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Abstract. For nonzero k let Ek be the “Mordell curve” y2 = x3 + k. Let
(1) D = 72513834653847828539450325493 = 41p

Where p is the prime 1768630113508483622913422573. Then the elliptic curve E16D

has rank r = 16 over Q. Because Ek is always 3-isogenous with E−27k, it follows that
E−432D has rank 16 as well. This was the first pair of Mordell curves known to have rank
at least 16; we now prove that it has rank exactly 16. Having shown r ≥ 16 by exhibiting
16 independent points, we must prove r ≤ 16 by descent. This leads us to compute the
3-torsion in the class group of Q(

√
−3D ). The discriminant of this field has absolute

value |∆| = 3D > 2 · 1029, so large that it is not routine to compute the class group
without a GRH assumption. We compute it unconditionally using the Burgess bounds
on short character sums, which reduce the calculation from Õ(|∆|1/2) to |∆|1/4+ϵ, and
Treviño and Booker’s explicit bounds on the constants in the Burgess bounds, to make
the factor |∆|ϵ explicit as well. Along the way we compute unconditionally the class
group of Q(

√
−3D), whose 3-rank of 8 is the current record for the class group of a

quadratic number field.

0. Introduction

The general elliptic curve of j-invariant zero is the “Mordell curve”
(2) Ek : y2 = x3 + k

for nonzero k. The Mordell–Weil ranks of such curves Ek over Q have long been of interest,
both as a natural question in its own right and because of connections to other arithmetic
questions and quantities, including the rank of the 3-torsion subgroup of quadratic number
fields Q(

√
k). In [Bhargava–Elkies–Shnidman 2019] the average rank of Ek is shown to

be bounded as k varies in Z (or in any arithmetic progression in Z), but it is not known
whether individual curves Ek can have arbitrarily large rank. In [Elkies 2016] we gave the
first known examples of a curve Ek of rank at least 16, improving the previous record of 15
[Elkies 2009]. But at the time we could not prove unconditionally that our curve’s rank is
exactly 16, only that it is at least 16 (by exhibiting 16 rational points and checking their
independence). In this paper we give an unconditional proof.
It is well-known (see (5) below) that Ek and E−27k are related by 3-isogenies and thus have
the same rank. We prove:

Theorem 1. Let
(3) D = 72513834653847828539450325493 = 41 · 1768630113508483622913422573.
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2 NOAM D. ELKIES

Then the Mordell–Weil groups E16D(Q) and E−432D(Q) are free abelian groups of rank 16.
The 16 points tabulated in (10) are independent in the Mordell–Weil group E16D(Q), and
the 16 points tabulated in (9) are independent in the Mordell–Weil group E−432D(Q).

This k, like previous records, was found by applying the Mestre–Nagao heuristic (large
partial sums of − log L(E, 1) suggest large rank of E) to a family of curves Ek of moderately
large rank, using the sieve technique described in [Elkies–Klagsbrun 2020, §3] to search more
efficiently. Further details will appear elsewhere; here we are concerned with proving the
rank unconditionally.
Once we had the high-rank candidate k it was not hard to find the 16 points Pi or Qj and
check that they are independent. But to complete the proof of Theorem 1 we must also show
that the rank is no larger than 16, and this requires a descent.1 The difficulty of this descent
is intermediate between those of record-rank and near-record-rank curves with nontrivial
torsion, such as those of [Elkies–Klagsbrun 2020], and (near-)record curves with trivial
torsion and isogeny class, such as those analyzed in [Klagsbrun–Sherman–Weigandt 2016].
If E/Q has a torsion point P of order l then the descent via l-isogenies between E and
E/⟨P ⟩ requires only factorization in Z and Z[µl], which is routine for all high-rank E seen
so far, and is likely to remain routine for the foreseeable future. For unconstrained E, the
simplest descent available is a 2-descent, which requires computing the 2-torsion subgroup
of the class group of the 2-torsion field Q(E[2]), or of a cubic subfield in the usual case that
Gal(Q(E[2])/Q) ∼= S3. This is not yet feasible to do unconditionally, and it was already
a significant advance when [Klagsbrun–Sherman–Weigandt 2016] could determine the rank
assuming the GRH (generalized Riemann hypothesis) “only” for number fields rather than
for the elliptic-curve L-function L(E, s).
When E is a Mordell curve Ek, the cubic subfields of Q(E[2]) are isomorphic with the “pure
cubic field” Q(k1/3), whose class group is no easier to compute than that of an unconstrained
cubic field of the same size; Magma [Bosma–Cannon–Playoust 1997] can already compute
the class group under GRH, but this is just because our D is much smaller than the coef-
ficients of the curves analyzed in [Klagsbrun–Sherman–Weigandt 2016]. However, Ek also
has a 3-isogenous curve E−27k, which allows a simpler descent involving 3-torsion in the
quadratic field Q(

√
k) and its “mirror field” Q(

√
−3k). Not only are those fields’ class

groups much easier to compute under GRH than the class group of Q(k1/3) (seconds rather
than hours in Magma); for k = 16D we find that it is even possible, with rather more effort,
to unconditionally compute the class group, and thus determine the exact rank of Ek. The
present paper documents the resulting proof of Theorem 1.
For our curves the descent via isogenies between Ek and E−27k accounts for most of the
rank of these curves via the rank of the 3-torsion subgroups of the class groups of Q(

√
k)

and Q(
√

−3k). We find that these real and imaginary quadratic fields have class groups of
3-rank 7 and 8 respectively, which is the current record. This connection was already used
in [Quer 1987], where three curves Ek of rank 12 led to three imaginary quadratic fields
Q(

√
k) each of 3-rank 6 and with a mirror field of 3-rank 5.

