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Abstract. We describe an algorithm for computing, for all primes p ≤ X,

the trace of Frobenius at p of a hypergeometric motive over Q in time quasi-
linear in X. This involves computing the trace modulo pe for suitable e; as in

our previous work treating the case e = 1, we combine the Beukers–Cohen–

Mellit trace formula with average polynomial time techniques of Harvey and
Harvey–Sutherland. The key new ingredient for e > 1 is an expanded version

of Harvey’s “generic prime” construction, making it possible to incorporate

certain p-adic transcendental functions into the computation; one of these is
the p-adic Gamma function, whose average polynomial time computation is

an intermediate step which may be of independent interest. We also provide

an implementation in Sage and discuss the remaining computational issues
around tabulating hypergeometric L-series.

1. Introduction

We continue the investigation begun in [CKR20] of computational aspects of
L-functions associated to hypergeometric motives in the sense of [RR22]. These L-
functions are easily accessed via the Beukers–Cohen–Mellit trace formula [BCM15]
together with the p-adic expression of Gauss sums via the Gross-Koblitz formula
[GK79]. While the trace formula has O(p) terms, the main result of [CKR20] gives
a way to amortize the cost over p; that is, one obtains an efficient algorithm for
computing, for all primes p ≤ X, the mod-p reduction of the trace of Frobenius at
p of a fixed hypergeometric motive in time quasilinear in X.

Here we do the same for the mod-pe reduction for any positive integer e, an-
swering a question raised at the end of [CKR20]. Since the trace is an integer in a
known range (see Remark 4.11), this yields an algorithm for computing the exact
trace. (See Definition 4.1 for terminology.)

Theorem 1.1. Algorithm 3, on input of a Galois-stable hypergeometric datum
(α, β) ∈ Qr × Qr, a parameter z ∈ Q \ {0, 1}, and a positive integer X, computes

the hypergeometric trace Hp

(
α
β

∣∣∣z) for all primes p ≤ X (excluding tame and wild
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primes). Assuming that r = O(logX) and the bitlength of z is O(r2 logX), the time
and space complexities are respectively bounded by

O(r5X(logX)3) bit operations and O(r5X(logX)2) bits.

As in [CKR20], the general strategy is to amortize the computational work over
primes using average polynomial time techniques of Harvey [Har14; Har15] and
Harvey–Sutherland [HS14; HS16]. In [CKR20], this amortization is achieved by
expressing the trace formula in terms of a series of matrix products of a special
form: we have a sequence of matrices defined over Z, and the desired quantity
is obtained by truncating the product at an index depending (linearly) on p and
reducing modulo p. One then uses an accumulating remainder tree1 to compute the
products and remainders in essentially linear time.

Since the expression we use for hypergeometric traces involves the p-adic Gamma
function Γp, we first describe average polynomial time algorithms to compute this
function. These reduce to applications of remainder trees quite close to the orig-
inal work of Costa–Gerbicz–Harvey [CGH14] that inspired Harvey’s work on L-
functions, which may be of independent interest.

Our main algorithm uses a variant of Harvey’s generic prime construction [Har15,
§4.4]. In its simplest form, this consists of using matrices over the truncated poly-
nomial ring Z[P ]/(P e), arranged in such a way that truncating the matrix product
at an index depending on p and specializing along the map Z[P ]/(P e) → Z/(pe)
taking P to p yields the desired result. In practice, such a product can be handled
by encoding it as a product of block matrices over Z; see Example 2.8.

Here, we adapt the construction of [CKR20] to use a block lower triangular ma-
trix to record both a product over Z[P ]/(P e) and the sum of the partial products.
Two new complications arise for e > 1: we must perform an additional transfor-
mation on the product before adding it to the sum, and we must also incorporate
the contribution of certain structural constants depending on p, which we treat as
further unknowns. (These unknowns are derived from the series expansions for Γp

and from the difference between the evaluation point z and the (p − 1)-st root of
unity in its mod-p residue disc.)

As in [CKR20], we have implemented the algorithm described above (for arbi-
trary e) in Sage [Sag24] with some low-level code written in Cython, including a
wrapper to Sutherland’s C library rforest (wrapped in Cython) to implement The-
orem 2.1. Some sample timings are included in Table 1, including comparisons with
Sage and Magma [BCP97]; see §6 for explanation. These confirm that the quasilin-
ear complexity shows up in practice, not just asymptotically. Our code, which also
includes the algorithm from [CKR20] for e = 1, is available on GitHub [CKR23] at

https://github.com/edgarcosta/amortizedHGM.

The broader context of our work is the desire to tabulate hypergeometric L-
functions at scale in the L-Functions and Modular Forms Database (LMFDB)
[LMFDB], in part to investigate themurmurations phenomenon for these L-functions
[HLOP22; LOP24]. Our timings suggest that this prospect is within reach; we dis-
cuss this in §7. In particular, while there should exist an analogue of Theorem 1.1 for
pf -Frobenius traces for any fixed f > 1, it does not seem to be needed in practice.

1In practice one uses accumulating remainder forests for improved efficiency, especially with
regard to memory usage. As we are using the technique as a black box, we ignore this distinction.
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2. Accumulating remainder trees and generic primes

We use accumulating remainder trees to amortize the computation of the trace
formula, following [CKR20]. As we use this construction as a black box, we recall
only the structure of the input and output and the overall complexity estimates.

Theorem 2.1. Fix a positive integer e. Suppose we are given

• a list of r × r matrices A0, . . . , Ab−1 over Z,
• a list of primes p1, . . . , pc, and
• a list of distinct cut points 0 ≤ b1, . . . , bc ≤ b.

Let B be an upper bound on the bit size of
∏c

j=1 pj and H an upper bound on the bit

size of any pei or any entry of Ai. Assume also that log r = O(H) and r = O(log b).
Then there is an algorithm that computes

Cn := A0 · · ·Abn−1 mod pen (1 ≤ n < c)

with time complexity

O(r2(eB + bH) log(eB + bH) log b)

and space complexity
O(r2(eB + bH) log b).

Proof. This follows from [HS16, Thm. 3.2]2 (an improvement of [HS14, Thm. 4.1])
via a change of notation as in [CKR20, Definition 3.1, Algorithm 2]. □

Example 2.2. In practice, we will apply Theorem 2.1 in a restricted fashion.

• The matrix Ai will be the specialization of a single matrix A over Z[k] at
k = i, whose entries have degree O(d) and coefficients of bit size O(d logX).

• The primes pi will all lie in a fixed arithmetic progression bounded by X.
• The cut point bi will be a linear function of pi (up to rounding) whose
coefficients are O(1).

