. Also, here and elsewhere, when we say we have a
“complete set of unique representatives” for an action of a group on a set, we mean
that we have a set of orbit representatives that contains exactly one member from
each orbit.

Briefly, there are two main ideas behind the algorithms that give us Theorem 1.1.
The first is that there is an easy way to tell whether two irreducible homogeneous
polynomials in Fq[x, y] lie in the same orbit under the action of PGL2(Fq) — see
Theorem 4.2. We use this fact to reduce the problem of getting a list of all hy-
perelliptic curves without duplicates in quasilinear time to the problem of getting
a list of hyperelliptic curves with a bounded number of duplicates in quasilinear
time. The second is that if one understands the cosets of PGL2(Fq) in PGL2(Fq2),
and if one has a list of orbit representatives for PGL2(Fq2) acting on irreducible
homogenous polynomials of degree n in Fq2 [x, y], then one can get a list of orbit
representatives for PGL2(Fq) acting on irreducible homogenous polynomials of de-
gree 2n in Fq[x, y] — see Section 7.4. The point of this observation is that the
number of PGL2(Fq2) orbits of irreducible degree-n polynomials over Fq2 is on the
order of q2n−6, while the number of PGL2(Fq) orbits of degree-2n polynomials over
Fq is roughly q2n−3, so the former is easier to compute than the latter.

The algorithm for enumerating hyperelliptic curves that we present is designed
for simplicity of argument, rather than for efficiency of computation. In Section 8 we
describe modifications that will make the algorithm more efficient, and in Section 9
we present even more details and timings for the case of genus 2 and genus 3.

An obvious issue with our algorithm, as we present it here, is that it requires
O(q2g−1) space. This is because our initial computations often produce some dupli-
cate entries, and we eliminate these duplicates by collecting all the output, comput-
ing some invariants, and then discarding entries whose invariants have already been
seen. In a followup paper [9], we show how it is possible to modify the techniques
presented here in order to get a quasilinear time algorithm for computing genus-g
hyperelliptic curves over Fq that only requires O(log q) space. Our implementation
of the genus-2 case of the algorithm from the present paper uses a basic version of
the ideas from [9], and it would not be hard to modify the genus-2 code we provide
in [10] so that it requires only O(q) space.

We start by considering various reductions, special cases, and lemmas. In Sec-
tion 2 we show that enumerating hyperelliptic curves of genus g over a finite field
k of odd characteristic can be reduced to enumerating Galois-stable sets of 2g + 2
elements of P1(k) up to the natural action of PGL2(k). The rest of the paper is
therefore concerned mostly with the latter problem, which we solve for all finite
fields, not just those of odd characteristic. In Section 3 we prove Theorem 1.2,
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ENUMERATING HYPERELLIPTIC CURVES 3

as well as similar results for quartics with one or two irreducible quadratic factors
and generalizations to characteristic 2. In Section 4 we introduce an invariant for
PGL2(Fq) orbits of monic irreducible homogeneous bivariate polynomials of de-
gree n ≥ 4 over Fq, and we use it to provide a very straightforward algorithm for
giving a complete set of unique representatives for these orbits in time Õ(qn−2).
In Sections 5 and 6 we give an explicit enumeration of a complete set of unique
representatives for the cosets of PGL2(Fq) in PGL2(Fqp) for primes p. The case
p = 2 is the key result needed for the most difficult case of our algorithm to enu-
merate hyperelliptic curves. In Section 7 we use the results of the earlier sections
to present a collection of algorithms that, together, give a complete set of unique
representatives for the PGL2(Fq) orbits of Galois stable sets of 2g + 2 elements of

P1(Fq). We close with Sections 8 and 9, described above.
For many of our algorithms we require an easily computable total ordering of

the elements of Fq or of polynomials in Fq[x] or in Fq[x, y]. We will always denote
such an ordering by “<” and we leave the reader to choose their favorite one. Also,
if the proof of a proposition is clear, we indicate that the proof will be skipped by
including an end-of-proof mark in the statement of the result.

Acknowledgements. I am grateful to the referees for ANTS, who provided helpful
feedback that improved this paper.

2. Hyperelliptic curves and Weierstrass points

We begin by setting some general notation. Given a finite field k, let R be the
graded polynomial ring k[x, y], with the grading given by the degree. For each
n let Rn be the set of homogeneous polynomials in R of degree n and let Rhom

be the union of the Rn. We say that f ∈ Rhom is monic if f(x, 1) is monic as a
univariate polynomial, and we say that f is separable if in k[x, y] it can be written
as a constant times a product of distinct monic linear factors. We say that α ∈ k
is a root of f if f(α, 1) = 0, and that [α :β] ∈ P1(k) is a zero of f if f(α, β) = 0.

We also define a left action of PGL2(k) on Rhom/k
× as follows. If Γ is an element

of PGL2(k) represented by a matrix M :=
[
a b
c d

]
and if f lies in Rhom, we define

Γ(f mod k×) to be the class in Rhom/k
× of f(dx− by,−cx+ ay).

Every class of Rhom/k
× contains a unique monic element, and we define an

action of PGL2(k) on the monic elements of Rhom by writing Γ(f) = g when g is
the monic element of Γ(f mod k×). If Γ is represented by a matrix M :=

[
a b
c d

]
and

if Γ(f) = g, then f(dx− by,−cx+ ay) = eg(x, y) for some e ∈ k×, and if we choose
a different matrix to represent Γ, then the constant e will be multiplied by an nth
power. When n is even, the class of e in k×/k×2 therefore depends only on Γ, and
we denote this square class by sΓ,f .

Given a separable polynomial f ∈ Rhom, we let Zeros(f) denote the set of zeros
of f in P1(k), so that Zeros(f) consists of the roots of f under the usual inclusion
k ⊂ P1(k) given by α 7→ [α : 1], together with ∞ := [1 : 0] ∈ P1(k) if f is divisible
by y. For every integer n ≥ 0 we let Symn(k) denote the set of all Galois-stable
sets of n distinct points in P1(k), so that the natural action of PGL2(k) on P1(k)
leads to an action of PGL2(k) on Symn(k). We see that Zeros gives us a bijection
between the set of monic separable polynomials in Rn and the set Symn(k), and
we check that Zeros(Γ(f)) = Γ(Zeros(f)) for all f ∈ Rhom.
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4 EVERETT W. HOWE

Our goal in this paper is to produce an algorithm to enumerate hyperelliptic
curves of a given genus g over finite fields k of odd characteristic. As a first step,
we reduce this problem to the problem of computing representatives for all PGL2(k)
orbits of Symn(k), where n = 2g + 2.

Let k be a finite field of odd characteristic and let C be a hyperelliptic curve
over k, that is, a curve of genus g > 1 with a degree-2 map to a curve of genus 0.
Every genus-0 curve over a finite field is isomorphic to P1, and since our k has odd
characteristic C can be written in the form z2 = f̃ , where f̃ ∈ k[x] is a separable
polynomial of degree 2g+ 1 or 2g+ 2. We can rewrite this as a model z2 = f(x, y)

in weighted projective space by homogenizing f̃ into a polynomial f ∈ R2g+2;
here we give the coordinates x and y weight 1 and the coordinate z weight g + 1.
Then the map [x : y : z] 7→ [x : y] gives the double cover C → P1, and the points
of P1 that ramify in this map are exactly the elements of Zeros(f). If C1 and C2

are two hyperelliptic curves, given by equations z2 = f1 and z2 = f2, then every
isomorphism from C1 to C2 can be written in the form

[x : y : z] 7→ [ax+ by : cx+ dy : ez] ,

where ad− bc and e are nonzero, and where

(1) e2f1(x, y) = f2(ax+ by, cx+ dy) ;

see [17, Corollary 7.4.33]. Then e2f1(dx − by,−cx + ay) = (ad − bc)2g+2f2(x, y),
so we see that f2 mod k× = Γ(f1 mod k×), where Γ ∈ PGL2(k) is the element
represented by the matrix M :=

[
a b
c d

]
. Thus, if C1 and C2 are isomorphic, the

element Γ of PGL2(k) takes the ramification points of C1 → P1 to the ramification
points of C2 → P1. Conversely, if

[
a b
c d

]
∈ PGL2(k) takes the ramification points of

C1 → P1 to the ramification points of C2 → P1, then there is an e ∈ k, with e2 ∈ k,
that makes (1) hold. If e lies in k, we have an isomorphism between C1 and C2;
if e does not lie in k, we have an isomorphism between C1 and the quadratic twist
of C2, that is, the curve y2 = νf2, where ν is a nonsquare in k. (In general, a twist
of a curve C over a finite field k is another curve over k that becomes isomorphic
to C when the base field is extended to an algebraic closure of k. Twists of C
correspond to elements of the cohomology set H1(Gal(k/k),Autk C) — see [21,
§III.1.3] — and by “the quadratic twist” of a hyperelliptic curve we mean the twist
corresponding to the cocycle that sends the Frobenius element of Gal(k/k) to the
hyperelliptic involution. Note that sometimes the quadratic twist may in fact be
the trivial twist.)