The rest of the paper proceeds as follows. First we review the 3-isogenies φ, φ̂ between
Mordell curves Ek and E−27k, and exhibit 16 independent points on each of E16D and
E−432D. We then carry out the descents via the isogenies φ, φ̂ and reduce the proof of

1And some luck: a descent computes a Selmer group, which gives only an upper bound on the rank, and
this bound is not necessarily sharp because the Tate–Šafarevič group might intervene. But for record-rank
curves such as our E16D it is rare for the Selmer bound to be even larger than the arithmetic rank.
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Theorem 1 to the calculation of 3-ranks of the class groups of the quadratic number fields
of discriminants D and −3D. We exhibit the structure of these class groups assuming GRH,
and then adapt the technique of [Booker 2006] to determine unconditionally the class group
of Q(

√
D) using the explicit constants of [Booker 2006, Treviño 2015] for the bounds of

[Burgess 1962] on short character sums. Finally, we note that our curves also yield a pure
cubic field Q(k1/3) whose class group has 2-rank at least 15 (and exactly 15 under GRH),
and announce a curve Ek of rank 17 to which our analytic technique does not apply because
k is the product of two large primes.
Acknowledgement. I am grateful to the referees for their careful reading of the initial
manuscript and for their detailed corrections and suggestions.

1. The 3-isogenous curves E16D and E−432D, and the points Pi, Qj

1.1. The endomorphism ring; the isogenies φ : Ek → E−27k and φ̂ : E−27k → Ek.
We work over an arbitrary field F of characteristic zero. Let ρ be a cube root of unity, and
ρ̄ = ρ2 its conjugate, so ρ−ρ̄ is a square root of −3; if F ⊆ C, we may take ρ = (−1+

√
3 i)/2.

Then for every k the endomorphism ring End
F

(Ek) is isomorphic to Z[ρ], with ρ acting
by (x, y) 7→ (ρx, y). It is well-known that if k ∈ F ∗ then the curves Ek and E−27k, which
are each other’s quadratic twist by F (ρ) = F (

√
−3 ), are also related by 3-isogenies defined

over F , each with kernel consisting of the point at infinity together with the two points
where x = 0. Note that this is the subgroup of E(F ) fixed by ρ, and thus the kernel of
ρ − ρ̄ =

√
−3. Using the group law on the elliptic curve Ek, we compute that if P ∈ Ek(F )

has coordinates (x, y) then

(4) (ρ − ρ̄)(P ) = (ρx, y) + (ρ̄x, −y) =
(

−x3 + 4k

3x2 ,
(x3 − 8k)y
(ρ − ρ̄)3x3

)
.

As expected, this point is in Ek(F (ρ)), and its negative can be obtained by switching ρ with
ρ̄, which lets us identify (4) with an F -rational point on the quadratic twist. Multiplying
x by −3 = (ρ − ρ̄)2 and y by (ρ − ρ̄)3 gives the coordinates of this point. We have thus
constructed the 3-isogeny

(5) φ : Ek → E−27k, (x, y) 7→
(x3 + 4k

x2 ,
(x3 − 8k)y

x3

)
,

whose kernel consists of the origin and the points (x, y) = (0, ±
√

k). Applying the same
formula with k replaced by −27k gives a map from E−27k to E729k. Now E729k is identified
with Ek by dividing x by 9 and y by 27; thus we obtain the dual isogeny

(6) φ̂ : E−27k → Ek, (x, y) 7→
(x3 − 108k

9x2 ,
(x3 + 216k)y

27x3

)
,

with kernel {0, (0, ±
√

−27k )}. We can check that φ̂◦φ and φ◦φ̂ are the multiplication-by-3
maps on Ek and E−27k respectively, for instance by checking that for large x, y (that is,
near the origins of Ek and E−27k) these maps φ̂ ◦ φ and φ ◦ φ̂ multiply the local coordinate
x/y by 3 + o(1).

1.2. The curves E16D and E−432D and their minimal models. For any field F not
of characteristic 2 or 3, and any k, k′ ∈ F ∗, the curves Ek and Ek′ are isomorphic if and
only if k′/k ∈ F ∗6. Thus for F = Q each Mordell curve is isomorphic to a unique curve Ek

with k ∈ Z that is free of sixth-power factors. Given such k, the model y2 = x3 + k for Ek

is minimal unless k ≡ 16 mod 64, when the minimal model is y2 + y = x3 + (k − 16)/64,
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4 NOAM D. ELKIES

obtained from Ek/64 by replacing y by y + 1/2. This is the case for our k = 16D, so the
minimal model of E16D is

(7) y2 + y = x3 + D − 1
4 = x3 + 18128458663461957134862581373.