We may then take b = O(X), B = O(X), and H = O((d+ e) logX). In particular,
eB + bH = O((d+ e)X logX); assuming that d+ e = O(X) and r = O(logX), the
time and space complexities in Theorem 2.1 become respectively

O((d+ e)r2X(logX)3) and O((d+ e)r2X(logX)2).

Example 2.3. One basic instantiation of Example 2.2 is to batch-compute the
quantities (⌈γp⌉ − 1)! (mod pe) for some γ ∈ (0, 1] ∩ Q. For instance, the case
e = 2, γ = 1 is the focus of [CGH14].

Example 2.4. Let j be a positive integer and choose γ ∈ (0, 1]. We may also use
Example 2.2 to batch-compute the quantities

(2.5) Hj,γ(p) (mod pe), Hj,γ(p) :=

⌈γp⌉−1∑
i=1

i−j

by interpreting them as

Hj,γ(p) = S(p)21/S(p)11, S(p) :=

⌈γp⌉−1∏
i=1

(
ij 0
1 ij

)
.

2The complexities in loc. cit. are stated in terms of the complexity of multiplying two n-bit
integers. Per [HH21] we take this to be O(n logn).
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Remark 2.6. In Example 2.4, we can also write

Hj,γ(p) = (V S(p))11/(V S(p))12, V :=
(
0 1

)
.

Prepending V to the product yields some significant computational savings, by
reducing the size of the intermediate products in the remainder tree computation.

Notation 2.7. We write f [h] for the coefficient of xh in the polynomial f(x).

Example 2.8. The paradigm of Example 2.2 excludes the possibility of computing
expressions involving p other than via the cut point. Harvey’s “generic prime”
construction circumvents this issue by instead computing over Z[x]/(xe), where x
is specialized to p as a postprocessing step. We use a variant of this idea in §5.

In lieu of implementing Theorem 2.1 with Z replaced by Z[x]/(xe), we encode a
matrix product over Z[x]/(xe) via a lower triangular block representation

(2.9) f 7→ (f [h1−h2])h1,h2=1,...,e.

One could alternatively represent polynomials via Schönhage’s method, i.e., giving
their evaluations at a large power of 2 [Sch82]. In theory, this would improve our
runtime by replacing matrix multiplication with integer multiplication. However, in
§5 we will manipulate triangular matrices in a way that seems incompatible with
this strategy.

Remark 2.10. Example 2.4 can be interpreted either as computing
∏⌈γp⌉−1

i=1 (ij +x)
(mod (x2, pe)) as in Example 2.8, or as a “hypergeometric” construction using

⌈γp⌉−1∏
i=1

(
g(i− 1) 0

1 f(i)

)
to compute

⌈γp⌉−1∑
i=1

i−1∏
j=1

f(j)

g(j)
,

taking f(i) := ij , g(i) := (i + 1)j . The latter form also covers the construction in
[CKR20] and inspires, but does not directly encompass, the construction in §5.6.

Remark 2.11. In many cases, Theorem 2.1 is used in a “projective” manner, in that
the matrix product is only needed up to scalar multiples (e.g., all cases covered by
Remark 2.10, and the construction of §5.6). It may be possible to exploit this to
reduce the complexity of some intermediate matrices, but we did not pursue this.

To illustrate the potential savings, let us make these common factors explicit in

Example 2.4. In the ring Z[x]/(x2),
∏k

i=1(i
j + x) is divisible by

∏k
i=1 f̃(i) where

f̃(i) =

{
(i/p)j if i = pe for some prime p and some e > 0,

ij otherwise.

3. The p-adic Gamma function

We next recall some properties of the p-adic Gamma function, and then give an
average polynomial time algorithm to compute series expansions of it at rational
arguments. This may be of independent interest.

To avoid some complications, notably in (3.7), we assume p > 2.

Definition 3.1. The (Morita) p-adic Gamma function is the unique continuous
function Γp : Zp → Z×

p which satisfies

(3.2) Γp(n+ 1) = (−1)n+1
n∏

i=1
(i,p)=1

i = (−1)n+1 Γ(n+ 1)

p⌊n/p⌋Γ(⌊n/p⌋+ 1)
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for all n ∈ Z≥0. It satisfies the functional equations

Γp(x+ 1) = ω(x)Γp(x), ω(x) :=

{
−x if x ∈ Z×

p ,

−1 if x ∈ pZp,
(3.3)

Γp(x)Γp(1− x) = (−1)x0 ,(3.4)

in which x0 ∈ {1, . . . , p} is congruent to x ∈ Zp mod p. There is also an analogue of
the Gauss multiplication formula [Rob00, §VII.1.3]; it may be possible to use this
to streamline our algorithms, but we have not pursued this.

Definition 3.5. As in [Rob00, §VII.1.6] or [Rod07, §6.2], for any a ∈ Zp the
restriction of Γp to the disc a+ pZp admits a series expansion

(3.6) Γp(x+ a) =

∞∑
i=0

cix
i (ci ∈ Zp)

In particular, Γp is Lipschitz continuous with C = 1, i.e.,

(3.7) |Γp(x)− Γp(y)|p ≤ |x− y|p .

Definition 3.8. Let log : Z×
p → Zp denote the p-adic logarithm, which vanishes

on roots of unity and is given by the usual power series on 1 + pZp. Then (3.6)
immediately implies that log Γp admits a series expansion around any a ∈ Zp with
coefficients in Zp.

For γ ∈ (0, 1] and x ∈ pZp, with Hj,γ(p) as defined in (2.5), (3.3) implies that

(3.9)

log
Γp(x+ ⌈γp⌉)
Γp(⌈γp⌉)

= log
Γp(x)

(⌈γp⌉ − 1)!

⌈γp⌉−1∏
i=0

Γp(x+ i+ 1)

Γp(x+ i)

= log Γp(x) +

⌈γp⌉−1∑
i=1

log
(
1 +

x

i

)
= log Γp(x)−

∞∑
j=1

(−x)j

j
Hj,γ(p).

Remark 3.10. We will use a näıve quadratic estimate for the runtime of computing
the p-adic logarithm and exponential; while asymptotically these require quasilinear
time [Ber08, §7, 8], [CMTV21, §3], we will consider input sizes much smaller than the
asymptotic crossover and so the quadratic estimates are more accurate in practice.
Similar considerations will apply to integer multiplication outside of Theorem 2.1.

We first give an amortized computation of the expansion of Γp around 0. It is
equivalent, and will be convenient for later, to work instead with log Γp.

Theorem 3.11. Let T be the set of primes. Then Algorithm 1 computes the series
expansions of log Γp(py) in Z[y]/(pe) for all primes p ∈ TX := T ∩ [e+ 1, X], with
respective time and space complexities

O(e2X(logX)3 + (e4 log e)X) and O(eX(logX)2 + e2X).