Thus, we have a map from the set of isomorphism classes of genus-g hyperelliptic
curves over k to the set of PGL2(k) orbits of Symn(k), where n = 2g + 2. This
map is clearly surjective, and the PGL2(k) orbit of an element A of Symn(k) has
at most two preimages in the set of isomorphism classes of hyperelliptic curves:
the isomorphism classes of y2 = f and of y2 = νf , where f is the unique monic
polynomial with Zeros(f) = A and where ν is a nonsquare in k. (We say “at most
two” preimages because, as we noted above, these two curves may be isomorphic
to one another.)

Whether an element A of Symn(k) has one or two preimages is easy to deter-
mine: Let f ∈ Rn be the unique monic polynomial with Zeros(f) = A. Compute
all elements Γ of PGL2(k) that take the set A to itself; at worst this takes time
O(n(n− 1)(n− 2)), and since n is fixed in our context, this is O(1) operations.
For each such Γ compute the element sΓ,f of k×/k×2. If any of these elements is
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ENUMERATING HYPERELLIPTIC CURVES 5

nontrivial, then the curve y2 = f is isomorphic to its twist y2 = νf . (Compare
to [20, Lemma 1.2].)

This shows that if we can compute a complete set of unique representatives
for the orbits of PGL2(Fq) acting on Sym2g+2(Fq) in time Õ(q2g−1), we can also
compute a complete set of unique representatives for the hyperelliptic curves of
genus g over Fq in time Õ(q2g−1). Thus, for the rest of this paper we focus on
enumerating the PGL2(k) orbits of Sym

n(k), for n = 2g + 2. In particular, for our
application to enumerating hyperelliptic curves we only need to consider even n
that are at least 6. The algorithms that we present for the latter problem work for
all finite fields, not just those of odd characteristic.

Remark 2.1. Over a finite field Fq of characteristic 2 there are still roughly 2q2g−1

hyperelliptic curves of genus g, but it is much easier to enumerate them in quasi-
linear time than it is in odd characteristic, because the ramification divisor of the
hyperelliptic structure map C → P1 is supported on at most g + 1 points. Enu-
merating the possible ramification divisors up to the action of PGL2(Fq) in time
Õ(q2g−1) is therefore much simpler than in odd characteristic, and enumerating the
curves with a given ramification divisor is relatively straightforward. The algorithm
of Xarles [24] follows this outline; it has been implemented by him in genus 4, by
Dragutinović [6] in genus 5, and by Huang, Kedlaya, and Lau [12] in genus 6.

3. Results for quartic polynomials

In this section we prove Theorem 1.2. We also prove similar results that give
complete sets of unique representatives for the action of PGL2(Fq) on monic homo-
geneous quartics that have one or two irreducible quadratic factors, and we state
generalizations to finite fields of characteristic 2. We begin with an elementary
lemma.

Lemma 3.1. Let k be a field and let a, b, c, and d be distinct elements of P1(k).
Then there is a unique element of PGL2(k) that swaps a with b and c with d, and
this element is an involution.

Proof. An element of PGL2(k) is determined by where it sends three distinct ele-
ments of P1(k), so the uniqueness is automatic, and we need only prove existence.
By using the action of PGL2(k), we see that it suffices to prove the lemma in the
case where a = ∞, b = 0, and c = 1. Then the element

[
0 d
1 0

]
of PGL2(k) is an

involution that swaps a with b and c with d. □

Corollary 3.2. Let q be a prime power and let α, β, γ, and δ be distinct elements of
Fq such that {{α, β}, {γ, δ}} = {{αq, βq}, {γq, δq}} . Then there is a unique element
of PGL2(Fq) that swaps α with β and γ with δ, and this element is an involution.

Proof. Let Γ ∈ PGL2(Fq) be the involution that swaps α with β and γ with δ.

Then Γ(q), by which we mean the element of PGL2(Fq) obtained by taking a rep-
resentative matrix for Γ and replacing all of its entries by their qth powers, is also
an involution that swaps α with β and γ with δ, because of the equality of sets in
our hypothesis. By the uniqueness property in Lemma 3.1, it follows that Γ(q) = Γ
in PGL2(Fq), from which we see that Γ actually lies in PGL2(Fq). □

Proof of Theorem 1.2. First we show that every monic irreducible quartic in Fq[x]
can be transformed into one of the quartics in the statement of the theorem; this
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6 EVERETT W. HOWE

is equivalent to showing that every irreducible quartic has a root in Fq4 that can
be moved by PGL2(Fq) to an element of the set S4 from the theorem.

In the statement of the theorem we chose an element ρ of Fq2 \Fq with ρ2 ∈ Fq.
Let ν = ρ2, so that ν is a nonsquare in Fq.

Let f be an irreducible quartic in Fq[x], let α be a root of f in Fq4 , and set
α1 := α, α2 := αq

1, α3 := αq
2, and α4 := αq

3. By Corollary 3.2 there is a unique
involution Γ in PGL2(Fq) that swaps α1 with α3 and α2 with α4. We refer to this
as the involution associated to f .

Let Φ be an element of PGL2(Fq). Then the involution associated to Φ(f) is
ΦΓΦ−1. Since every involution in PGL2(Fq) is conjugate either to

[
0 1
1 0

]
or

[
0 ν
1 0

]
,

we can choose Φ so that ΦΓΦ−1 is one of these two standard involutions. Now we
replace f with Φ(f), α with Φ(α), and Γ with ΦΓΦ−1.

Suppose Γ =
[
0 1
1 0

]
. The subgroup of PGL2(Fq) that stabilizes Γ under conju-

gation is

H1 :=

{[
a b
b a

] ∣∣∣∣ a2 ̸= b2

}
∪

{[
−a −b
b a

] ∣∣∣∣ a2 ̸= b2

}
.

We would like to apply an element of H1 to α, and if necessary replace α with
one of its conjugates, to put α into a standard form. We accomplish this by con-
sidering the function P1(Fq4) → P1(Fq4) given by applying the element Ψ :=[

1 1
−1 1

]
of PGL2(Fq). Since Ψ conjugates Γ to the involution

[−1 0
0 1

]
, we see that

Ψ(α)q
2

= −Ψ(α). This shows that Ψ(α)q
2−1 = −1, so the multiplicative order of

Ψ(α) is even and divides 2(q2 − 1). It follows that we may write Ψ(α) = γi for
some odd integer i with 0 < i < 2(q2 − 1).

Let

H ′
1 := ΨH1Ψ

−1 =

{[
a 0
0 1

] ∣∣∣∣ a ∈ F×
q

}
∪

{[
0 a
1 0

] ∣∣∣∣ a ∈ F×
q

}
.

Then applying an element of H1 to α corresponds to applying an element of H ′
1

to Ψ(α), and the elements of H ′
1 either multiply Ψ(α) by an element of F×

q or

replace Ψ(α) with its inverse times an element of F×
q . Since the elements of F×

q

are the powers of γ2(q+1), these two actions show that there is a Φ′ ∈ H ′
1 such that

Φ′(Ψ(α)) = γi for an odd integer i with 0 < i < q+1. If we let Φ = Ψ−1Φ′Ψ ∈ H1

and replace α with Φ(α), we find that Ψ(α) = γi for this i.
Finally, replacing α with αq has the effect of replacing i with iq. If we write

i = 2h+ 1 we see that

iq ≡ 2hq + q ≡ −2h+ q ≡ −(2h+ 1) + (q + 1) ≡ q + 1− i mod 2(q + 1) ,

so by replacing α with its conjugate αq, if necessary, and then modifying the new
α by an element of H1, we find that we may assume that 0 < i ≤ (q + 1)/2.

We see that every irreducible quartic whose associated involution is
[
0 1
1 0

]
has a

root in the PGL2(Fq) orbit of Ψ−1(γi) = (γi − 1)/(γi + 1), for some odd i with
0 < i ≤ (q + 1)/2. Moreover, from our analysis it is clear that different values of i
in this range produce quartics in distinct PGL2(Fq) orbits.

Next, suppose the involution associated with a quartic f is Γ =
[
0 ν
1 0

]
. The

subgroup of PGL2(Fq) that stabilizes Γ under conjugation is

Hν :=

{[
a bν
b a

] ∣∣∣∣ a2 ̸= νb2

}
∪

{[
−a −bν
b a

] ∣∣∣∣ a2 ̸= νb2

}
.
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ENUMERATING HYPERELLIPTIC CURVES 7

As before, we would like to apply an element of Hν to α, and if necessary replace
α with one of its conjugates, to put α into a standard form. This time we consider
the function P1(Fq4) → P1(Fq4) given by applying the element Ψ :=

[ 1 ρ
−1 ρ

]
of

PGL2(Fq2), where ρ is the element of Fq2 chosen in the statement of the theorem

and ν = ρ2. Then Ψ conjugates Γ to the involution
[−1 0

0 1

]
, and once again we have

Ψ(α)q
2

= −Ψ(α). As before, we see that Ψ(α)q
2−1 = −1, so Ψ(α) has multiplicative

order dividing 2(q2 − 1). Once again we may write Ψ(α) = γi for some odd integer
i with 0 < i < 2(q2 − 1).