This curve has discriminant −27D2 and conductor 27D2; likewise E−432D has minimal
model

(8) y2 + y = x3 − 27D + 1
4 = x3 − 489468383913472842641289697078,

again with conductor 27D2 and this time with discriminant −39D2.
We next exhibit 16 independent points on each of these curves. Even with coefficients
as large as those of (7,8), it is still feasible to search for integral points with x of size
comparable with |k|1/3, and this turns out to be sufficient. Curiously such a search suc-
ceeds more quickly for the slightly more complicated curve E−432D, even though E16D and
E−432D have the same regulator (they are related by 3-isogenies, and each of E16D(Q) and
E−432D(Q) contains the image of the other with the same index 38). Using Stoll’s pro-
gram ratpoints [Stoll 2008], later ported into gp [BBBCO 1998–2023] as ellratpoints
and hyperellratpoints, it takes only a minute or so to find all integers x ∈ [0, 1012] such
that x3 − 432D is a square; this is several thousand times faster than 1012 calls to gp’s
issquare command or the corresponding command in a comparable package.2 We find 31
such x. Using the height pairing on E−432D we compute that these points generate a group
of rank 16. We then sort the pairs (x, ±y) by increasing canonical height and extract the
lexicographically first generating set. Choosing from each pair the point with y > 0 yields
the following 16 independent points Qj (1 ≤ j ≤ 16) on E−432D:

2ratpoints still takes time Õ(N) to find all integer solutions of P (x) = y2 with x in an interval of
length N , but with much smaller constants, because most candidates x are excluded with a sieve, without
ever testing whether the large integer P (x) is a square. Asymptotically, it is even faster to use lattice
reduction techniques as in [Elkies 2000]. In our setting x3, y2, and x3 − y2 are of comparable size, so
we cannot use our technique for finding all small nonzero values of |x3 − y2| with x < N in time only
Õ(N1/2); but we can at least use linear approximations to x3/2 to reduce the runtime to Õ(N5/6), still
using negligible space. But N = 1012 is not large enough for this to give much if any improvement compared
with ratpoints/(hyper)ellratpoints.
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(9)

j x(Qj) y(Qj) ĥ(Qj)
1 7902580710 63670717606558 21.874
2 9243066342 547910842668385 21.962
3 9384872862 580613609811649 21.971
4 10588813590 835332795310558 22.044
5 11276039694 971735349657982 22.083
6 14415958344 1583178444925222 22.248
7 14600918460 1619646563246566 22.257
8 38242987644 7445931730687462 23.028
9 31840756833/4 977373412490165/8 23.264

10 32498192145/4 1731017073186653/8 23.275
11 7916896660 82103281566566 23.339
12 8045520694 176978571769182 23.348
13 8702884360 411934199691558 23.392
14 12861701800 1279905353076441 23.635
15 22606480144 3326205023518937 24.051
16 202406423745/4 90889676714539589/8 24.664

For E16D we could proceed in the same way, though it is somewhat harder than the com-
putation for E−432D, even though we find a Mordell–Weil subgroup of the same regulator.
Alternatively, having found a rank-16 subgroup of E−432D(Q), we can compute its preim-
age under φ in E16D(Q). Either way we find a rank-16 group whose lexicographically first
generating set comprises the following points Pi (1 ≤ i ≤ 16):

(10)

i x(Pi) y(Pi) ĥ(Pi)
1 1061832153 139016765771325 22.181
2 −2069581821 96250143600728 22.212
3 2323084809 175115687339501 22.303
4 2437726383 180595326275964 22.318
5 3097225419 218722516138736 22.407
6 7619958189 678654480211793 22.970
7 13493940633 1573274288396285 23.446
8 15245095569 1887136964766261 23.554
9 6376192377/4 1191407043318535/8 23.609

10 17844824169 2387591696553138 23.696
11 5948344741/9 3664166411156266/27 24.359
12 7271819311/9 3687841575833417/27 24.365
13 −11236359299/9 3434674826973187/27 24.375
14 31140274567/9 6588845927720308/27 24.655
15 −26120241831/16 7512202525369347/64 24.965
16 −1185892731/25 16830196043015853/125 25.370

2. The and φ- and φ̂-descents; the class groups of Q(
√

D ) and Q(
√

−3D )

2.1. From φ- and φ̂-descents to 3-torsion in class groups of Q(
√

D ) and Q(
√

−3D ).
Suppose in general that D is an integer such that D ≡ 1 mod 4, so the minimal model of
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E16D is y2 + y = x3 + (D − 1)/4 as in (7), and that D is not a square. Working in the
E16D[φ]-torsion field Q(

√
D), we have the factorization

(11) x3 = y2 + y − D − 1
4 =

(
y + 1 +

√
D

2

)(
y + 1 −

√
D

2

)
,

with each factor y + (1 ±
√

D)/2 being a Weil function on E16D. Thus we have a homo-
morphism δ : E16D(Q) → Q(

√
D)×/(Q(

√
D)×)3 that takes any nonzero (x, y) to the class

of y + (1 +
√

D)/2, with ker δ = φ̂(E−432D(Q)). We claim:
Lemma 1. Suppose the integer D is squarefree, congruent to 1 mod 4, and not equal to 1
or −3. Then the image of δ is contained in the subgroup of Q(

√
D)×/(Q(

√
D)×)3 consisting

of cosets [a] such that 3|vq(a) for all primes q of Q(
√

D).