Proof. To see that the output is correct, fix a prime p ≥ e+1. For j ̸≡ 0 (mod p−1),
Hj,1(p) ≡ 0 (mod p) and so (py)jHj,1(p) ≡ 0 (mod pj+1). Hence the terms j > e−2

Submitted to Algor. Num. Th. Symp.
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Algorithm 1: Expansion of log Γp(x) modulo pe (Theorem 3.11)

1 Apply Theorem 2.1 to compute (p− 1)! (mod pe) for all p ∈ TX .

2 For j = 1, . . . , e− 2, apply Theorem 2.1 as in Example 2.4 to compute

Hj,1(p) =
∑p−1

i=1 i−j (mod pe−j) for all p ∈ TX .

3 Let A be the upper triangular (e− 1)× (e− 1) matrix with Aij =
(

j
i−1

)
for

1 ≤ i ≤ j ≤ e− 1. For each p ∈ TX , form the vectors v, w ∈ (Z/peZ)e−1

given by

vj =

{
log(−(p− 1)!) if j = 1
(−1)j

j−1 pj−1Hj−1,1(p) if j > 1,
w = A−1v.

Then log Γp(py) ≡
∑e−1

j=1 wjy
j (mod pe) in Z[y].

do not contribute modulo pe in (3.9), so we may rewrite the latter as

log Γp(p(y + 1))− log Γp(py) ≡ log
(
−(p− 1)!

)
−

e−2∑
j=1

(−py)j

j
Hj,1(p) (mod pe)

≡
e−1∑
j=1

vjy
j−1 (mod pe).

Therefore, the right hand side is the image of log Γp(py) under the difference op-
erator, which is represented by A. Since A has diagonal entries 1, . . . , e − 1, it is
invertible over Zp. Since Γp(0) = 1, A−1v contains the coefficients of the expansion
of log Γp(py) in y.

For the complexity estimate, we may assume e < X as otherwise there is nothing
to do. We cover Steps 1 and 2 by applying Theorem 2.1 e−1 times as in Example 2.2
with a degree bound of O(e). This costs O(e2X(logX)3) time and O(eX(logX)2)
space, plus O(e2X) space to record the results. In Step 3, for each of O(X/ logX)
primes p, we perform one logarithm andO(e2) multiplications of an integer in Z/(pe)
with an entry of A−1 of bitsize3 O(e log e); as per Remark 3.10 each multiplication
costs O(e2 log e logX) time. □

Remark 3.12. One can extend Algorithm 1 to cover p > e
2 using the fact that log Γp

is an odd series [Rob00, §VII.1.5, Theorem]. For smaller p, we can replace the use of
interpolation in step 2 with a direct application of (3.9) to solve for the coefficients
of Γp(x). As we will assume p > e later, we did not implement these steps.

We next expand around other values γ ∈ (0, 1) ∩Q. For these values, it is more
useful to retain neither Γp(py + γ) nor its logarithm, but something in between.

Theorem 3.13. Fix integers e, d ≥ 2. Let Sd be the set of γ ∈ Q∩(0, 1) of the form
c
d with gcd(c, d) = 1. Let T be the set of primes not dividing d. Then Algorithm 2
computes, for all γ ∈ Sd and all p ∈ TX := T ∩ [e+ 1, X], some quantities

• cγ,p ∈ Z/(pe) and
• sγ,p(py) ∈ Z[y]/(pe)

such that
Γp(py + γ) ≡ cγ,p exp sγ,p(py) (mod pe),

3This estimate follows by expressing A−1 in terms of Bernoulli numbers.

Submitted to Algor. Num. Th. Symp.
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Algorithm 2: Expansion of log Γp(x+ γ) modulo pe (Theorem 3.13)

1 Use Algorithm 1 to compute log Γp(py) (mod pe) for all p ∈ TX .

2 For each γ ∈ Sd, use Theorem 2.1 to compute Γp(⌈γp⌉) = ±(⌈γp⌉ − 1)!
(mod pe) for all p ∈ TX .

3 For each γ ∈ Sd, for j = 1, . . . , e− 1, apply Theorem 2.1 as in Example 2.4

to compute Hj,γ(p) (mod pe−j) for all p ∈ TX .
4 For each p ∈ TX and γ ∈ Sd, use Step 1 and (3.9) to compute

log
Γp(py+⌈γp⌉)

Γp(⌈γp⌉) as an element of Z[y]/(pe).
5 For each p ∈ TX and γ ∈ Sd, set b := −(γd)/p (mod d). Set

cγ,p := Γp

(
⌈ b
dp⌉
)
and sγ,p(py) := log Γp

(
py + ⌈ b

dp⌉
)
/Γp

(
⌈ b
dp⌉)

∣∣
y=y− b

d

.

with respective time and space complexities bounded by

O(de2X(logX)3 + de4(log d+ log e)X) and O(eX(logX)2 + de2X).

Proof. To see that the output is correct, we first show that py+γ = p(y−b/d)+⌈ b
dp⌉.

Set a := ⌈ b
dp⌉, a

′ := γ (mod p), and define b′ ∈ Z by γd = a′d− b′p; then b′

d ∈ Sd,

a′ = b′

d p + γ = ⌈ b′

d p⌉, and γd ≡ −b′p (mod d). We deduce that a = a′, b = b′

and hence a ≡ γ (mod p), and b = d(a − γ)/p. We thus reduce to (3.9) and
Theorem 3.11.

For the complexity estimate, we may again assume e < X. We cover Step 1
using Theorem 3.11. We cover Steps 2 and 3 by applying Theorem 2.1 O(de) times
as in Example 2.2 with a degree bound of O(e). This costs O(de2X(logX)3) time
and O(eX(logX)2) space, plus O(de2X) space to record the results; this cost also
covers Step 4. In Step 5, for each of O(d) values of b and O(X/ logX) primes p,
we perform a polynomial substitution using O(e2) multiplications of an element of
Z/(pe) by a rational of bitsize O(e log d); as per Remark 3.10 each multiplication
costs O(e2 log d logX) time. □

Remark 3.14. In practice, we obtain a speedup by a factor of 2 in Algorithm 2 by
working over Sd ∩ (0, 1

2 ] in Steps 1–4. In Step 5, if b > d
2 , in light of (3.4) we may

set cγ,p := (−1)⌈γp⌉c−1
1−γ,p and sγ,p(x) := −s1−γ,p(−x).

Remark 3.15. Note that computingH1,γ(p) (mod pe) via Example 2.4 yields (⌈γp⌉−
1)! (mod pe) as a byproduct. In practice, in Step 2 of Algorithm 1 we compute H1,1

mod pe rather than pe−1, and we skip Step 1. We similarly modify Steps 2 and 3
of Algorithm 2 when e > 1.