Let H ′
ν := ΨHνΨ

−1 and let N be the kernel of the norm map from F×
q2 to F×

q .

We check that

H ′
ν =

{[
a 0
0 1

] ∣∣∣∣ a ∈ N

}
∪

{[
0 a
1 0

] ∣∣∣∣ a ∈ N

}
.

Then applying an element of Hν to α corresponds to applying an element of H ′
ν to

Ψ(α), and the elements of H ′
ν either multiply Ψ(α) by an element of N or replace

Ψ(α) with its inverse times an element of N .
The elements of N are the powers of γ2(q−1), so arguing as before we find that

we may replace α with Φ(α) for some Φ ∈ Hν so that Ψ(α) = γi for an odd i with
0 < i < q − 1. We check that Ψ(αq) = 1/Ψ(α)q, so replacing α with αq has the
effect of replacing i with −iq. If we write i = 2h− 1 we see that

−iq ≡ −2hq + q ≡ −2h+ q ≡ (−2h+ 1) + (q − 1) ≡ q − 1− i mod 2(q − 1) ,

so by replacing α with its conjugate αq, if necessary, we find that we may assume
that 0 < i ≤ (q − 1)/2.

We see that every irreducible quartic whose associated involution is
[
0 ν
1 0

]
has a

root in the PGL2(Fq) orbit of Ψ−1(γi) = ρ(γi − 1)/(γi + 1), for some odd i with
0 < i ≤ (q − 1)/2, and different values of i in this range give irreducible quartics
that are not equivalent to one another under the action of PGL2(Fq). □

Remark 3.3. For a separable quartic f = x4+ax3y+bx2y2+cxy3+dy4, we let j(f)
denote the j-invariant of the Jacobian of the genus-0 curve z2 = f . One can show
that j(f) = 256(b2 − 3ac+ 12d)3/∆, where ∆ is the discriminant of f , and clearly
j(Γ(f)) = j(f) for all Γ ∈ PGL2(Fq), because the curve z2 = Γ(f) is geometrically
isomorphic to z2 = f . Using arguments from [8, §3], one can show that j takes
different values on irreducible quartics that are not in the same PGL2(Fq) orbit.

For products of two distinct irreducible quadratics, we have a similar result.

Theorem 3.4. Given an odd prime power q, let ζ be a generator of F×
q2 , let ρ be

an element of Fq2 \ Fq with ρ2 ∈ Fq, and let ν = ρ2. Let

S22 = {ρ(ζi − 1)/(ζi + 1) | 0 < i ≤ (q − 1)/2}

and let T22 be the set of homogenized minimal polynomials of the elements of S22.
Then the set {(x2 − νy2)g | g ∈ T22} is a complete set of unique representatives for
the action of PGL2(Fq) on the homogeneous quartics that factor into a product of
two distinct monic irreducible quadratics.

Proof. Let f be a homogeneous quartic that factors into a product of two monic
irreducible quadratics, so that the roots of f are α, α, β, and β, for two elements α
and β in Fq2 with conjugates α and β. We will show that there is a unique element
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8 EVERETT W. HOWE

σ in S22 such that the set {α, α, β, β} can be sent to {ρ, ρ, σ, σ} by an element of
PGL2(Fq). This will be enough to prove the theorem.

By replacing f with its image under an element of PGL2(Fq) we may assume
that α = ρ. The subgroup of PGLq(Fq) that fixes the set {ρ, ρ} is the group Hν

from the proof of Theorem 1.2. Let Ψ :=
[ 1 ρ
−1 ρ

]
. Arguing as in the proof of

Theorem 1.2 we find that there is a unique element Γ of Hν so that we can write
Ψ(Γ(β)) as ζi for an integer i with 0 < i ≤ (q − 1)/2.

Since by Corollary 3.2 there is an element of PGL2(Fq) that swaps α and α with

β and β, we would have gotten the same value of i if we had normalized β and β to
be ρ and ρ at the beginning of our argument, instead of α and α. Thus the value
of i we obtain truly depends only on the PGL2(Fq) orbit of f .

This shows that we may assume that β = Ψ−1(ζi) is an element of S2, and
different elements of S2 correspond to different PGL2(Fq) orbits. The theorem
follows. □

Remark 3.5. If f is a homogeneous quartic in Fq[x, y] that can be factored into the
product of two monic irreducible quadratics x2 + sxy+ ty2 and x2 + uxy+ vy2, we
define

µ(f) :=
(su− 2t− 2v)2

(s2 − 4t)(u2 − 4v)
,

and we check that j(f) = 64(µ(f)+3)3/(µ(f)−1)2, where j(f) is as in Remark 3.3.
Note that µ(f) is a square, because the two factors in the denominator are the
discriminants of the irreducible factors of f .

We leave it to the reader to check that for f of this form we have µ(Γ(f)) =
µ(f) for every Γ ∈ PGL2(Fq), so µ is an invariant of the PGL2(Fq) orbits of
such quartics. Given any square d in Fq other than 1, we check that a quartic
f := (x2 − νy2)(x2 + uxy + vy2) satisfies µ(f) = d if and only if (u, v) lies on a
certain nonsingular conic. Nonsingular conics over finite fields have rational points
not on the line at infinity, so there are values of u and v that give a quartic for
which µ attains the value d. Since µ attains (q − 1)/2 different values, µ must
take different values on the (q − 1)/2 orbits of PGL2(Fq) acting on products of
irreducible quadratics.

One can show that µ is derived from a modular function that parametrizes pairs
(E,P ), where E is an elliptic curve and P is a point of order 2. For products
f1f2 of two irreducible quadratics, the elliptic curve is the Jacobian of the curve
C : z2 = f1f2, and the point of order 2 is represented by the degree-0 divisor on C
whose double is the divisor of f1/f2.

We also have a similar result for quartics with exactly one irreducible quadratic
factor, which works in all characteristics.

Theorem 3.6. Given a prime power q, let ζ be a generator of F×
q2 . Let

S211 = {ζi | 0 < i ≤ (q + 1)/2}
and let T211 be the set of homogenized minimal polynomials of the elements of S211.
Then the set {xyg | g ∈ T211} is a complete set of unique representatives for the
action of PGL2(Fq) on the monic separable homogeneous quartics that have exactly
one irreducible quadratic factor.

Proof. The proof follows the same lines as that of Theorem 3.4, but is much simpler.
We move the two rational roots of f to 0 and ∞, and then show that up to scaling
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and inversion, every element of Fq2 \ Fq has a unique representative in S211. We
leave the details to the reader. □

Remark 3.7. The function µ defined in Remark 3.5 can be extended to monic
separable quartics with exactly one irreducible quadratic factor; when the two zeros
of f in P1(Fq) are finite we can use the same formula as before, and when f =
y(x − by)(x2 + ux + v) we can define µ(f) = (u + 2b)2/(u2 − 4v). Once again, µ
depends only on the PGL2(Fq) orbit of its argument. On quartics of this type, the
set of values attained by µ is the set of nonsquares in Fq together with 0. Thus, µ
distinguishes PGL2(Fq) orbits of such quartics from one another.

Theorem 3.6 applies to all finite fields, while Theorems 1.2 and 3.4 require the
characteristic to be odd. The following theorem generalizes the latter two results
to characteristic 2. The proof is analogous to those of the earlier theorems, but is
made much simpler by the fact that in this case every involution in PGL2(Fq) is
conjugate to

[
1 1
0 1

]
. We leave the details to the reader.

Theorem 3.8. Let q be a power of 2, let A be the set of elements of Fq of absolute
trace 1, and let ν be an element of A. Then the set{

(x4 + x2y2) + a(x2y2 + xy3) + a2νy4 | a ∈ A
}

is a complete set of unique representatives for the action of PGL2(Fq) on the monic
irreducible homogeneous quartics over Fq, and the set{

(x2 + xy + νy2)(x2 + xy + ay2) | a ∈ A, a ̸= ν
}

is a complete set of unique representatives for the action of PGL2(Fq) on the ho-
mogeneous quartics over Fq that can be written as the product of two distinct monic
irreducible quadratics. □

Remark 3.9. Theorems 1.2, 3.4, 3.6, and 3.8 lead to quasilinear-time algorithms
to give complete sets of unique representatives for the action of PGL2(Fq) on the
various types of quartics discussed in the theorems. The only difficulty is obtaining
a primitive element ζ for Fq2 in Theorems 3.4 and 3.6 and an element γ of order
2(q2−1) in Fq4 for Theorem 1.2. But primitive elements for Fq2 can be determined

deterministically in time O(q1/2+ε) for every ε > 0 (see [23]), and the γ required
for Theorem 1.2 can be obtained by taking the square root in Fq4 of a primitive
element for Fq2 .