Note that the rank of this subgroup is the sum of the ranks of the unit group and the
3-torsion of the class group of Q(

√
D ).

Proof. Write x, y in lowest terms as (x, y) = (m/d2, n/d3) for some integers m, n, d with
d > 0, and multiply the factorization (11) by d6 to obtain a factorization

(12) m3 =
(

n + 1 +
√

D

2 d3
)(

n + 1 −
√

D

2 d3
)

in the ring of integers OD of Q(
√

D). We claim that the two factors are relatively prime.
Indeed, suppose both factors are contained in some prime ideal q of OD. Then so is their
sum

√
D d3, so either q|d or q|

√
D. If q|d then q|n, so y = n/d3 is not in lowest terms (if

two rational integers are coprime in Z then they remain coprime in OD). If q does not
divide d then q is odd and contains 2n + d3, so gcd(2n + d3, D) ̸= 1 in Z. Letting q be
a common prime factor of 2n + d3 and D, we observe that (2n + d3)2 = 4m3 + Dd6 so
q|m and vq(D) ≥ 2, contradicting our hypothesis that D be squarefree. Thus the factors
n + (1 ±

√
D)/2 are relatively prime as claimed. Therefore

(13) 3 | vq

(
n + 1 ±

√
D

2 d3
)

for all primes q of OD. Since also 3|vq(d3), the lemma is proved. □

For E−432D, we likewise define a homomorphism δ̂ : E−432(Q) → Q(
√

−3D)×/(Q(
√

−3D)×)3

that takes any nonzero (x, y) to the class of y + (1 +
√

−3D)/2, with ker δ̂ = φ(E16D(Q)).
As with δ, we have:
Lemma 2. Suppose the integer D is squarefree, congruent to 1 mod 4, and is neither a multiple
of 3 nor equal to 1. Then the image of δ̂ is contained in the subgroup of Q(

√
−3D)×/(Q(

√
−3D)×)3

consisting of cosets [a] such that 3|vq(a) for all primes q of Q(
√

−3D).

The additional assumption that D is not a multiple of 3 still holds for our D = 41p.

Proof. We proceed as in the proof of Lemma 1, starting with the factorization

(14) m3 =
(

n + 1 +
√

−27D

2 d3
)(

n + 1 −
√

−27D

2 d3
)

.

The only change occurs when q is the prime of O−3D above the ramified rational prime 3,
and q does not divide d. In this case vq(D) = 3, so (2n + d3)2 = 4x3 + Dd6 is possible; but
then vq(2n + d3) ≥ 2, so each of the factors in (14) has the same q-valuation as

√
−27D,

which is 3. Thus even in this new case the valuation is a multiple of 3 and we are done. □
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Combining these two lemmas, we find:
Proposition 2. Suppose the integer D is squarefree, congruent to 1 mod 4, and is neither
a multiple of 3 nor equal 1. Then the rank of E16D is at most the sum of 1 and the 3-ranks
of the class groups of Q(

√
D) and Q(

√
−3D).

Proof. Let r be the rank of E16D. Under our hypotheses, E16D has trivial torsion, so
3r = [E16D(Q) : 3E16D(Q)]

= [φ̂(E−432D(Q)) : 3E16D(Q)] [E16D(Q) : φ̂(E−432D(Q))],(15)
and the first factor is [E−432D(Q) : φ(E16D(Q))]. Thus our two lemmas bound r by the
sum of unit ranks and class-group 3-ranks of Q(

√
D) and Q(

√
−3D). The unit ranks are

either 0 + 1 (for D > 0) or 1 + 0 (for D < 0) by Dirichlet, so in either case we deduce the
claimed bound. □

Thus for our D = 41p the 3-ranks must sum to at least 16 − 1 = 15, so by the reflection
theorem the class groups of Q(

√
D) and Q(

√
−3D) must have 3-ranks at least 7 and 8

respectively. We shall see that in fact these 3-ranks are exactly 7 and 8, which will prove
that E16D and E−432D have rank 16.

2.2. The class groups of Q(
√

D ) and Q(
√

−3D ). For a fundamental discriminant ∆, let
H∆ be the class group of the quadratic field Q(

√
∆) of that discriminant, and let h∆ = |H∆|

be the class number. Thus we want to show that H−3D has 3-rank 8, and HD has 3-rank 7.
Now Magma takes only a few seconds to compute both class groups assuming the GRH:

(16) H−3D

GRH∼= (Z/2Z)2 × (Z/3Z)8 × (Z/77681Z) × (Z/139939Z),

(17) HD

GRH∼= (Z/2Z)2 × (Z/3Z)7.