4. The Beukers–Cohen–Mellit trace formula

We summarize [CKR20, §2.2] primarily for the purpose of setting notation.

Definition 4.1. A hypergeometric datum is a pair of disjoint tuples α = (α1, . . . , αr)
and β = (β1, . . . , βr) valued in Q ∩ [0, 1). Such a pair is Galois-stable (or balanced)
if any two reduced fractions with the same denominator occur with the same mul-
tiplicity.

Submitted to Algor. Num. Th. Symp.
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For the rest of the paper, fix a Galois-stable4 hypergeometric datum α, β and
some z ∈ Q \ {0, 1}. We say that a prime p is wild if it divides the denominator of
some αj or βj ; tame if it is not wild but divides the numerator or denominator of
z or the numerator of z − 1; and good otherwise.

Definition 4.2. The zigzag function Zα,β : [0, 1] → Z is defined by

Zα,β(x) := #{j : αj ≤ x} −#{j : βj ≤ x}.
In terms of the zigzag function, the minimal motivic weight is given by

w = max{Zα,β(x) : x ∈ [0, 1]} −min{Zα,β(x) : x ∈ [0, 1]} − 1

= max{Zα,β(x) : x ∈ α} −min{Zα,β(x) : x ∈ β} − 1.
(4.3)

Write {x} := x−⌊x⌋ for the fractional part of x ∈ Q and #S for the cardinality of
a set S. Set

ηm(x1, . . . , xr) :=

r∑
j=1

({
xj +

m
1−p

}
− {xj}

)
,(4.4)

ξm(β) := #{j : βj = 0} −#
{
j : βj +

m
1−p = 0

}
,(4.5)

D := 1
2 (w + 1−#{j : βj = 0}).(4.6)

Definition 4.7. For p prime, define a p-adic analogue of the Pochhammer symbol
by setting

(4.8) (x)∗m :=
Γp

({
x+ m

1−p

})
Γp({x})

.

Let [z] ∈ Zp be the unique (p − 1)-st root of unity congruent to z modulo p; note

that this should not be confused with the notation f [h] defined in Notation 2.7. As
in [Wat15, § 2], for p good we write

(4.9) Hp

(
α
β

∣∣∣z) :=
1

1− p

p−2∑
m=0

(−p)ηm(α)−ηm(β)pD+ξm(β)

γ∈α∏
γ∈β

(γ)∗m

 [z]m,

where
∏γ∈α

γ∈β f(γ) is shorthand for
∏r

j=1
f(αj)
f(βj)

.

By combining [BCM15, Theorem 1.5] (an adaptation of [Kat90, §8.2]) with the
Gross–Koblitz formula [Rob00, §VII.2.6] as described in [Wat15], one establishes
the following.

Theorem 4.10. Assume5 that 0 /∈ α. Then there exists a motive Mα,β
z over Q,

pure of weight w and dimension r, such that for each good prime p, Mα,β
z has good

reduction at p and

Hp

(
α
β

∣∣∣z) = Tr(Frob |Mα,β
z ) ∈ Z ∩ [−rpw/2, rpw/2].

Remark 4.11. The bound on Hp

(
α
β

∣∣∣z) implies that for p > 4r2, Hp

(
α
β

∣∣∣z) is deter-

mined by its reduction modulo pe for e = ⌈(w + 1)/2⌉.
4Without the Galois-stable condition, much of this discussion carries over, but the resulting

motives are defined not over Q but some cyclotomic field.
5This point was neglected in [CKR20].
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Remark 4.12. The definition of Mα,β
z does not itself require 0 /∈ α, only the validity

of the trace formula as written. In general, there is an isomorphism Mα,β
z

∼= Mβ,α
1/z ,

which in the case 0 /∈ α, β corresponds to a symmetry in (4.9): the substitution
[z] 7→ [1/z] carries the summand indexed bym to the summand indexed by p−1−m.
The term-by-term equality can be seen from (3.3), taking care about signs.

When 0 ∈ α, we currently compute Frobenius traces by applying Theorem 4.10

to Mβ,α
1/z . It would be preferable to adapt (4.9) to handle this case directly, so as to

free up the swap of α and β for other uses (see Remark 5.45).

5. Computation of hypergeometric traces

We next exhibit an algorithm (Algorithm 3) that, on input of α, β,X, e, computes

Hp

(
α
β

∣∣∣z) (mod pe) for all primes p ≤ X excluding tame6 and wild primes. The

complexity analysis of this algorithm will yield Theorem 1.1; see §5.7.
It is harmless to also exclude a finite set of small good primes, as they can be

handled easily by directly computing (4.9) modulo a suitable power of p. We will
restrict attention to p with

(5.1) max{e, d(d− 1)} < p ≤ X,

where d is the maximum of the denominators of α ∪ β.
To help navigate some heavy notation, we summarize it in the following table.

Symbol Reference Symbol Reference Symbol Reference

f [h] Notation 2.7 Γp(x) Def. 3.1 ω(x) (3.3)

α, β, r, z Def. 4.1 {x}, w, ηm, ξm, D Def. 4.2 Hp, [z],
∏γ∈α

γ∈β Def. 4.7

ai, bi, ri, c (5.8) fi,c(k), gi,c(k) (5.24) Pm, P ′
m (5.2)

Ai,c(k) (5.39) γi,mi (5.3) Qh1,h2(k) (5.38)
ci,h(p) (5.32) γi,c (5.9) Ri(x) (5.30)
δh1,h2

(5.39) hc(γ, γi) (5.10) σi, τi (5.4)
ϵc(γ, γi) (5.13) ι(x, y) (5.7) Si(p) (5.22)

ei, e
′
i, σi, τ i (5.5) k,m (5.11)

5.1. Breaking the sum into ranges. We start with a high-level breakdown of
the algorithm, in which e plays only a minor role. For m = 0, . . . , p− 2, define

(5.2) Pm := [z]m
γ∈α∏
γ∈β

(γ)∗m, P ′
m := (−p)ηm(α)−ηm(β)pD+ξm(β)Pm.

Let 0 = γ0 < · · · < γs = 1 be the distinct elements in α ∪ β ∪ {0, 1}. Write mi for
⌊γi(p− 1)⌋; by (5.1), we also have

(5.3) 0 = m0 < · · · < ms = p− 1.

By [CKR20, Lemma 4.2], there exist integers σi, τi for 0 ≤ i ≤ s− 1 such that

(5.4)
P ′
m

Pm
=

{
τi if m = mi,

σi if mi < m < mi+1;

6We can also handle tame primes where z ∈ Z×
p . In particular, we can take z = 1.
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in fact we can choose ei, e
′
i ∈ {1, . . . , e} and σi, τ i ∈ {−1, 0, 1} such that for all p,

(5.5) σi ≡ pe−eiσi (mod pe), τi ≡ pe−e′iτ i (mod pe).