In quasilinear time we can also create a table of size O(q) that we can use to
invert the function µ, which gives us a way to compute the orbit representatives
of quartics with one or two irreducible quadratic factors. The function µ does
not reduce well modulo 2, but the function (µ − 1)/4 does; the corresponding
function takes a product (x2 + sxy + ty2)(x2 + uxy + vy2) in characteristic 2 to
((t+ v)2 + (s+ u)(sv + tu))/(su)2.

4. An invariant for irreducible polynomials over finite fields

In this section we define an easily computable invariant2 for monic irreducible
homogeneous bivariate polynomials of arbitrary degree n ≥ 4 over a finite field Fq

2Classically, an invariant on the set Rn ⊂ k[x, y] of homogeneous bivariate polynomials of

degree n is a function Rn → k that is constant on PGL2(k) orbits. We use the term more
generally here, and simply mean a function from Rn to any set that is constant on PGL2(k)

orbits.
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under the action of PGL2(Fq) mentioned in Section 2. The invariant is based on
the classical cross ratio, which is the function that assigns to an ordered quadru-
ple (P1, P2, P3, P4) of distinct elements of P1(k) the element α ∈ k for which
Γ(P4) = [α : 1], where Γ is the unique element of PGL2(k) that sends P1 to ∞,
P2 to 0, and P3 to 1. It follows that the cross ratio is constant on the orbits of
the diagonal action of PGL2(k) on such quadruples, and takes distinct values on
distinct orbits. (Compare to [5, Definition III.3.7] and the propositions following
it.)

Definition 4.1. Let q be a prime power and let f be a monic irreducible homogeneous
bivariate polynomial of degree n ≥ 4 over Fq. We define the cross polynomial
Cross(f) of f as follows: Let α ∈ Fqn be a root of f , and let χ ∈ Fqn be the cross

ratio of α, αq, αq2 , and αq3 ; that is,

χ :=
(αq3 − αq)(αq2 − α)

(αq3 − α)(αq2 − αq)
.

Then set Cross(f) to be the characteristic polynomial of χ over Fq.

Note that the denominator of χ is nonzero, because the powers of α involved are
four of the n distinct conjugates of α. Also, replacing α with one of its conjugates
results in replacing χ with a conjugate, so the characteristic polynomial remains
unchanged. Thus we see that Cross(f) is well-defined.

Theorem 4.2. Let q be a prime power. Two monic irreducible homogenous poly-
nomials in Fq[x, y] of degree at least 4 lie in the same orbit under the action of
PGL2(Fq) if and only if they have the same cross polynomial.

Proof. Suppose f and g are irreducible homogenous polynomials in Fq[x, y] of de-
gree at least 4. Suppose f and g lie in the same PGL2(Fq) orbit, say g = Γ(f) for
some Γ ∈ PGL2(Fq). Then f and g have the same degree, which we denote by n.
Let α be a root of f in Fqn and let β = Γ(α). Then β is a root of g, and for every

i ≥ 0 we have βqi = Γ(αqi). In particular, the cross ratio of α, αq, αq2 , and αq3 is

equal to the cross ratio of β, βq, βq2 , and βq3 , so Cross(f) = Cross(g).
Conversely, suppose f and g are two monic irreducible polynomials of degree at

least 4 with Cross(f) = Cross(g). Since a polynomial has the same degree as its
cross polynomial, f and g have the same degree, say n. Since the cross polynomials

are equal, there are roots α of f and β of g in Fqn such that α, αq, αq2 , and αq3 have

the same cross ratio as β, βq, βq2 , and βq3 . It follows that there is an element Γ of

PGL2(Fqn) with Γ(αqi) = βqi for 0 ≤ i ≤ 3. In particular, we have Γ(xq) = Γ(x)q

for three distinct values of x, namely α, αq, and αq2 , so Γ is fixed by Frobenius
and therefore lies in PGL2(Fq). Thus, Γ takes every root of f to a root of g, so
Γ(f) = g. □

As an application of this invariant, we give an algorithm for creating a table of
orbit representatives for irreducible polynomials of degree n ≥ 4 in time Õ(qn−2).

Algorithm 4.3. Inverting the cross polynomial function.

Input : A prime power q and an integer n ≥ 4.

Output : A table, indexed by the values of the cross polynomials for irreducible
polynomials of degree n, giving for each cross polynomial g an irreducible
homogeneous f ∈ Fq[x, y] of degree n with Cross f = g.
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1. Construct a copy of Fqn with an Fq-basis (β1, . . . , βn) such that β1 appears
with nonzero coefficient in the representation of 1.

2. Set L to be the empty list.

3. For every α ∈ Fqn that does not lie in a proper subfield, and whose
representation (a1, . . . , an) on the given basis has a1 = 0 and has ai = 1
for the first i with ai ̸= 0, do:
(a) Compute the homogenization f of the minimal polynomial of α.
(b) Compute Cross f .
(c) Append the pair (Cross f, f) to L.

4. Sort L.

5. Delete every entry (Cross f, f) of L for which the value of Cross f appears
earlier in the list.

6. Return L.

Proposition 4.4. Algorithm 4.3 produces correct output and runs in time Õ(qn−2),
measured in arithmetic operations in Fq.

Proof. First we note that every PGL2(Fq) orbit contains an α as in step (3). We
can see this because starting with an arbitrary α ∈ Fqn , we can subtract an element
of Fq to zero out the coefficient of β1, and then we can scale by an element of F×

q

so that the first nonzero coefficient is 1. It follows that every orbit will have a
representative included in the output, and step (5) ensures that there is only one
representative given for each orbit. Thus the output is correct. Now we analyze
the timing.

For fixed n, Shoup’s algorithm [22] can construct a finite field Fqn in time Õ(
√
q),

and in polynomial time [15] we can find an embedding of our given Fq into this
copy of Fqn , so step (1) can be done within the stated time bound. Because n is
fixed, for each α the values of f and Cross f can be computed in time O(1), so
creating the list L takes time O(qn−2). Finally, sorting a list of length O(qn−2)
takes time Õ(qn−2) (see [13, §5.2.3]). □

As we will see, for composite values of n there is an algorithm for producing a
complete set of unique representatives for the PGL2(k) orbits of irreducible homo-
geneous polynomials of degree n that runs in time Õ(qn−3); see Section 8.3. An
algorithm of this time complexity that works for all n is given in [9].

5. Explicit coset representatives for PGL2(Fq) in PGL2(Fq2)

As part of our algorithm, we will need to have a complete set of unique repre-
sentatives for the right cosets of the subgroup PGL2(Fq) of PGL2(Fq2). In this
section we give an explicit set of such representatives.

Throughout this section, q is a prime power, ω is an element of Fq2 \ Fq, and γ
is a generator of the multiplicative group of Fq2 .

An element of PGL2(Fq2) is determined by where it sends ∞, 0, and 1, and
given any three distinct elements of P1(Fq2), there is an element of PGL2(Fq2)
that sends ∞, 0, and 1 to those three elements. Thus, we may represent elements
of PGL2(Fq2) by triples (ζ, η, θ) of pairwise distinct elements of P1(Fq2), indicating
the images of ∞, 0, and 1. If Γ is an element of PGL2(Fq), then Γ sends the element
(ζ, η, θ) of PGL2(Fq2) to (Γ(ζ),Γ(η),Γ(θ)).
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Proposition 5.1. Let B be the set {(ωγi + ωq)/(γi + 1) | 0 ≤ i < q − 1
}
. The

following elements give a complete set of unique coset representatives for the left
action of PGL2(Fq) on PGL2(Fq2):

(1) (∞, 0, 1);
(2)

{
(∞, 0, ω + a) | a ∈ Fq

}
;

(3)
{
(∞, ω, θ) | θ ∈ Fq2 with θ ̸= ω

}
;

(4)
{
(ω, ωq, θ) | θ ∈ B

}
;

(5)
{
(ω, η, θ) | η ∈ B, θ ∈ P1(Fq2) with θ ̸= ω and θ ̸= η

}
.

To prove this proposition, we need the following lemma.

Lemma 5.2. With notation as above, let G be the subgroup of PGL2(Fq) that fixes
the element ω. Then the set B from Proposition 5.1 is a complete set of unique
representatives for the left action of G on P1(Fq2) \ {ω, ωq}.

Proof. Let r := ω + ωq and let s := ωq+1. We check that the group G is equal to

G =

{[
a − sb
b a− rb

] ∣∣∣∣ [a : b] ∈ P1(Fq)

}
.

