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Abstract. We give an alternative derivation of (N,N)-isogenies between fast

Kummer surfaces which complements existing works based on the theory of
theta functions. We use this framework to produce explicit formulæ for the

case of N = 3, and show that the resulting algorithms are more efficient than

all prior (3, 3)-isogeny algorithms.

1. Introduction

Isogenies of elliptic curves are well-understood, at least from an algorithmic point
of view, in theory and in practice. Given the Weierstrass equation of an elliptic
curve E, and a generator P of a finite subgroup of E, Vélu’s formulæ [53] allow
us to write down polynomials defining a normalized quotient isogeny Φ : E →
E/⟨P ⟩ (with variants for alternative curve models [39], or for rational subgroups
with irrational generators [34]). Building on these formulæ, there also exist highly
efficient algorithms for evaluating an isogeny at points of E without deriving a
polynomial representation for the isogeny itself (including [2], [19], and [44], for
example). Interest in these formulæ and algorithms has recently intensified with the
development of isogeny-based cryptography as a source of cryptosystems conjectured
to be resistant against quantum attacks.

As a generalization of an elliptic curve, we consider principally polarized abelian
varieties, and the first non-elliptic examples are Jacobians of genus-2 curves. Genus-
2 curves are hyperelliptic curves with affine plane models

C : y2 = f(x) where f(x) is squarefree of degree 5 or 6 ,

in characteristic not dividing 30, and the Jacobian J = Jac(C) of C is a 2-
dimensional principally polarized abelian variety (p.p.a.v.), birational to C(2), pa-
rameterizing the degree-0 Picard group of the curve C.

Mumford [40], Cantor [10], Grant [31], and Flynn [26, 28] laid the ground for
explicit geometric and number-theoretic computations with genus-2 Jacobians, and
Cassels and Flynn’s text [11] presented a first unified view of the arithmetic of
genus-2 Jacobians. Later, Gaudry [30] proposed Kummer surfaces of genus-2 Jaco-
bians as a setting for efficient discrete-logarithm-based cryptosystems, building on
a variant [15] of Lentra’s ECM factoring algorithm [33]. The Kummer surface K
of a Jacobian J is the image of the quotient morphism π : J → K = J /{±1}; as
such, it is the genus-2 analogue of the x-coordinate of elliptic curves. Geometrically,
Kummer surfaces have convenient models as singular quartic surfaces in P3.

Cosset put Chudnovsky and Chudnovsky’s Kummer ECM into practice in [17],
while high-speed, high-security Kummer-based implementations of Diffie–Hellman
key exchange [1, 6, 45] and signature schemes [45, 46] can give significant practical
improvements over elliptic curves in many contexts.
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However, while the basic arithmetic of genus-2 Jacobians and Kummer surfaces
has matured, and while cryptographic applications have driven great improvements
in the efficiency of the resulting formulæ and algorithms, the corresponding explicit
theory of isogenies lags behind. First, note that just as elliptic isogenies factor nat-
urally into compositions of scalar multiplications and isogenies with prime cyclic
kernel (i.e., isomorphic to Z/NZ with N prime), isogenies of abelian surfaces (in-
cluding Jacobians of genus-2 curves) decompose into compositions of scalar multi-
plications and (N,N)-isogenies (with kernel isomorphic to (Z/NZ)2).1 The funda-
mental task, then, is to compute and evaluate (N,N)-isogenies where N is prime.
We can do this on the level of the Jacobian (using e.g. correspondences on genus-2
curves [51]), or we can use the fact that isogenies commute with −1 to move down
to the more tractable Kummer surfaces. Indeed, as Cassels and Flynn note, “we
lose nothing by going down to the Kummers, because [the map] lifts automatically
to a map of abelian varieties.” [11, §9.3].

The case N = 2 is classical: explicit methods and formulæ go back to Riche-
lot [47], and were re-developed in modern terms by Bost and Mestre [8] and Cassels
and Flynn [11, §3]. Going further, we find some first efforts at explicit curve-
based formulæ for the case N = 3 by Smith [50] (building on an ineffective general
method due to Dolgachev and Lehavi [24]), and more general results due to Cou-
veignes and Ezome [21]. Moving to general Kummer surfaces, Bruin, Flynn and
Testa [9], Nicholls [41], and Flynn [27] gave more powerful formulæ for N = 3, 4,
and 5, respectively, in a number-theoretic context; Nicholls even gives a method
for general N . Flynn and Ti revisited the formulæ for N = 3 in a cryptographic
context [29], and Decru and Kunzweiler [23] further optimized these formulæ, dras-
tically improving their efficiency. However, none of these formulæ make use of the
special symmetries of the most efficient Kummer surfaces that have been used in
cryptographic implementations.