In this notation, we summarize the method in Algorithm 3.

Algorithm 3: Computation of Hp

(
α
β

∣∣∣z) for good p satisfying (5.1)

1 Apply Algorithm 2 to each d dividing the common denominator of γi and
γj for some i, j ∈ {0, . . . , s} (not necessarily distinct).

2 For each i ∈ {0, . . . , s− 1} for which τ i ̸= 0, for each p, compute τ iPmi

(mod pe
′
i) as indicated in §5.3.

3 For each i ∈ {0, . . . , s− 1} for which σi ̸= 0, for each p, compute the

quantities ci,h(p) (mod pei−h) as indicated in (5.32).

4 For each i ∈ {0, . . . , s− 1} for which σi ̸= 0, compute σi

∑mi+1−1
m=mi+1 Pm

(mod pei) in terms of the quantities ci,h(p) as indicated in §5.6.

5 For each p, compute Hp

(
α
β

∣∣∣z) (mod pe) by rewriting (4.9) in the form

(5.6) Hp

(
α
β

∣∣∣z) ≡ 1

1− p

s−1∑
i=0

(
pe−e′iτ iPmi + pe−eiσi

mi+1−1∑
m=mi+1

Pm

)
(mod pe).

5.2. Residue classes. We next separate primes into residue classes modulo the
denominator of γi. Following [CKR20, Lemma 4.1], define

(5.7) ι(x, y) :=

{
1 if x ≤ y

0 if x > y.

Write γi =
ai

bi
and define an integer ri ∈ {0, . . . , bi − 1} by

(5.8) ai(p− 1) = mibi + ri;

for p ≡ c (mod bi) with c ∈ (Z/biZ)×, ri is the residue of ai(c−1) mod bi. We have

(5.9) mi = γi(p− 1)− γi,c, γi,c :=
ri
bi
.

For the remainder of §5, we fix an index i ∈ {0, . . . , s − 1} and a quantity c ∈
(Z/biZ)×, and limit attention to primes p ≡ c (mod bi).

For γ ∈ α ∪ β, we analyze
{
γ + m

1−p

}
in terms of

(5.10) hc(γ, γi) := γ − γi + ι(γ, γi)− γi,c ∈ (−1, 1].

For m = mi + k with 1 ≤ k ≤ mi+1 −mi, by [CKR20, (5.11)] we have{
γ + m

1−p

}
= γ + m

1−p + ι(γ, γi)(5.11)

= hc(γ, γi) + (k − pγi,c)
1

1−p

= hc(γ, γi) + k + (k − γi,c)
p

1−p .
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For k = 0, we instead have{
γ + mi

1−p

}
= hc(γ, γi)− p

1−pγi,c − ϵc(γ, γi)(5.12)

where ϵc(γ, γi) := ι(γ, γi)− ι(γ, γi − 1
p−1γi,c) =

{
1 if γi = γ

0 otherwise.
(5.13)

(We would also have ϵc(γ, γi) = 1 if γi − 1
p−1γi,c < γ < γi, but this would imply

⌊γ(p− 1)⌋ = ⌊γi⌋ in violation of (5.3).)
We make explicit a point that was elided in [CKR20, Lemma 5.10].

Lemma 5.14. Let mi ≤ m < mi+1 and γ ∈ α∪β, and suppose that
{
γ + m

1−p

}
≡ 0

(mod p). Then either

m = mi and hc(γ, γi) = ϵc(γ, γi), or

m = mi+1 − 1 and hc(γ, γi+1) = ϵc(γ, γi+1) + 1.

Proof. If m = mi, then by (5.12),
{
γ + m

1−p

}
≡ hc(γ, γi)− ϵc(γ, γi) (mod p). Since

ϵc(γ, γi) = 1 implies γ = γi and hence hc(γ, γi) = 1− γi,c ≥ 0, hc(γ, γi)− ϵc(γ, γi)
is in Q ∩ (−1, 1] with denominator at most d(d − 1), and so by (5.1) can only be
divisible by p if it is zero.

Now assume that mi < m < mi+1 and
{
γ + m

1−p

}
≡ 0 (mod p). Write γ +

ι(γ, γi) =
a
d with 0 ≤ a < 2d and gcd(a, d) = 1. By our hypothesis plus (5.11),

a

d
= γ + ι(γ, γi) =

{
γ + m

1−p

}
+

m

p− 1
.

Thus,

(5.15) a+md = (a− t)p

for some t ∈ Z≥0, and t ≤ a since a+md is non-negative. Furthermore, since every
divisor of a+md is prime to d, we see that gcd(a−t, d) = 1, which by Definition 4.1
ensures that a−t

d = γj + δ for some δ ∈ {0, 1} and some j ∈ {0, . . . , s}. Rewriting
(5.15) in the form (a− t)(p− 1) = md+ t, we get

(γj + δ)(p− 1) = m+ t
d .

Taking floors on both sides we obtain

m = δ(p− 1) +mj − ⌊ t
d⌋.

Since 0 ≤ t ≤ a < 2d, this gives a contradiction unless t ≥ d and either δ = 0,
m = mi+1 − 1, and mj = mi+1 or δ = 1, m = ms − 1, and mj = 0; in either case,
(5.3) implies γj + δ = γi+1. Then (5.15) becomes

γ + ι(γ, γi) =
a

d
= γi+1p−mi+1 + 1 = γi+1 + γi+1,c + 1.

Since ι(γ, γi) = ι(γ, γi+1)− ϵc(γ, γi+1), we obtain hc(γ, γi+1)− ϵc(γ, γi+1) = 1. □
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5.3. Computation of Pmi
. We next elaborate Step 2 of Algorithm 3. Similar ideas

will also be used in Step 3; see §5.5.
To begin with, compute zm (mod pe) by repeated squaring. Since log[z] = 0, we

may then obtain [z]m (mod pe) by writing

(5.16)
(

[z]
z

)m
= exp

(
m

1−p log z
p−1
)
≡

e−1∑
h=0

1

h!

(
1

1−p log z
p−1
)h

mh (mod pe).

Next, use the output of Step 1 of Algorithm 3 to recover

(5.17)

γ∈α∏
γ∈β

Γp(γ) (mod pe)

and, for each γ ∈ α ∪ β, a constant ci,γ,p and a series si,γ,p(x) such that for all
x ≡ 0 (mod p),

(5.18) ci,γ,p exp si,γ,p(x) ≡ Γp(x+ {hc(γ, γi)}) (mod pe).