Let Φ :=
[−1 ωq

1 −ω

]
, so that Φ sends ω to ∞ and ωq to 0. We compute that

ΦGΦ−1 =

{[
a− bωq 0

0 a− bω

] ∣∣∣∣ [a : b] ∈ P1(Fq)

}

=

{[
(a− bωq)/(a− bω) 0

0 1

] ∣∣∣∣ [a : b] ∈ P1(Fq)

}
.

By Hilbert 90, the set of values attained by (a− bωq)/(a− bω) is equal to the set of
elements of Fq2 whose norms to Fq are equal to 1, and these elements are precisely
the powers of γq−1. Thus, the action of ΦGΦ−1 on P1(Fq2) \ {∞, 0} is generated
by multiplication by γq−1, and it is easy to see that the values 1, γ, . . . , γq−2 are
orbit representatives for this action. Applying Φ−1 to these orbit representatives
will give us orbit representatives for the action of G on P1(Fq2) \ {ω, ωq}, and we
see that Φ−1(γi) = (ωγi + ωq)/(γi + 1). □

Proof of Proposition 5.1. Suppose we are given an element (ζ, η, θ) of PGL2(Fq2).
We will show how to modify it by elements of PGL2(Fq) to put it into one of the
forms listed in the proposition. In the course of this demonstration, it will become
clear that the elements listed in the proposition do indeed lie in different PGL2(Fq)
orbits, because they are fixed by the following procedure.

Recall that ω is an element of Fq2 \Fq. Given a triple Γ := (ζ, η, θ) representing
an element of PGL2(Fq2), we do the following:

(1) If ζ lies in P1(Fq): In this case, we can apply an element of PGL2(Fq) that
moves ζ to ∞. Our element of PGL2(Fq2) can now be written (∞, η, θ), for
some new values of η and θ. We can now only apply elements of PGL2(Fq)
that fix ∞; that is, we are limited to the so-called ax+ b group.
(a) If η lies in Fq: In this case, we can use the ax + b group to move

η to 0. Our element of PGL2(Fq2) can now be written (∞, 0, θ), for
some new value θ. Now we can only apply elements of PGL2(Fq) that
fix ∞ and 0; that is, we are limited to scalar multiplication.
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(i) If θ lies in Fq: In this case, we can scale θ so that it is equal
to 1. We obtain the element (∞, 0, 1) listed in part (1) of the
proposition, and no further action of PGL2(Fq) is possible.

(ii) If θ does not lie in Fq: We can write θ = uω + v for elements
u, v of Fq, with u nonzero. There is a unique scaling that will
put θ into the form ω + a. We obtain an element from part (2)
of the proposition.

(b) If η does not lie in Fq: Using the ax + b group, we can move η to ω.
There is no further action of PGL2(Fq) that fixes ∞ and ω, so θ can
be any element of Fq2 other than ω. This gives us an element from
part (3) of the proposition.

(2) If ζ does not lie in P1(Fq): In this case, ζ is an element of Fq2 \ Fq, and
we can use the ax + b subgroup of PGL2(Fq) to move ζ to ω. The only
elements of PGL2(Fq) that we can apply once we have fixed ζ = ω are the
elements of the group G from Lemma 5.2.
(a) If η is equal to ωq: If η = ωq then the action of G fixes η. We know

that θ is different from both ω and ωq, so by Lemma 5.2 we can use G
to move θ to a unique element of the set B. This gives us an element
from part (4) of the proposition.

(b) If η is not equal to ωq: We can use G to move η to a unique element
of B. Once we have normalized η in this way, there is no further action
of PGL2(Fq) that fixes ω and η, so θ can be any element of P1(Fq2)
other than ω and η. This gives us an element from part (5) of the
proposition.

These cases enumerate all of the possibilities for our element (ζ, η, θ), so the propo-
sition is proved. □

6. Explicit coset representatives for PGL2(Fq) in PGL2(Fqp)

It is not necessary for proving our main theorem, but there is a result analogous
to Proposition 5.1 for the cosets of PGL2(Fq) in PGL2(Fqp), where p is an odd
prime. As before, we represent elements of PGL2(Fqp) as triples (ζ, η, θ) of distinct
elements of P1(Fqp), indicating where the given element of PGL2(Fqp) sends ∞,
0, and 1.

Proposition 6.1. Let q be a prime power and let p be an odd prime. Let C be a
set of orbit representatives for the action of PGL2(Fq) on Fqp \ Fq, let C∞ be a
set of orbit representatives for the action of the ax + b subgroup of PGL2(Fq) on
Fqp \Fq, and let C∞,0 be a set of orbit representatives for the multiplicative action
of F×

q on Fqp \ Fq.
The following elements give a complete set of unique coset representatives for

the left action of PGL2(Fq) on PGL2(Fqp):

(1) (∞, 0, 1);
(2)

{
(∞, 0, θ) | θ ∈ C∞,0

}
;

(3)
{
(∞, η, θ) | η ∈ C∞, θ ∈ Fqp with θ ̸= η

}
;

(4)
{
(ζ, η, θ) | ζ ∈ C, η, θ ∈ P1(Fqp) with η ̸= ζ and θ ̸= ζ and θ ̸= η

}
.

Proof. The proof is much like that of Proposition 5.1, but simpler. Suppose we are
given an arbitrary (ζ, η, θ) in PGL2(Fqp). If ζ and η both lie in P1(Fq), we can

Submitted to Algor. Num. Th. Symp.



14 EVERETT W. HOWE

move them to ∞ and 0, and then we can only modify θ by scaling by elements
of F×

q . If θ lies in Fq we get case (1), and if not we get case (2).

If ζ lies in P1(Fq) but η does not, we move ζ to ∞ using PGL2(Fq). Then the
only action of PGL2(Fq) we have left to us is the ax+ b subgroup. Since η lies in
Fqp \Fq, we can use this subgroup to move η to an element of C∞. Then θ can be
arbitrary, as long as it is different from ∞ and from η. This gives us case (3).

If ζ does not lie in P1(Fq) then we can move ζ using PGL2(Fq) so that it lies
in C, and there is no further action of PGL2(Fq) left available to us, because the

only elements of P1(Fq) with nontrivial PGL2(Fq) stabilizers lie in P1(Fq2). This
gives us case (4). □

This result is useful because we can compute the sets of representatives we need.

Algorithm 6.2. Orbit representatives for PGL2(Fq) acting on the elements of Fqn

that do not lie in proper subfields.

Input : A prime power q and an integer n ≥ 3.

Output : A complete set of unique representatives for the action of PGL2(Fq) on
the the elements of Fqn that do not lie in proper subfields.

1. Set L and M to be empty lists.

2. Construct a copy of Fqn with an Fq-basis (β1, . . . , βn) such that β1 appears
with nonzero coefficient in the representation of 1.

3. If n = 3 return a list containing the single element β2, and stop.

4. For every α ∈ Fqn that does not lie in a proper subfield, and whose
representation (a1, . . . , an) on the given basis has a1 = 0 and has ai = 1
for the first i with ai ̸= 0, do:

(a) Compute αqi for i = 1, . . . , n−1. If any of these conjugates is smaller
than or equal to α under a fixed ordering <, continue on to the next
value of α.

(b) Compute the minimal polynomial f of α.
(c) Find the (unique) irreducible factor g of Cross(f).
(d) Append the pair (g, α) to L.

5. Sort L.

6. Delete every element (g, α) of L such that g appears as a first entry of an
element earlier in the list.

7. For every (g, α) in L, do:

(a) For i = 0, . . . ,deg g − 1, append the element αqi to M .

8. Return M .

Proposition 6.3. Algorithm 6.2 produces a complete list of unique representatives
for the orbits of PGL2(Fq) acting on the elements of Fqn that lie in no proper
subfield. It runs in time Õ(qn−2).

Proof. When n = 3, the group PGL2(Fq) acts transitively on Pq3 \Fq, so step (3)
gives correct output. For n > 3, Algorithm 6.2 is a variation on Algorithm 4.3.
The only additional fact we must note is that there is an element of PGL2(Fq) that
takes α to one of its nontrivial conjugates if and only if the cross polynomial of f
is not irreducible, and that the order of each such element of PGL2(Fq) is equal
to the exponent e such that Cross(f) = ge. Thus, the Galois orbit of α contains
representatives of exactly deg g PGL2(Fq) orbits. □
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Algorithm 6.2 gives us a method to calculate the set C from Proposition 6.1.
The sets C∞ and C∞,0 can be computed in similar (but simpler) ways; we leave
the details to the reader.

7. Enumerating PGL2(Fq) orbit representatives for Symn(Fq)

In this section we present our algorithm for enumerating orbit representatives for
the action of PGL2(Fq) on Symn(Fq) in time Õ(qn−3), for n fixed and q varying.
The algorithm consists of a number of different algorithms, each addressing a subset
of elements of Symn(Fq). The problem is trivial when n ≤ 3, so we will always
assume that n ≥ 4, and for one case we will also demand that n be even. This is
sufficient for our application to enumerating hyperelliptic curves of genus g, where
n = 2g + 2 is even and at least 6. (See [9] for an algorithm that works for all n.)