Bisson, Cosset, Lubicz, and Robert have advanced an ambitious program [4, 16,
37, 48, 49] based on the theory of theta functions [40] to provide asymptotically
efficient algorithms for arbitrary odd N (and beyond genus 2 to arbitrarily high
dimension). The AVIsogenies software package based on their results is publicly
available [5]. These algorithms are certainly compatible with fast Kummer surfaces,
but they target isogeny evaluation for general abelian varieties, rather than the
construction of compact explicit formulæ in genus 2 that can be studied, analysed,
and optimized in their own right. Nevertheless, these techniques were recently
revisited by Dartois, Maino, Pope and Robert [22] in the context of cryptography
to efficiently compute chains of (2, 2)-isogenies between products of elliptic curves
in the theta model.

1.1. Contributions. In this article, we give a general method for deriving explicit
formulæ for isogenies of fast Kummer surfaces, optimizing the approach of Bruin,
Flynn, and Testa by exploiting the high symmetry of these “fast” surfaces, which
are the most relevant for applications over finite fields. Our methods are elementary
in the sense that they avoid explicitly using the heavy machinery of theta functions
required in [18, 22, 38] (though of course theta functions implicitly play a funda-
mental role in our techniques). We apply these methods to give explicit examples

1In some special cases, depending on the endomorphism ring of the Jacobian, we can also have
isogenies with cyclic kernel: these isogenies are beyond the scope of this article.
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for N = 3 and 5. For example, for N = 3 we obtain a map ϕ : K → K′ defined by

ϕ((X1 : X2 : X3 : X4)) = (ϕ1(X1, X2, X3, X4) : · · · : ϕ4(X1, X2, X3, X4)) ,

where

ϕ1(X1, X2, X3, X4) = X1

(
c1X

2
1 + c2X

2
2 + c3X

2
3 + c4X

2
4

)
+ c5X2X3X4 ,

ϕ2(X1, X2, X3, X4) = X2

(
c2X

2
1 + c1X

2
2 + c4X

2
3 + c3X

2
4

)
+ c5X1X3X4 ,

ϕ3(X1, X2, X3, X4) = X3

(
c3X

2
1 + c4X

2
2 + c1X

2
3 + c2X

2
4

)
+ c5X1X2X4 ,

ϕ4(X1, X2, X3, X4) = X4

(
c4X

2
1 + c3X

2
2 + c2X

2
3 + c1X

2
4

)
+ c5X1X2X3 ,

and ci are rational functions in the theta-null constants a, b, c, d defining K and
the coordinates of the generators of the kernel (see Section 4.1 for the explicit
expresssions). This map can be evaluated with at most 88 multiplications and 12
squarings in the field containing the theta constants and generator coordinates.

To illustrate the potential benefits of our formulæ in practical applications, we
give experimental results on cryptographic hash functions based on chains of (3, 3)-
isogenies, as in [12] and [23]. In Section 5 we present 3DAC: a three-dimensional
differential addition chain, and use it to construct (Nk, Nk)-isogeny kernels cor-
rectly, efficiently, and securely. Combined with our (3, 3)-isogeny formulæ, this
allows us to efficiently compute (3k, 3k)-isogenies on fast Kummer surfaces. The
hash function we define in Section 6 uses these isogenies, exploiting the efficient
arithmetic of fast Kummer surfaces for the first time, to gain speed-ups of between
1.4× and 2.3× over the Castryk–Decru hash function [12] and between 27.0× and
28.3× over the Decru–Kunzweiler hash function [23].

1.2. Software. The source code accompanying this paper is written in MAGMA [7],
Python and SageMath [52] and is publicly available under the MIT license. It is
available at

https://github.com/mariascrs/KummerIsogenies.