Next, use (3.3), Lemma 5.14, and (5.18), keeping in mind that hc(γ, γi)−ϵc(γ, γi) ∈
(−1, 1], to obtain an analogous representation of

(5.19)

γ∈α∏
γ∈β

Γp (x+ hc(γ, γi)− ϵc(γ, γi)) (mod pe).

Finally, compute Pmi
as zmi (mod pe), times (5.16) evaluated at m = mi, times

(5.19) evaluated at x = γi,c
p

1−p , divided by (5.17).

Remark 5.20. For the most part, in practice we make these computations modulo
pe

′
i rather than pe. The sole exception is (5.17), which we use again in (5.32). That

said, the balanced condition ensures that (5.17) is a fourth root of unity [Rob00,
§VII.1.3, Lemma], so it suffices to compute it modulo p.

5.4. Factorization of the quotient. Before continuing through the remaining
steps of Algorithm 3, we give a high-level description of what these steps are doing,
then link this back to [CKR20].

We will define in §5.6 a block triangular matrix Ai,c(k) over Z[k] for which

(5.21) Ai,c(1) · · ·Ai,c(k) =

(
∆ 0
Σ Π

)
,

where ∆ is a scalar matrix, ∆−1Σ “records” σi

∑k
j=1 Pmi+j (mod pei) and ∆−1Π

“records” Pmi+k+1 (mod pei) in a sense to be specified later. We then apply The-
orem 2.1 and Example 2.2, noting the dependence of mi+1 −mi on p, to compute

(5.22) Si(p) := Ai,c(1) · · ·Ai,c(mi+1 −mi − 1) (mod pei)

for all p at once, then extract the desired sum from Si(p) for each p separately. (As
in Remark 2.11, we are using the matrix product in a “projective” fashion.)

Let us recall how this was done for ei = 1 in [CKR20]. For m := mi + k, write
(5.23)

Pm

Pmi+1
= [z]k−1

γ∈α∏
γ∈β

Γp

({
γ + m

1−p

})
Γp

({
γ + mi+1

1−p

}) = [z]k−1

γ∈α∏
γ∈β

Γp

(
hc(γ, γi) + k +

(k−γi,c)p
1−p

)
Γp

(
hc(γ, γi) + 1 +

(1−γi,c)p
1−p

) .
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As in [CKR20, Definition 5.7], choose a positive integer b to ensure that

(5.24) fi,c(k) := b

r∏
j=1

(hc(αj , γi) + k) , gi,c(k) := b

r∏
j=1

(hc(βj , γi) + k)

belong to Z[k]. By (3.3), Lemma 5.14, and (5.23),

(5.25)
Pmi+k+1

Pmi+k
≡ z

fi,c(k)

gi,c(k)
(mod p) (k = 1, . . . ,mi+1 −mi − 1).

Write z =
zf
zg

in lowest terms, then set

(5.26) Ai,c(k) :=

(
zggi,c(k) 0
σizggi,c(k) zffi,c(k)

)
≡ (scalar)

(
1 0

σi
Pm+1

Pm

)
(mod p);

we then have

(5.27) σi

mi+1−1∑
m=mi+1

Pm ≡ Pmi+1
Si(p)21
Si(p)11

(mod p).

Remark 5.28. In [CKR20], the matrices Si(p) are chained together into a single
product, interleaved with connecting matrices Ti(p) to account for the summands
P ′
mi

. We originally implemented a similar approach for e > 1; while this saves
some work at certain stages, it forces some intermediate computations to be done
modulo pe rather than pei , and this is disadvantageous especially with regard to
memory usage. The present approach also allows more of the work to be treated as
a precomputation; see §6.

5.5. More factorization of the quotient. To upgrade the previous discussion
to handle ei > 1, we make an additional separation of factors in (5.23), in order to
decouple the effect of shifting the argument of Γp by a multiple of p (accounted for
by Step 3 of Algorithm 3, described below) from the effect of shifting the argument
by 1 (accounted for by Step 4 of Algorithm 3, described in §5.6).

We first observe that in the ring (FracZp[k])[x]/(x
ei), we have

(5.29)
fi,c(x+ k)

gi,c(x+ k)
=

γ∈α∏
γ∈β

Γp(x+ hc(γ, γi) + k + 1)

Γp(x+ hc(γ, γi) + k)
.

If we then define the power series

Ri(x) :=

γ∈α∏
γ∈β

Γp (x+ hc(γ, γi) + 1)

Γp (hc(γ, γi) + 1)
,(5.30)

then we can rewrite (5.23) as

(5.31)
Pmi+k

Pmi+1
=
(

[z]
z

)k−1 Ri((k − γi,c)
p

1−p )

Ri((1− γi,c)
p

1−p )
·
k−1∏
j=1

z
fi,c(x+j)
gi,c(x+j)

∣∣∣
x=(k−γi,c)

p
1−p

.

The terms in (5.31) not involving j depend on k in a usefully simple way: there
exist quantities ci,h(p) ∈ Z/pei−hZ for h = 0, . . . , ei − 1 such that for all k,
(5.32)(

[z]
z

)k−1 Ri((k − γi,c)
p

1−p )

Ri((1− γi,c)
p

1−p )
Pmi+1 ≡

e−1∑
h=0

ci,h(p)
(
(k − γi,c)

p
1−p

)h
(mod pei).
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Remark 5.33. In lieu of (5.31) one could try to use the factorization

(5.34)
Pmi+k

Pmi+1
=

k−1∏
j=1

z
fi,c(x+j)
gi,c(x+j)

∣∣∣
x=(1−γi,c)

p
1−p

·
(

[z]
z

)k−1

· · · ,

but this does not achieve the requisite decoupling; in particular the second factor
does not admit a useful representation in terms of k.

Step 3 of Algorithm 3 is to compute the ci,h(p) following the approach of §5.3.
First, use (3.3), Lemma 5.14, and (5.18), now noting that hc(γ, γi) + 1 ∈ (0, 2], to
obtain a representation in the form c exp(s(x)) of

(5.35)

γ∈α∏
γ∈β

Γp (x+ hc(γ, γi) + 1) (mod pei).

Then compute (5.32) as zmi+1 (mod pei), times (5.16) evaluated at m = mi + k,
times (5.35) evaluated at x = (k − γi,c)

p
1−p , divided by (5.17).