Recall that an element of Symn(Fq) is a set A = {α1, . . . , αn} of n distinct

elements of P1(Fq) that is stable under the action of the Galois group of Fq over Fq.
An element of Symn(Fq) is primitive if the degree of each extension Fq(αi) over Fq

is equal to n. Every element A of Symn(Fq) can be written in a unique way (up to
order) as the union of a collection {Ai} of primitive elements Ai of Sym

mi(Fq), for
some sequence of integers mi with

∑
mi = n. The sequence (mi)i, listed in non-

increasing order, is the Galois type of A. If f is the monic homogeneous polynomial
whose zero set is A, then (mi)i is also the list of the degrees of the irreducible factors
of f , and we also refer to this sequence as the Galois type of f . We will enumerate
the PGL2(Fq) orbits of Sym

n(Fq) by enumerating each Galois type separately.
Let M := (m1,m2, . . . ,mr) be a Galois type for Symn(Fq), so that m1 ≥ m2 ≥

· · · ≥ mr > 0 and n = m1 + · · ·+mr. In the following subsections we show how to
enumerate the PGL2(Fq) orbits of the elements of Symn(Fq) of this Galois type,
based on the value of m1.

7.1. The case m1 = 1. Every element A of Symn(Fq) of this Galois type is simply
a collection of n distinct elements of P1(Fq). We can specify a standard form for
such elements A by considering all possible choices of three distinct points ai, aj ,
and ak in A, and using an element Γ of PGL2(Fq) to move those three points to
∞, 0, and 1, respectively. To this choice we associate the polynomial f of degree
n− 1 defined by

f := y
∏
ℓ ̸=i

(x− Γ(aℓ)y) .

Our standard form for A is the smallest polynomial f obtained in this way, under
an arbitrary total ordering < of the monic homogeneous polynomials of degree n.

Our algorithm for enumerating orbit representatives of this Galois type is as
follows.

Algorithm 7.1. Orbit representatives for PGL2(Fq) acting on the elements of
Symn(Fq) of Galois type (1, 1, . . . , 1).

Input : A prime power q and an integer n ≥ 4.

Output : A complete set of unique representatives for the action of PGL2(Fq) on the
monic homogenous polynomials of degree n and Galois type (1, 1, . . . , 1).

1. Set L to be the empty list, and set a1 := ∞, a2 := 0, and a3 := 1.

2. For every set {a4, . . . , an} of distinct elements of Fq \ {0, 1} do:
(a) Set f := y

∏n
i=2(x− aiy).
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(b) Set F := {Γ(f)}, where Γ ranges over the elements of PGL2(Fq) that
send three elements of {ai} to ∞, 0, and 1.

(c) If f is the smallest element of F under the ordering <, append f to L.

3. Return L.

Proposition 7.2. Algorithm 7.1 produces a complete set of unique representatives
for the orbits of PGL2(Fq) acting on the monic homogeneous degree-n polynomi-
als of Galois type (1, 1, . . . , 1). It runs in time Õ(qn−3), measured in arithmetic
operations in Fq. □

7.2. The case m1 = 2. When m1 = 2 the possible Galois types (m1, . . . ,mr)
consist of s values of 2 and t values of 1, where 2s+ t = n and s > 0. We present
two algorithms, one that applies when t ≥ 3 and one that applies when s ≥ 2. Since
we are assuming throughout that n ≥ 4, the only remaining case is when s = 1 and
t = 2, but that situation is handled by Theorem 3.6.

Algorithm 7.3. Orbit representatives for PGL2(Fq) acting on the elements of
Symn(Fq) of Galois type of the form (2, 2, . . . , 2, 1, . . . , 1), with s entries of 2 and t
entries of 1, where t ≥ 3.

Input : A prime power q, an integer n ≥ 4, and integers s and t with 2s + t = n
and t ≥ 3.

Output : A complete set of unique representatives for the action of PGL2(Fq) on
the monic homogenous polynomials of degree n with the given Galois type.

1. Set L to be the empty list, and set a1 := ∞, a2 := 0, and a3 := 1.

2. Create a list I2 of the monic irreducible homogeneous quadratics over Fq.

3. For every set {a4, . . . , at} of distinct elements of Fq \ {0, 1} and every set
{g1, . . . , gs} of distinct elements of I2 do:

(a) Set f := y
∏t

i=2(x− aiy) ·
∏s

i=1 gi.
(b) Set F := {Γ(f)}, where Γ ranges over the elements of PGL2(Fq) that

send three elements of {ai} to ∞, 0, and 1.
(c) If f is the smallest element of F under the ordering <, append f to L.

4. Return L.

Proposition 7.4. Algorithm 7.3 produces a complete set of unique representatives
for the orbits of PGL2(Fq) acting on the monic homogeneous degree-n polynomials
of Galois type (2, 2, . . . , 2, 1, . . . , 1), with s entries of 2 and t ≥ 3 entries of 1. It
runs in time Õ(qn−3), measured in arithmetic operations in Fq. □

Algorithm 7.5. Orbit representatives for PGL2(Fq) acting on the elements of
Symn(Fq) of Galois type of the form (2, 2, . . . , 2, 1, . . . , 1), with s entries of 2 and t
entries of 1, where s ≥ 2.

Input : A prime power q, an integer n ≥ 4, and integers s and t with 2s + t = n
and s ≥ 2.

Output : A complete set of unique representatives for the action of PGL2(Fq) on
the monic homogenous polynomials of degree n with the given Galois type.

1. Set L to be the empty list.

2. Let I1 be the set of polynomials {y} ∪ {x− ay : a ∈ Fq}.
3. Create a list I2 of the monic irreducible homogeneous quadratics over Fq.
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4. For every pair (f1, f2) of irreducible quadratic factors obtained from The-
orem 3.4 or Theorem 3.8, for every set {f3, . . . , fs} of elements of I2 such
that the quadratics f1, . . . , fs are distinct, and for every set {g1, . . . , gt} of
distinct elements of I1, do:
(a) Set f :=

∏s
i=1 fi ·

∏t
i=1 gi.

(b) Set F := {Γ(f)}, where Γ ranges over the elements of PGL2(Fq) that
send a pair of elements of {fi} to the representative of their PGL2(Fq)
orbit, calculated using the table mentioned at the end of Remark 3.9.

(c) If f is the smallest element of F under the ordering <, append f to L.

5. Return L.

Remark 7.6. The most direct way of implementing step (4)(b) involves comput-
ing the roots of various irreducible quadratics in a fixed copy of Fq2 . From [15,
Theorem 1.2], we know that this can be done in time polynomial in log q.

Proposition 7.7. Algorithm 7.5 produces a complete set of unique representatives
for the orbits of PGL2(Fq) acting on the monic homogeneous degree-n polynomials
of Galois type (2, 2, . . . , 2, 1, . . . , 1), with s ≥ 2 entries of 2 and t entries of 1. It
runs in time Õ(qn−3), measured in arithmetic operations in Fq. □

7.3. The case 3 ≤ m1 ≤ n− 1. Let (m1, . . . ,mr) be a Galois type with 3 ≤ m1 ≤
n− 1. When m1 > 3 we will make use of the list of PGL2(Fq) orbit representatives
of irreducible polynomials of degree m1 provided by Algorithm 4.3, which will not
exceed our claimed time bound of Õ(qn−3) because m1 − 2 ≤ n− 3. When m1 = 3
we will use the fact that there is exactly one PGL2(Fq) orbit of irreducible degree-3
polynomials, so we can take our favorite irreducible polynomial of degree 3 as the
sole orbit representative.

Algorithm 7.8. Orbit representatives for PGL2(Fq) acting on the elements of
Symn(Fq) of Galois type (m1, . . . ,mr), with 3 ≤ m1 ≤ n− 1.

Input : A prime power q, an integer n ≥ 4, and a Galois type with 3 ≤ m1 ≤ n−1.

Output : A complete set of unique representatives for the action of PGL2(Fq) on
the monic homogenous polynomials of degree n with the given Galois type.

1. Set L to be the empty list.

2. For each value of mi in the set {m2, . . . ,mr}, create a list Imi
of the monic

irreducible homogeneous polynomials of degree mi.

3. If m1 > 3, let L1 be the output of Algorithm 4.3 associated to the inputs
q and m1 and let S be the list of orbit representatives of irreducible poly-
nomials of degree m1 obtained as the second elements of each pair on the
list L1.

4. If m1 = 3 let S be the single-element list consisting of an arbitrary irre-
ducible polynomial of degree 3.

5. For every element f1 of S and every set of distinct polynomials {f2, . . . , fr}
with fi ∈ Imi

do:
(a) Set f :=

∏r
i=1 fi.