We shall remove the GRH hypothesis from (16) (Proposition 3 below). This will imply in
particular that H−3D indeed has 3-rank 8. We do not claim to prove (17) unconditionally,
but once we know that r3(H−3D) = 8 the Scholz reflection theorem [Scholz 1932] gives
r3(HD) = 7, which is all we need to establish that E16D and E−432D have rank 16.
For each of H−3D and HD, Magma computes ideals the rings of integers in Q(

√
−3D)

or Q(
√

D) whose classes generate the conjectural class groups. In the case of H−3D, we
denote by H0 the subgroup of H−3D generated by those ideal classes. It is easy to check
unconditionally that each generator has the claimed order and that they are independent
in H−3D.3 Thus we have an injection H0 ↪→ H−3D. We shall show:
Proposition 3. The injection H0 ↪→ H−3D is an isomorphism; that is, (16) is true uncon-
ditionally.

We begin the proof by checking that [H−3D : H0] is odd. Indeed H−3D[2] ∼= (Z/2Z)2

by genus theory, so there is no missing 2-torsion; and using [Rédei 1934] we check that
H−3D[4] = H−3D[2], so H0 also accounts for all the 4-torsion in H−3D. Therefore Propo-
sition 3 will follow once we prove that h−3D < 3|H0|; we do this in the next section. (If
H−3D did have elements of order 4 then proving h−3D < 3|H0| would not suffice to prove

3For the eight 3-torsion classes, we just reduced all 38 − 1 = 6560 nontrivial combinations and checked
that none of them is principal. This was fast enough that there was no need to split the 3-torsion generators
into two subsets of four, reduce each of the 2(34 − 1) = 160 nontrivial combinations of each subset, and
check that none is principal and no two match.
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8 NOAM D. ELKIES

Proposition 3, but it would still establish that H−3D and H0 have the same 3-rank, which
is all that we need to prove our main theorem; we could also still prove Proposition 3 by
computing longer partial sums of the relevant L-function, as can be seen by taking N = 245

instead of N = 243 in (38).)

3. The Dirichlet formula and the Burgess–Treviño–Booker bounds

The Dirichlet class number formula gives

(18) h−3D =
√

3D

π
L(1, χ3D) =

√
3D

π

∞∑
n=1

χ3D(n)
n

where χ3D =
(−3D

·
)

is the quadratic character of conductor 3D associated to the imaginary
quadratic field Q(

√
−3D ). Since h−3D is an integer, this formula determines its value once

the sum is computed to within π/(2
√

3D). Our D is much too large for such accuracy (to
within about 3.4 · 10−15) to be feasible. But we already have an odd-index subgroup H0
of the class group of Q(

√
−3D ). Therefore, to prove that h = |H0| it is enough to bound

L(1, χ3D) by 3π|H0|/
√

3D. This requires much less accuracy: using (16) we compute

(19) |H0| = 22 38 77681 · 139939 = 285288064689996,

π|H0|/
√

3D = 1.92159744340 . . . .

But even this accuracy is not easy to achieve, because the sum
∑∞

n=1 χ3D(n)/n that defines
L(1, χ3D) does not converge absolutely, and we need to compute a long partial sum, say

(20) L(N)(1, χ3D) :=
N∑

n=1

χ3D(n)
n

,

to guarantee that L(1, χ3D) does not exceed 5.7.
The length N of the partial sum that we need depends on how well we can estimate the
remainder, call it

(21) R(χ3D, N) := L(1, χ3D) − L(N)(1, χ3D) =
∞∑

n=N+1

χ3D(n)
n

.

We expect R(χ3D, N) to decay roughly as N−1/2: when gcd(n, 3D) = 1, the signs χ−3D(n) =
±1 should behave almost like independent coin flips, which makes

∑
n>N (χ3D(n)/n) a ran-

dom variable with variance about 2/(3N). In fact the signs are not quite independent,
because for each m, knowing χ3D(n) determines χ3D(mn); and the numerical plot below
might hint at subtler correlations. The light blue plot shows the remainder

(22) R(χD, N) :=
∞∑

n=N+1

χD(n)
n

.

in the sum for L(1, χD), scaled by the same factor of N1/2, and shows a similar bias for
positive values but not an oscillation as prominent as the one for R(χ3D, N). Here χD =

(
D
·
)

is the quadratic character of conductor D associated to Q(
√

D).
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Figure 1: N1/2R(χ3D, N) and N1/2R(χD, N) for N = 2x, 10 ≤ x ≤ 30
It takes rather more work to prove that L(1, χ3D), and thus H−3D, is given by (19) as
expected. We begin with the standard device of writing R(χ3D, N) as a Riemann-Stieltjes
integral involving

(23) S(x) :=
∑

1≤n≤x

χ3D(n)

and integrating by parts:

R(χ3D, N) =
∫ ∞

N+ 1
2

1
x

d
(
S(x) − S(N)

)
=
[

S(x) − S(N)
x

]∞

x=N

−
∫ ∞

N+ 1
2

(
S(x) − S(N)

)
d(1/x)