5.6. Form of the matrix product. We now perform Step 4 of Algorithm 3, using
(5.32) to express the desired sum in terms of a matrix product. Rewrite (5.31) as

Pmi+k ≡
ei−1∑
h=0

ci,h(p)
(
(k − γi,c)

p
1−p

)h
·
k−1∏
j=1

z
fi,c(x+j)
gi,c(x+j)

∣∣∣
x=(k−γi,c)

p
1−p

(5.36)

≡
ei−1∑
h1=0

ei−1∑
h2=h1

ci,h1(p)Qh1,h2(k)
(

p
1−p

)h2

(mod pei),(5.37)

where using the notation f [h] from Notation 2.7 we write

Qh1,h2
(k) := (k − γi,c)

h2

k−1∏
j=1

z
fi,c(x+j)
gi,c(x+j)

[h2−h1]

.(5.38)

This prompts us to define the block matrix Ai,c(k) with ei × ei blocks as follows,
where δh1,h2

is the Kronecker delta and the scalar is chosen to clear denominators
(see Remark 5.45):

(5.39) Ai,c(k) := (scalar)

(
δh1,h2 0

σi(k − γi,c)
ei−h2δh1,h2

(
z
fi,c(x+k)
gi,c(x+k)

)[h1−h2]

)
;

note that the factors of k − γi,c appear in the bottom left rather than the bottom
right. As promised, we apply Theorem 2.1 and Example 2.2 to compute the products
Si(p) as in (5.22); writing Si(p) as a block matrix in the notation of (5.21), we have

(∆−1Σ)h1,h2 = σi

mi+1−mi−1∑
k=1

Qei−h1,ei−h2
(k).(5.40)

In terms of the 1× ei row vectors v, w given by

(5.41) vj := ci,ei−j(p), wj := ( p
1−p )

ei−j ,

Submitted to Algor. Num. Th. Symp.



HYPERGEOMETRIC L-FUNCTIONS IN AVERAGE POLYNOMIAL TIME, II 15

by (5.37) we have

σi

mi+1−1∑
m=mi+1

Pm ≡ 1

∆ei,ei

(vΣwT )11.(5.42)

Remark 5.43. As in Remark 2.6, in practice we achieve a constant factor speedup
by computing not Si(p) but V Si(p) where V is the matrix consisting of the last
ei + 1 rows of the 2ei × 2ei identity matrix.

Remark 5.44. According to (5.42), for j = 1, . . . , ei we only need to compute
columns j and ei + j of Si(p) modulo pj . However, in practice there seems to
be little overhead incurred by computing all of Si(p) modulo pei .

Remark 5.45. The scalar in (5.39) can be bounded by bei−1
i gi,c(k) rad(gi,c(k))

ei−1,
where rad(gi,c(k)) is the radical of gi,c(k). The latter arises from clearing denomi-
nators in the series expansion of gi,c(x+ k)−1 (mod xei); e.g., for ei = 2,

(5.46) Ai,c(k) = (scalar)


1 0 0 0
0 1 0 0

σi(k − γi,c) 0 z
fi,c(k)
gi,c(k)

0

0 σi z
f ′
i,c(k)

gi,c(k)
− z

fi,c(k)g
′
i,c(k)

gi,c(k)2
z
fi,c(k)
gi,c(k)

 .

It is tempting to try to restructure the computation so that the top left corner of
Ai,c(k) is used to track the product over gi,c(x+k). This is complicated by the need

to sum (l − γi,c)
h1

(∏k
j=1 z

fi,c(x+j)
gi,c(x+j)

)[h2]

for h1 > h2 to incorporate the ci,h(p); it

would also mean retaining all of the rows of the product, rather than only ei +1 of
them as in Remark 5.43.

In any case, the dependence on rad(gi,c(k)) means that our algorithm performs
much better in cases where β has many repeated entries. In particular, it is some-
times very profitable to swap α and β when possible (see Remark 4.12).

5.7. Complexity estimates. We conclude by analyzing the complexity of Algo-
rithm 3. This will imply Theorem 1.1 by taking e = ⌈(w+1)/2⌉ ≤ r−1 and invoking
Remark 4.11.

We first note that φ(bi) ≤ r and so7 bi = O(r log log r). From this we see that
the sum of all integers that occur as lcm(bi, bj) for some i, j is O(r2(log log r)2).
Applying Theorem 3.13, we bound the time complexity of Step 1 by

O(r2(log log r)2e2X(logX)3 + r2(log log r)2e4(log r + log e)X)

and the space complexity by

O(eX(logX)2 + r2(log log r)2e2X).

Steps 2 and 3 include no amortized steps, so their space costs are negligible. For
each of O(X/ logX) primes p, we perform O(r+e2) operations in Z/(pe). At a time
cost of O(e2(logX)2) apiece per Remark 3.10, this runs to O((re2 + e4)X logX).

Step 4 is dominated by O(r) applications of Theorem 2.1 via Example 2.2. Since
the matrix Ai,c(k) has size 2ei × 2ei and its entries have degree O(eir) (the factor
of ei coming from Remark 5.45), we bound the time and space costs by

O(e3r2X(logX)3) and O(e3r2X(logX)2)

7By [RS62, Theorem 15], φ(n) ≥ n
2 log logn+3/ log logn

for n > 2.
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provided that e = O(r), r = O(logX), and the bitsize of z is O(er logX). Combin-
ing these estimates (and replacing e with r) yields Theorem 1.1.

6. Implementation notes and sample timings

We have implemented Algorithm 3 in Sage, using Cython for certain inner loops
and for a wrapper to Sutherland’s rforest C library. While it would be natural to
implement a multithreaded approach in certain steps (particularly the calculations
not amortized over p), we have not implemented this.

We report timings in Table 1 and divide our algorithm into three phases:

(1) Step 1 of Algorithm 3. This phase is independent of z and depends only
mildly on α and β.

(2) Steps 2 and 3 of Algorithm 3, in both cases assuming z = 1. This phase
includes no amortized steps and is independent of z.

(3) Step 4 of Algorithm 3, plus adjustment of the results of Steps 2 and 3 to
account for z.

When possible, we also include comparison timings with the built-in functions

for computing Hp

(
α
β

∣∣∣z) in Sage and Magma, denoted “Sage(p)” and “Magma(p)”

in the table. These are not amortized, and so these runtimes are quasilinear in X2

rather than X. These builtin functions also compute Frobenius traces at higher
prime powers q (see [CKR20, (2.22)] for the analogous formula), which are needed
for tabulation of L-functions when r > 2 (see §7); these are denoted “Sage(q)” and
“Magma(q)” in the table, and the runtimes are quasilinear in X3/2.

For e = 1, we also include a comparison with the “chained product” approach of
[CKR20] (see Remark 5.28). The two approaches perform comparably for individual
calculations, but for bulk calculations Algorithm 3 is clearly superior.