(b) Let M1 be the set of fi of degree m1 and set F := {Γ(f)}, where Γ
ranges over the elements of PGL2(Fq) that send an element of M to
its associated orbit representative, obtained by computing its cross
polynomial and using the lookup table L1 if m1 > 3 and by direct
calculation if m1 = 3.
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(c) If f is the smallest element of F under the ordering <, append f to L.

6. Return L.

Remark 7.9. As in the similar situation in Algorithm 7.5, we can accomplish
step (5)(b) by computing the roots of various irreducible polynomials of degree
m in a fixed copy of Fqm , and [15, Theorem 1.2] shows that we can do this in time
polynomial in log q.

Proposition 7.10. Algorithm 7.8 produces a complete set of unique representatives
for the orbits of PGL2(Fq) acting on the monic homogeneous degree-n polynomials
of the given Galois type. It runs in time Õ(qn−3), measured in arithmetic operations
in Fq.

Proof. The correctness of the algorithm is clear, because every PGL2(Fq) orbit
of the given Galois type has a representative considered by the algorithm, and
duplicates are prevented by steps (5)(b) and (5)(c).

For each mi in step (2), the time required to compute the list Imi
is Õ(qmi),

and since mi ≤ n − m1 ≤ n − 3 this is Õ(qn−3). The time required for step (3)
is Õ(qm1−2), and since m1 − 2 ≤ n − 3, this is also Õ(qn−3). And in step (5), we
consider O(qn−3) tuples (f1, . . . , fr), and each takes time Õ(1) to process. Thus,
the total time required is as claimed. □

7.4. The case m1 = n. This is the first and only case in which we will require n
to be even. The case n = 4 is covered by Theorems 1.2 and 3.8, so we may assume
that n ≥ 6. Note that we cannot just apply Algorithm 4.3, because that takes time
Õ(qn−2), and we want an algorithm that takes time Õ(qn−3).

Algorithm 7.11. Orbit representatives for PGL2(Fq) acting on the elements of
Symn(Fq) of Galois type (n), where n ≥ 6 is even.

Input : A prime power q and an even integer n ≥ 6.

Output : A complete set of unique representatives for the action of PGL2(Fq) on
the monic irreducible homogenous polynomials of degree n.

1. If n = 6, let M be the list consisting of a single monic irreducible cubic
homogeneous polynomial in Fq2 [x, y].

2. If n = 8, let M be the list consisting of the monic irreducible quartic ho-
mogeneous polynomials in Fq2 [x, y] given by Theorem 1.2 or Theorem 3.8
applied to the field Fq2 .

3. If n ≥ 10, use Algorithm 4.3 to create a list M of orbit representatives
for the action of PGL2(Fq2) acting on the monic irreducible homogeneous
polynomials of degree n/2 in Fq2 [x, y].

4. Let G be the list of coset representative for the left action of PGL2(Fq)
on PGL2(Fq2) from Proposition 5.1.

5. Let N be the list consisting of Γ(f), for all Γ ∈ G and f in M .

6. Let L be the list of all products gg(q) for g ∈ N , where the superscript (q)
means to raise each coefficient of a polynomial to the qth power.

7. Let L′ be the list of all pairs (Cross f, f) for f ∈ L.

8. Sort L′, and then delete every entry (Cross f, f) where Cross f appears as
the first element of an earlier entry in L′.

9. Let L′′ be the list of second elements of the entries in L′.
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10. Return L′′.

Proposition 7.12. Algorithm 7.11 produces a complete set of unique represen-
tatives for the orbits of PGL2(Fq) acting on the monic irreducible homogeneous
polynomials of degree n. It runs in time Õ(qn−3), measured in arithmetic opera-
tions in Fq.

Proof. To prove correctness, we must show that the list L′′ consists of unique
representatives for each PGL2(Fq) orbit of irreducible polynomials of degree n
over Fq. First we show that it contains at least one representative from each orbit.

We know that every monic irreducible homogeneous polynomial f of degree n in
Fq[x, y] can be written gg(q) for a monic irreducible homogeneous polynomial g in

Fq2 [x, y] of degree n/2, and g is unique up to g ↔ g(q). If we can show that the list
N contains an element in every orbit of PGL2(Fq) acting on the left on the set S
of monic irreducible homogeneous polynomials of degree n/2 in Fq2 [x, y], then that
will show that L contains at least one element in every orbit of PGL2(Fq) acting on
the monic irreducible homogeneous polynomials of degree n in Fq[x, y]. But since
M is a list of representative for the orbits of PGL2(Fq2) acting on S, and since G
consists of coset representatives for PGL2(Fq) acting on PGL2(Fq2), this is clear.
Thus, L contains a representative from each orbit of PGL2(Fq) acting on the set
of monic irreducible homogeneous polynomials of degree n in Fq[x, y]. In fact, L
contains at most two such representatives for each orbit, because of the uniqueness
of g up to g ↔ g(q).

By construction (and by Theorem 4.2), the list L′′ contains at most one repre-
sentative from each orbit of PGL2(Fq) acting on the irreducible polynomials. But
we already saw that it contains at least one such representative. Therefore, it is a
complete list of unique representatives.

The only thing left to check is that the algorithm runs in time Õ(qn−3). Steps
(1) through (3) take time at most Õ((q2)(n/2−2)) = Õ(qn−4). Step (4) takes time
O(q3), and step (5) takes time Õ(qn−3) because there are O(q3) elements of G and
O(qn−6) elements of M . Steps (6) through (9) also take time Õ(qn−3), because the
lists N , L, and L′ contain O(qn−3) elements. □

8. Additional efficiencies

In this section we mention a few ways that the algorithms in Section 7 can be
improved. The asymptotic complexity of the revised algorithms is still Õ(qn−3),
but the speedups in this section improve the algorithms by constant factors.

8.1. Avoiding repeated orbits. Several of our algorithms include a step to deal
with elements of Symn(Fq) that can be normalized (in the manner of the particular
algorithm) in several ways. This happens in steps (2)(b) and (c) of Algorithm 7.1,
in steps (3)(b) and (c) of Algorithm 7.3, in steps (4)(b) and (c) of Algorithm 7.5,
and in steps (5)(b) and (c) of Algorithm 7.8. In Algorithm 7.8, for example, this
is needed when there is more than one occurrence of the number m1 in the Galois
type. The algorithm normalizes elements of Symn(Fq) of the given Galois type
(represented by monic homogeneous polynomials of degree n) by absorbing all of
the action of PGL2(Fq) into one factor of degree m1. If there is more than one
such factor, there is more than one normalization of the same polynomial, and the
algorithm has to identify the resulting repeated orbits and return only one of them.
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(There is also more than one normalization if a factor of degree m1 has nontrivial
PGL2(Fq) stabilizer, but that is rare.)

The most straightforward way to avoid this situation is to handle Galois types
withm1 occurring more than once in a different way. For instance, if we are working
with the Galois type (4, 4, 3, 1), instead of normalizing on the factors of degree 4 (for
which there are two choices), we can instead normalize on the factor of degree 3.
This technique can be used to handle every Galois type that includes at least one
value of m that is at least 3 and that occurs just once in the type. Similarly, if
the value 2 occurs in a type exactly twice, we can normalize the product of two
irreducible quadratics.

If we have a Galois type with m1 ≥ 3 where this is impossible — for example,
(4, 4, 3, 3) — we have another option. We use a modified version of Algorithm 4.3
where we skip step (5); this gives us a list of all monic irreducible polynomials of
degree m1, grouped by their cross polynomials. Then, in Algorithm 7.8, in step (5)
we do not consider all sets of distinct polynomials {f2, . . . , fr}; instead, we demand
that the cross polynomial of every fi whose degree is equal to m1 not appear earlier
on the sorted list that that of f1. If in fact all of the additional cross polynomials
are different from the cross polynomial of f1, the orbit representative we obtain will
not be repeated unless the PGL2(Fq) stabilizer of f1 is nontrivial, which is unusual
(and easy to check). If some of the additional cross polynomials are the same as
that of f1, then we keep track of this orbit on a separate list, and deduplicate this
(much smaller) list separately.

8.2. Treating the Galois types (n − 1, 1) and (n − 2, 1, 1) more efficiently.
Consider the Galois type (n − 1, 1), corresponding to a product of a linear homo-
geneous polynomial with an irreducible homogeneous polynomial of degree n − 1.
Instead of absorbing all the PGL2(Fq) action into the choice of the irreducible
polynomial of degree n−1, we can instead demand that the linear polynomial have
its zero at ∞. Then we have to find representatives for irreducible homogeneous
polynomials of degree n − 1 up to the ax + b group. We can accomplish this by
modifying the technique of Algorithm 4.3: We construct a copy of Fqn−1 , we choose
a basis (β1, . . . , βn−1) such that β1 appears with a nonzero coefficient in the repre-
sentation of 1, and then we simply list the minimal polynomials of elements whose
representation on the given basis begins (0, . . . , 0, 1, . . .), with at least one 0 at the
beginning and with the first nonzero element being 1. We can also take care to
produce only one element from each Galois orbit at this stage, in order to avoid
using cross polynomials to deduplicate the list later.