=
∫ ∞

N+ 1
2

(
S(x) − S(N)

) dx

x2 .(24)

Now S(x) is bounded, because χ3D is periodic with period 3D and
∑3D

n=1 χ3D(n) = 0; this
proves that indeed R(χ3D, N) → 0 as N → ∞. But the convergence is too slow for our
purpose: it is known (Pólya–Vinogradov 1918) that for any primitive Dirichlet character χ

of conductor q, all sums
∑N ′

n=N χ(n) are O(q1/2 log q), with an effective implied constant
(that can be easily taken less than 1); and conversely such sums are ≫ q1/2 in mean square,
so q1/2 is the best estimate possible up to log factors. But then (24) yields an upper bound
of order q1/2/N on R(χ3D, N), which means we would have to take N of size about q1/2 to
be able to prove R(χ3D, N) ≪ 1. Since q1/2 > 4.6 · 1014 for our q = 3D, such a calculation
might be feasible, but only at an exorbitant computational cost.

3.1. The Burgess bounds on short character sums. Fix a nontrivial character χ

modulo a prime p, and again define S(N) =
∑N

n=1 χ(N). Burgess [Burgess 1962] found a
series of upper bounds on character sums

(25) Sχ(N, H) := S(N + H) − S(N) =
H∑

h=1
χ(N + h)
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10 NOAM D. ELKIES

that, for certain ranges of H, improve on both the trivial bound |Sχ(N, H)| ≤ H and
the Pólya–Vinogradov bound Sχ(N, H) ≪ p1/2 log p. Namely, for each positive integer r
Burgess shows

(26) Sχ(N, H) ≪r (log p)1/rH
1− 1

r p
r+1
4r2 .

For r = 1 this coincides with the Pólya–Vinogradov bound. For each r > 1, the bound
improves on Pólya–Vinogradov for H < p

2r+1
4r +o(1), and on the trivial bound for H >

p
r+1
4r +o(1).

Our χ3D has modulus 123p, which is not quite prime. But if χ has modulus ap for some
small a (so in particular a ̸= 0 mod p), then we can still improve on both the trivial and
Pólya–Vinogradov estimates on Sχ(N, H) by factoring χ = χaχp for some characters χa mod
a and χp mod p, and writing

(27) Sχ(N, H) =
∑

b mod a

χa(b)
( ∑

0<h≤H
N+h≡b mod a

χp(N + h)
)

.

There are ϕ(a) choices of b for which χa(b) ̸= 0; for each of these, |χa(b)| = 1, and the
inner sum in (27) is the sum of χp over an arithmetic progression of length ⌊H/a⌋ or
⌈H/a⌉. Since χp is multiplicative, this sum is χp(a)Sχp

(N ′, N ′ + H ′) for some N ′ mod p
and H ′ = H/a + O(1), and we can apply a Burgess bound to Sχp(N ′, N ′ + H ′). This yields
the estimate

(28) Sχ(N, H) ≪r
ϕ(a)
a1− 1

r

(log p)1/rH
1− 1

r p
r+1
4r2 ,

uniformly in a for H ≥ a (which will always be true in practice). The factor ϕ(a)/a1− 1
r <

a1/r is small enough that (28) can still be a substantial improvement over both the trivial
and Pólya–Vinogradov bounds, all the more so since the Pólya–Vinogradov bound on Sχ

includes a factor a1/2 that does not appear in (28).
Putting this into the estimate into (24) we find a bound on |R(χ3D, N)| proportional to

(29) ϕ(a)
a1− 1

r

(log p)1/r

∫ ∞

N

x1− 1
r

dx

x2 = r
ϕ(a)
a1− 1

r

(log p)1/rp
r+1
4r2 N−1/r.

Thus the remainder |R(χ3D, N)| will be small once N exceeds a large enough multiple of

(30) ϕ(a)r

ar−1 (log p)p
r+1
4r ,

same as the threshold for the Burgess bound to be nontrivial. As r grows, this threshold is
O(p 1

4 +o(1)). For our p, the factor p1/4 is less than 107, so we expect to be able to compute
the partial sum L(N)(1, χ3D) of (20) even if the constants implied in “≪r” are substantial.

3.2. Booker’s explicit bound. The proof of the Burgess bounds is complicated enough
that it takes some work to extract explicit constants. Fortunately ours is not the first
computational application, so this work has already been done in several different ways,
starting with [Grosswald 1981, Theorem 1]. In fact Booker did this in 2006 for the very
similar problem of computing L(1, χp) to enough precision to certify the class group of a
real quadratic field, giving the following bound:4

4We reproduce the phrasing verbatim, except that we change Booker’s d, M, N to p, N, H for consistency
with our notations, and reproduce only the r = 2 row of his Table 1. Note that the exponent of log p in
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Proposition 4. [Booker 2006, Proposition 2] Let p > 1020 be a prime number ≡ 1 (mod 4),
r ∈ {2, . . . , 15}, and N, H integers with 0 < N, H < 2√

p. Then

(31)

∣∣∣∣∣∣
∑

N≤n<N+H

χp(n)

∣∣∣∣∣∣ ≤ α(r)p
r+1
4r2 (log p + β(r)) 1

2r H1− 1
r

where α(r), β(r) are given in Table 1.