We use the following hypergeometric data (computing the weight w as in (4.3)):

e r w α β

1 2 1 ( 14 ,
3
4 ) ( 16 ,

5
6 )

1 4 1 ( 1
10 ,

3
10 ,

7
10 ,

9
10 ) ( 16 ,

1
6 ,

5
6 ,

5
6 )

2 4 3 ( 14 ,
1
3 ,

2
3 ,

3
4 ) ( 16 ,

1
6 ,

5
6 ,

5
6 )

3 6 5 ( 15 ,
2
5 ,

1
2 ,

1
2 ,

3
5 ,

4
5 ) ( 16 ,

1
6 ,

1
6 ,

5
6 ,

5
6 ,

5
6 )

4 8 7 ( 15 ,
1
3 ,

2
5 ,

1
2 ,

1
2 ,

3
5 ,

2
3 ,

4
5 ) ( 16 ,

1
6 ,

1
6 ,

1
6 ,

5
6 ,

5
6 ,

5
6 ,

5
6 )

We take the specialization point z = 314
159 ; note that in Magma one must input z−1

instead of z.
Timings are reported in 5.1GHz Intel i9-12900K core-seconds, running Sage 10.1

and Magma 2.28-5. Memory usage was limited to 20GB.

7. Tabulation of L-functions

As mentioned in the introduction, the broader context for our work is the desire
to tabulate hypergeometric L-functions at scale in LMFDB. This problem naturally
breaks down as follows.

• For a fixed hypergeometric L-function of motivic weight w, we may compute
p-Frobenius traces for small p using (4.9) and for larger p up to some cutoff
X using our algorithm, in both cases excluding tame and wild primes.
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Table 1. Timings, see §6 for explanation.

e = 1, r = 2 215 216 217 218 219 220 221 222 223 224 225

[CKR20] 0.06 0.11 0.21 0.48 1.20 2.84 6.80 16.0 37.6 88.5 226

Phase (1) 0.08 0.13 0.24 0.49 0.98 2.26 8.15 17.9 32.5 65.6 157
Phase (2) 0.03 0.05 0.10 0.19 0.38 0.71 3.20 5.54 9.44 17.1 28.2
Phase (3) 0.04 0.07 0.12 0.24 0.48 1.02 2.30 5.44 11.2 24.8 63.3

Total 0.15 0.25 0.46 0.92 1.84 3.98 13.6 28.9 53.1 107 248

Sage(p) 40.6 150 572
Magma(p) 36.7 147 604

e = 1, r = 4 213 214 215 216 217 218 219 220 221 222 223

[CKR20] 0.10 0.15 0.24 0.39 0.82 1.86 4.28 10.3 24.7 55.0 127

Phase (1) 0.06 0.08 0.11 0.19 0.34 0.66 1.34 3.18 9.94 17.6 38.6
Phase (2) 0.02 0.03 0.06 0.11 0.24 0.45 0.87 1.67 3.42 6.85 16.6
Phase (3) 0.03 0.04 0.07 0.14 0.25 0.54 1.17 2.73 6.32 14.3 31.9

Total 0.11 0.16 0.25 0.44 0.83 1.65 3.38 7.58 19.7 38.7 87.1

Sage(p) 4.33 15.5 56.0 223 879
Magma(p) 3.11 11.8 44.9 181 749

Sage(q) 0.03 0.08 0.20 0.46 1.34 3.61 9.54 28.7 69.1 193 534
Magma(q) 0.10 0.28 0.73 1.76 5.62 15.2 39.8 111 325

e = 2, r = 4 214 215 216 217 218 219 220 221 222 223 224

Phase (1) 0.12 0.23 0.41 3.28 1.59 3.33 10.7 19.4 42.9 94.8 203
Phase (2) 0.06 0.11 0.21 0.37 0.68 1.27 2.36 4.39 8.57 17.2 37.9
Phase (3) 0.08 0.14 0.21 0.47 1.00 2.19 5.04 12.3 28.6 67.7 147

Total 0.26 0.48 0.84 4.12 3.27 6.79 18.0 36.1 80.0 179 388

Sage(p) 119 469
Magma(p) 17.3 65.7 454

Sage(q) 0.11 0.23 0.48 1.40 3.67 9.58 26.1 68.4 188 518
Magma(q) 0.32 0.86 2.93 10.3 29.2 81.1 249 762

e = 3, r = 6 213 214 215 216 217 218 219 220 221 222 223

Phase (1) 0.16 0.30 0.61 1.02 2.12 4.46 10.0 25.0 54.1 123 283
Phase (2) 0.05 0.08 0.16 0.38 0.59 1.26 2.33 4.69 8.67 17.2 33.8
Phase (3) 0.11 0.23 0.32 0.72 1.98 4.60 11.4 27.6 71.4 158 374

Total 0.31 0.62 1.09 2.11 4.69 10.3 23.8 57.3 134 298 691

Sage(p) 54.9 210 793
Magma(p) 11.2 42.8 162 626 2437

Sage(q) 0.06 0.12 0.28 0.57 1.64 4.31 11.3 30.7 165 869 2825
Magma(q) 0.27 0.68 1.98 4.37 14.5 37.2 100 291 907 2951

e = 4, r = 8 213 214 215 216 217 218 219 220 221 222 223

Phase (1) 0.45 0.72 1.23 2.35 4.86 10.7 23.5 57.9 130 304 697
Phase (2) 0.09 0.17 0.32 0.60 1.24 2.33 4.38 8.38 16.8 32.4 65.5
Phase (3) 0.19 0.40 0.67 1.78 4.47 10.9 26.1 63.9 163 365 865

Total 0.74 1.28 2.22 4.72 10.6 23.9 54.0 130 310 702 1629

Sage(p) 76.5 291 1088
Magma(p) 12.8 49.4 189 745 3789

Sage(q) 0.07 0.20 0.31 1.74 7.75 24.6 66.6 184 494
Magma(q) 0.30 0.81 2.32 5.09 21.2 56.4 155 463
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• For prime powers q ≤ X, excluding powers of tame and wild primes, as
noted in §6 we may use Sage or Magma to compute the q-Frobenius trace.
(We may also skip q = pf for f > r/2 by virtue of the local functional
equation, but this is a minor point because the dominant case is f = 2.)
While it is likely possible to to reduce the complexity from X3/2 to X either
by adapting our present approach (as suggested already in [CKR20]) or
implementing the algorithm indicated in [Ked22], the timings in §6 diminish
the urgency of this.

• Magma can compute Euler factors and conductor exponents at tame primes
(modulo a tractable conjecture). The computational difficulty is negligible.8

• For Euler factors and conductor exponents at wild primes, even the conjec-
tural picture remains incomplete, but see [RR22] for a partial description.
Given enough Fourier coefficients at good primes, one can empirically verify
a complete guess for the conductor, the global root number, and all bad
Euler factors using the approximate functional equation, as in [Dok04] or
[FKL19].

Work in this direction is ongoing, and we expect to have many examples of
hypergeometric L-functions available in LMFDB in the near future.
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