For the Galois type (n − 2, 1, 1), we look for orbit representatives of the form
xyf for irreducible homogeneous f of degree n − 2. We can modify f only by
replacing (x, y) with (cx, y) or (cy, x), so we can construct a copy of Fqn−2 with basis
(β1, . . . , βn−2), list the minimal polynomials of the elements whose representations
on the given basis have their first nonzero element equal to 1, and then deduplicate
as usual.

8.3. More efficient computations of PGL2 orbits of irreducibles. In step (3)
of Algorithm 7.8, we obtain a list of orbit representatives for irreducible polynomials
of a given degree m by using Algorithm 4.3. If m is composite, we can use a more
efficient algorithm based on the idea of Algorithm 7.11. Namely, if m = pm′, we
can compute orbit representatives for PGL2(Fqp) acting on irreducible polynomials
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in Fqp [x] of degree m
′, and then use Proposition 5.1 or Proposition 6.1 to list coset

representatives for PGL2(Fq) in PGL2(Fqp). As in Algorithm 7.11, we can combine
these two lists to get a complete list of unique orbit representatives for PGL2(Fq)
acting on irreducible polynomials of degree n.

In fact, what we have just shown is that if n is composite, we can compute a
complete set of unique representatives for the orbits of PGL2(Fq) acting on the
monic irreducible homogeneous polynomials of degree n in time Õ(qn−3). This
leaves open the case when n is prime. In a followup paper [9], we explain a com-
pletely different technique that will produce these orbit representatives for prime n
— indeed, for odd n — in time Õ(qn−3), but no longer deterministically, because
the method relies on factoring polynomials of bounded degree in polynomial time.

9. Implementations for genus 2 and genus 3

We have implemented our algorithm for hyperelliptic curves of genus 2 and
genus 3 in Magma [2]. Magma files with the implementations can be found in
several places: in the ancillary files attached the the arXiv version of this paper, on
the author’s web page, and in the GitHub repository associated to this paper [10].
In addition to the improvements described in Section 8 and others of a similar
nature, our code for the genus-2 case includes an improvement for the Galois type
(6) that allows us to skip the deduplication step in Algorithm 7.11. The basic idea
is to choose the irreducible cubic polynomial in step (1) of Algorithm 7.11 so that
it lies in Fq[x, y] and so that its zeros are permuted by the order-3 element

[
0 −1
1 −1

]
of PGL2(Fq), so that it is easier to keep track of which elements of PGL2(Fq2) in
G give rise to homogeneous sextic polynomials f ∈ Fq[x, y] that lie in the same
PGL2(Fq) orbit. The details are too lengthy to include here, but are spelled out in
the comments in the code, as well as in the followup paper [9]. Other improvements
are described in the comments as well.

For our genus-3 implementation, we did not spend as much time optimizing, and
there are very likely improvements that can be made.

We ran some timing experiments to compare our Magma code to the built-in
Magma functions that implement the algorithms of Mestre [19] and Cardona and
Quer [4] for genus-2 curves, and the algorithms of Lercier and Ritzenthaler [16] for
genus-3 curves. We give some sample timings in Table 1, taken by running Magma
(V2.28-8) on one core of an Apple M1 Max processor with 64GB RAM. For our
algorithm, we divide our timings into two steps: computation of the PGL2(Fq)

orbit representatives of Sym2g+2(Fq) and computation of the isomorphism classes
of curves. Our algorithm includes a computation of the automorphism groups of
the curves, which gives us a consistency check, since the sum over all hyperelliptic
curves of genus g over Fq of 1 over the size of the automorphism group is equal to
q2g−1 [3, Proposition 7.1].

We compare our genus-2 timings to those of applying the Magma command
Twists(HyperellipticCurveFromG2Invariants([a,b,c]))

to all triples (a, b, c) of elements of Fq and then retrieving the polynomials that
define the resulting curves. For q > 127 we estimate the time for the Magma
builtin functions by running the above command on 10,000 random triples (a, b, c)
and multiplying the time taken by q3/104; these estimates are indicated with aster-
isks. We see that our genus-2 code is running approximately 90 times faster than
Magma’s internals.
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Table 1. Sample timings (in seconds) to compute all hyperelliptic
curves of genus 2 and 3 over Fq. The second column gives tim-
ings for Magma’s built-in routines for genus 2. The third through
fifth columns give timings for the techniques of this paper: the
third for computing PGL2(Fq) orbit representatives of Sym

6(Fq),
the fourth for computing genus-2 curves from these representa-
tives, and the fifth for the total time for both. Similarly, the sixth
through ninth columns give timings for computing genus-3 curves.
Timings marked with an asterisk are estimates.

Genus 2 Genus 3

This paper This paper

q Magma Sym6 Curves Total Magma Sym8 Curves Total

17 7.9 0.16 0.02 0.18 5274 20 1 21
31 52.7 0.77 0.06 0.83 99463∗ 304 14 318
59 327.1 3.85 0.25 4.10 2408665∗ 5932 479 6411
127 3308 36 2 38
257 27448∗ 290 10 300
509 211655∗ 2307 76 2384

We compare our genus-3 timings to those of applying the Magma command
TwistedHyperellipticPolynomialsFromShiodaInvariants(S)

to all Shioda invariants with nonzero discriminants, obtained by applying
ShiodaAlgebraicInvariants(V : ratsolve := true)

to every element V of the 5-dimensional weighted projective space over Fq with
weights [2, 3, 4, 5, 6, 7] and discarding those with discriminant 0. For q = 31 and
q = 59 we estimate Magma’s times as before. It appears that our genus-3 code is
running several hundred times faster than Magma’s internals.

For genus-2 curves over F509, our code spent 42.46% of the time on Galois
type (6), 16.06% on type (3, 3), and 12.55% on type (5, 1), with the remaining 29%
of the time divided among the remaining eight types. For genus-3 curves over F59,
our code spent 26.49% of the time on Galois type (7, 1), 25.77% on type (8), 19.45%
on type (2, 2, 2, 2), and 7.87% on type (4, 4), with the remaining 20% of the time
divided among the remaining eighteen types.

We note that memory handling issues may have slowed the genus-3 computation
for q = 59, which reemphasizes the point, made in the introduction, that it would
be good to have a version of our algorithm for higher genera that requires less space.
We have not yet implemented the low-memory algorithm from [9] to see whether
that will help improve our timings for larger q.
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[6] Dušan Dragutinović, Computing binary curves of genus five, J. Pure Appl. Algebra 228

(2024), no. 4, Paper No. 107522, 19. MR 4642980

[7] Sarah Frei, The a-number of hyperelliptic curves, Women in numbers Europe II, Assoc.
Women Math. Ser., vol. 11, Springer, Cham, 2018, pp. 107–116. MR 3882708

[8] Everett W. Howe, Curves of medium genus with many points, Finite Fields Appl. 47 (2017),
145–160. MR 3681085

[9] , Enumerating places of P1 up to automorphisms of P1 in quasilinear time, 2024, in

preparation.
[10] , everetthowe/hyperelliptic, 2024, online GitHub repository, accessed March 2024.

[11] Everett W. Howe, Enric Nart, and Christophe Ritzenthaler, Jacobians in isogeny classes of

abelian surfaces over finite fields, Ann. Inst. Fourier (Grenoble) 59 (2009), no. 1, 239–289.
MR 2514865

[12] Yongyuan Huang, Kiran S. Kedlaya, and Jun Bo Lau, A census of genus 6 curves over F2,

2024. arXiv:2402.00716 [math.AG]
[13] Donald E. Knuth, The art of computer programming. Vol. 3: Sorting and searching, second

ed., Addison-Wesley, Reading, MA, 1998. MR 3077154

[14] Tetsuo Kodama, Jaap Top, and Tadashi Washio, Maximal hyperelliptic curves of genus three,
Finite Fields Appl. 15 (2009), no. 3, 392–403. MR 2516433

[15] Hendrik W. Lenstra, Jr., Finding isomorphisms between finite fields, Math. Comp. 56 (1991),
no. 193, 329–347. MR 1052099

[16] Reynald Lercier and Christophe Ritzenthaler, Hyperelliptic curves and their invariants: geo-

metric, arithmetic and algorithmic aspects, J. Algebra 372 (2012), 595–636. MR 2990029
[17] Qing Liu, Algebraic geometry and arithmetic curves, Oxford Graduate Texts in Mathematics,

vol. 6, Oxford University Press, Oxford, 2002, Translated from the French by Reinie Erné,
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