Here χp is the quadratic character mod p. Instead of reproducing the entire table from [Booker 2006],
we copy only the values for the exponent r = 2 that we shall use:
(32) α(2) = 1.8221, β(2) = 8.9077.

As r grows from 2 to 15, the α(r) slowly decrease to α(15) = 1.3164, while the β(r) decrease
more rapidly, reaching β(1) = −1.9808.
Our p does exceed 1020, and happily satisfies p ≡ 1 mod 4. Our N do not all satisfy
0 < N < 2√

p; but Booker’s proof does not use this hypothesis, and indeed the proof needs
to show (31) for all N because (as Booker notes at the start) it proceeds by an induction
on H that requires that (31) hold for smaller H and all N mod p. The proof does use the
condition H ≤ 2√

p; Booker remarks that arbitrary H could be allowed “at the expense
of slightly worse constants”, but does not quantify how much worse.5 Recall that we have
written a sum of H consecutive values of χ3D as a sum of ϕ(123) = 80 sums Sχp

(N, H ′)
with H ′ < (H/123)+1, so we can apply Booker’s bound for x ≤ 246p1/2. For H > 2p1/2 we
use [Treviño 2015, Corollary 1], which has a larger power of log p but applies to all primes
p ≥ 107, any non-principal character χ mod p, and all N, H and positive integers r:

(33) |Sχ(N, H)| < 2.74H1− 1
r p

r+1
4r2 (log p)1/2.

We now substitute these bounds into (29). In Booker’s bound (31), the factor

(34) (ϕ(123)/
√

123) α(2) (log p + β(2))1/4p3/16

is less than 5 · 106. Estimating the integral more carefully than in (29), we obtain

(35)
∫ 2√

p

N

(x − N)1/2 dx

x2 = π

2
√

N
. <

∫ ∞

N

(x − N)1/2 dx

x2 = π

2
√

N
<

1.6√
N

.

For x > 246√
p we use the Treviño bound 33 with r = 2, getting

(36)
∫ ∞

2√
p

(
S(x) − S(N)

) dx

x2 < 2.74ϕ(123)√
123

p3/16(log p)1/2
∫ ∞

246p1/2
x1/2 dx

x2

which is

(37) 2.74 80
123(log p)1/2√

2/p1/16 < 0.4.

We conclude that the remainder R(χ3D, N) of (21) satisfies

(38)
∣∣R(χ3D, N)

∣∣ <
8 · 106
√

N
+ 0.4 .

(31) is 1/2r, so Booker’s estimate actually improves on [Burgess 1962] by a factor that grows to infinity as
p → ∞.

5Booker avoided H > 2√
p by using an approximate functional equation to replace the partial sums

L(N)(1, χp) by a more refined estimate which however is somewhat more complicated to compute.
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3.3. Computational conclusion and details. Taking N = 243 in (38) gives a bound of
106/218.5 + 0.4 < 3.1. Since we expect that in fact

∑N
n=1 χ3D(n)/n will be very close to

L(1, χ3D), this should be more than enough to prove that our subgroup H0 of the class
group H−3D is in fact the full class group.
We computed S(243) numerically; our C code took about a day to run on 16 heads each
summing 1/16 of the terms. (See the next two paragraphs for more details about this
computation.) The result of 1.92159704 . . . was very close to the value 1.92159744 . . . of
(19), as expected. Thus H0 has index less than 3 in H−3D. Since we already know that
the index is odd, this completes the proof of (16), which we asserted as Proposition 3.
Theorem 1 then follows via φ- and φ̂-descents. □

We compute character values χ3D(n) using Quadratic Reciprocity. This is the most time-
consuming part of the computation of S(243). We halve the number of character evaluations
by writing each n ≤ 243 as 2en1 for some odd n1 and nonnegative integer e ≤ 43. Then

(39) S(243) =
∑

0<n1<243
n1 odd

( ∑
2en1≤243

χ3D(2e)
2e

)
χ3D(n1)

n1
,

so we need only evaluate χ3D(n1) at odd n1 < 243. Moreover, the inner sum over e is
constant on dyadic intervals 2f ≤ n1 < 2f+1, so we can rewrite (39) as

(40) S(243) =
42∑

f=0

(
f−1∑
e=0

χ3D(2e)
2e

) ∑
2f ≤n1<2f+1

n1 odd

χ3D(n1)
n1

 .