Acknowledgements. We thank Chris Nicholls for making the code accompanying
his thesis available to us, which we used to obtain the formulae for (2, 2)-isogenies
presented in Section 3. We also thank Sam Frengley for many helpful conversations
during the preparation of this paper. The first author was supported by UK EPSRC
grant EP/S022503/1. This work received funding from the France 2030 program,
managed by the French National Research Agency under grant agreement No. ANR-
22-PETQ-0008 PQ-TLS.

2. Fast Kummer surfaces and their arithmetic

Let k be a perfect field—typically, a finite field or a number field—of character-
istic p ̸= 2, 3, or 5, and fix an algebraic closure k. If k = Fq, then we measure the
time complexity of our algorithms in terms of elementary operations in Fq. We let
M, S, and a denote the cost of a single multiplication, squaring, and addition (or
subtraction) in Fq, respectively.

2.1. Genus-2 curves and their Jacobians. Every smooth genus-2 curve over k
is isomorphic to a curve of the form C : y2 = f(x), where f(x) ∈ k[x] is a squarefree
polynomial of degree 6.
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For our applications we may suppose that f(x) has all its roots in k, so (after,
for example, mapping one root to 0, one to 1, and one to ∞, as in [42, §2.1]) we
can assume C has a Rosenhain model

C ∼= Cλ,µ,ν/k : y2 = x(x− 1)(x− λ)(x− µ)(x− ν) with λ, µ, ν ∈ k ;
the values λ, µ, and ν are called Rosenhain invariants of Cλ,µ,ν .

Fix a prime N not divisible by char(k). The N -torsion subgroup J [N ] of J is
a Z/NZ-module of rank 4, that is, J [N ] ∼= (Z/NZ)4; and the (canonical) principal
polarisation on J induces a non-degenerate, bilinear, and antisymmetric N -Weil
pairing

eN : J [N ]× J [N ]→ µN .

A subgroup G ⊆ J [N ] is isotropic if eN (P,Q) = 1 for all P,Q ∈ G, and maximal
isotropic if it is not properly contained in any isotropic subgroup of J [N ]. Since
N is prime, if G is maximal isotropic then G ∼= (Z/NZ)2; we say G is an (N,N)-
subgroup. If G is a maximal isotropic subgroup of J [N ], then the quotient isogeny
of abelian varieties

Φ : J → A′ := J /G
is an isogeny of p.p.a.v.s: that is, there is a principal polarization on A′ that pulls
back via Φ to N times the principal polarization on J . We say that Φ is an
(N,N)-isogeny.

Being a principally polarized abelian surface, A′ is (as a p.p.a.v.) the Jacobian
of a genus 2 curve, say J ′, or a product of elliptic curves E′

1 × E′
2 (equipped with

the product polarisation). The case A′ = J is the general case, and the primary
focus of this paper.

2.2. Isogenies and Kummer surfaces. The Kummer surface K of a Jacobian
J is the image of the quotient map π : J → K = J /{±1}. Geometrically, it has
a quartic model in P3 with sixteen point singularities, called nodes; the nodes are
the images in K of the 2-torsion points of J , since these are precisely the points
fixed by −1.

Any (N,N)-isogeny Φ : J → J ′ descends to a morphism of Kummer surfaces
ϕ : K → K′, such that the following diagram commutes:

J J ′

K K′

Φ

π π′

ϕ

Abusing terminology, we say a morphism ϕ of Kummer surfaces is an (N,N)-isogeny
if it is induced by an (N,N)-isogeny Φ between the corresponding Jacobians.

2.3. Fast Kummer surfaces. Following Gaudry [30], fast Kummer surfaces are
defined by four fundamental theta constants, which can be computed from the
Rosenhain invariants of a genus-2 curve C/k. Given a hyperelliptic curve C/k with
Rosenhain invariants λ, µ, ν ∈ k, we define fundamental theta constants a, b, c, d ∈ k
and dual theta constants as A,B,C,D ∈ k such that

A2 = a2 + b2 + c2 + d2, B2 = a2 + b2 − c2 − d2,
C2 = a2 − b2 + c2 − d2, D2 = a2 − b2 − c2 + d2.
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The theta constants are related to Rosenhain invariants through the relations

λ =
a2c2

b2d2
, µ =

c2e2

d2f2
, ν =

a2e2

b2f2
,

where e, f ∈ k satisfy e2/f2 = (AB + CD)/(AB − CD).
We define the fast Kummer model K corresponding to C as