Then the multiplication by
∑

e χ3D(2e)/2e need only be done 43 times instead of 242. Since
χ3D(3) = 0, we save a further factor of 2/3 by skipping all n1 ≡ 0 mod 3. For each of the
16 positive odd n0 < 32, we restrict the last sum in (40) odd n ≡ n0 mod 32 that are not
multiples of 3, and evaluate these 16 subsums in parallel.
We first did this in floating-point arithmetic, summing over each congruence class mod 32 in
reverse order (from f = 42 to f = 0) to reduce precision loss. Since floating-point arithmetic
makes it messy to prove rigorous error bounds, we checked our calculation using only integer
arithmetic, as follows. Fix a large integer M , and compute an integer approximation to

(41) MS(243) =
∑

0<n0<32
n0 odd

42∑
f=0

(
f−1∑
e=0

χ3D(2e)
2e

) ∑
2f ≤n1<2f+1

n1≡n0 mod 32

χ3D(n1) M

n1


by replacing each M/n1 by ⌊M/n1⌋ (which is what M/n1 means in C when M and n1 are
positive integers). The resulting integer, call it

(42) Σn0,f :=
∑

2f ≤n1<2f+1

n1≡n0 mod 32

χ3D(n1)
⌊

M

n1

⌋
,

then differs from the actual sum over n1 in (41) by an error whose absolute value is at
most the length of the sum. Then approximate each term ±Σn0,f /2e in the expansion
of
(∑f−1

e=0 χ3D(2e)/2e
)
Σn0,f by ±⌊Σn0,f /2e⌋. This at most doubles the error. Our final

integer estimate for MS(243) is thus within 243 of its actual value, so we recover a rational
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approximation of S(243) itself that is within 243/M of its correct value. We chose M = 261 so
that we could carry out the entire computation in signed 64-bit arithmetic without running
into the overflow threshold at ±263. The result agreed with the floating-point answer of
1.92159704 . . . (and for several more digits). The error bound of 243/M = 2−18 < 0.000004
does not even prove that S(243) < 1.9216, but it does easily give S(243) < 1.922, which is
still much closer than we need to prove that [H−3D : H0] < 3 and thus that H−3D = H0.

3.4. More on H−3D and HD. We noted already that r3(H−3D) = 8 is the current record
for the 3-rank of a quadratic number field. The Cohen–Lenstra heuristics suggest that it
might be one of the first examples of r3(H∆) = 8, which should happen for about one of
every 382 = 364 imaginary quadratic number fields, while 3D < 361.5, and only 3/π2 < 1/3
of integers are fundamental discriminants.
We did not attempt to remove the GRH hypothesis from the determination of the class
group of HD (17). This would be possible but would require more work. One difficulty is the
fundamental unit; even with a class group of size 2·37 = 4374, the regulator exceeds 2.88·1010

under GRH. A greater difficulty is that (still under GRH) we have L(1, χD) = 0.93602 . . .,
which is about half of L(1, χ3D); this means that we would have to use an even larger N to
prove that

∣∣R(χD, N)
∣∣ < 2L(1, χD).

4. Further results

4.1. A pure cubic field of 2-rank (at least) 15. A 2-torsion point on either of our
rank-16 curves E16D and E−432D generates an extension of Q isomorphic with the “pure
cubic field” Q((2D)1/3). A 2-descent on either curve shows that the curve’s rank is at most
1 more than the 2-rank of the class group of Q((2D)1/3). Assuming the GRH, Magma takes
about 70 minutes to compute that this class group is ∼= (Z/2Z)15 ⊕(Z/3Z)2, so in particular
its 2-rank is exactly 15. This is currently the highest 2-rank known for a pure cubic field.
(For unrestricted cubic fields the records are 20 in the totally real case and 22 in the mixed
case, coming from 2-torsion points on elliptic curves of ranks 28 and 27 respectively; see
the paragraph following [Klagsbrun–Sherman–Weigandt 2016, Theorem 4].)

4.2. A curve Ek of rank (at least) 17. As far as we know, the current rank record
for curves Ek is 17, attained a few weeks after the discovery of E16D and announced in
[Elkies 2016a] (and recently exhibited on MathOverflow [Elkies 2023]), but not previously
published:

k = −908800736629952526116772283648363
= −2195745961 · 413891567044514092637683.(43)

This curve certainly has rank at least 17 (and thus larger than the rank of E16D); for
example, the isogenous curve E−27k has 17 independent points with x-coordinates

−110315760690, −218829008658, 194693247690, −12083686365, 179588218407,
660796972800, 481938369495, 532637728899, 891937317975, 1556910033324,
1369152212199, −249954149276, 527526224524, 2095375244992, 3020920353232,
45908680009155, 209109621212430

— these are somewhat simpler than for Ek because here E−27k has regulator 1/3 times
that of Ek. The rank is exactly 17 assuming the Generalized Riemann Hypothesis holds
for Q(

√
k) or Q(

√
−3k). (We do not get new 3-rank records for Q(

√
k) or Q(

√
−3k),
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whose class groups still have 3-rank 8 and 7 respectively, again assuming the relevant GRH;
likewise the class group of Q(k1/3) has 2-rank 15 under GRH, and as it happens is again
∼= (Z/2Z)15 ⊕ (Z/3Z)2.) But here we cannot remove the hypothesis. This is not because k
is too large: it exceeds 16D by a factor of about 800, so one might expect the computation
to take at most 10 times longer, which would still have been feasible. The real difficulty
is that the Burgess bounds are known only for characters of prime conductor: k, unlike
D, is not prime or even nearly prime. When and if the Burgess bounds are extended to
characters of composite conductor, it may become feasible to prove unconditionally that
this curve indeed has rank 17.
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