(1)
K : X4

1 +X4
2 +X4

3 +X4
4 − 2E ·X1X2X3X4 − F · (X2

1X
2
4 +X2

2X
2
3 )

−G · (X2
1X

2
3 +X2

2X
2
4 )−H · (X2

1X
2
2 +X2

3X
2
4 ) = 0,

where X1, X2, X3, X4 are coordinates on P3 and the coefficients E,F,G,H are
rational functions in a, b, c, d, namely

(2)

E := 256abcdA2B2C2D2/(a2d2 − b2c2)(a2c2 − b2d2)(a2b2 − c2d2),
F := (a4 − b4 − c4 + d4)/(a2d2 − b2c2),
G := (a4 − b4 + c4 − d4)/(a2c2 − b2d2),
H := (a4 + b4 − c4 − d4)/(a2b2 − c2d2).

This model of K is often referred to as the canonical parameterisation [46]. Note
that A2, B2, C2, and D2 are linear combinations of a2, b2, c2, and d2, so the
equation of K is determined entirely by a, b, c, d; in fact, K is determined by the
projective point (a : b : c : d) ∈ P3. The identity element on K is OK = (a : b : c : d).

2.4. Nodes of the Kummer surface. The nodes of K are the sixteen points

OK = (a : b : c : d), T1 = (a : b : −c : −d), T2 = (a : −b : c : −d), T3 = (a : −b : −c : d),

T4 = (b : a : d : c), T5 = (b : a : −d : −c), T6 = (b : −a : d : −c), T7 = (b : −a : −d : c),

T8 = (c : d : a : b), T9 = (c : d : −a : −b), T10 = (c : −d : a : −b), T11 = (c : −d : −a : b),

T12 = (d : c : b : a), T13 = (d : c : −b : −a), T14 = (d : −c : b : −a), T15 = (d : −c : −b : a).

Each of the Ti is the image in K of a two-torsion point T̃i in J [2]. Since T̃i = −T̃i,
the translation-by-T̃i map on J induces a morphism σi : K → K. In fact, σi lifts to
a linear map on A4: that is, it acts like a matrix on the coordinates (X1, X2, X3, X4)

on P3. Further, σi and σj commute resp. anticommute if e2(T̃i, T̃j) = 1 resp. −1.
In particular, if we define

U1 := diag(1, 1,−1,−1), U2 := diag(1,−1, 1,−1),
and

V1 :=


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 , V2 :=


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 .

Then

(3) U2
1 = U2

2 = I4, and U1U2 = U2U1 , V 2
1 = V 2

2 = I4, and V1V2 = V2V1 ,

and

(4) U1V2 = −V2U1 , U2V1 = −V1U2 , U1V1 = V1U1 , U2V2 = V2U2 .

Taking the labelling of the nodes above, with T0 = (a : b : c : d) as the image of

T̃0 = OJ , the corresponding translations are such that

Ti = σi((a : b : c : d)) for 0 ≤ i ≤ 15 ;
5
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that is,

σ0 = I4 σ1 = U1 σ2 = U2 σ3 = U1U2

σ4 = V1 σ5 = V1U1 σ6 = V1U2 σ7 = V1U1U2

σ8 = V1V2 σ9 = V1V2U1 σ10 = V1V2U2 σ11 = V1V2U1U2

σ12 = V2 σ13 = V2U1 σ14 = V2U2 σ15 = V2U1U2

Now Eqs. (3) and (4) show that (T̃1, T̃2, T̃12, T̃4) is a symplectic basis (with repesct
to the 2-Weil pairing) of J [2], where we define a symplectic basis as follows.

Definition 2.1. Let J be the Jacobian of a genus 2 curve C. A basis {Q1, Q2, Q3, Q4}
for J [D] is symplectic with respect to the D-Weil pairing if

eD(Q1, Q3) = eD(Q2, Q4) = ζ

where ζ is a primitive D-th root of unity, and eD(Qi, Qj) = 1 otherwise.

2.5. Operations on the Kummer surface. Let π : J → K be the quotient
by −1. The multiplication-by-m maps [m] on J induce pseudo-multiplications
π(P ) 7→ [m]∗(π(P )) = π([m]P ). We can express the pseudo-doubling map [2]∗ on
K as a composition of four basic building blocks, each a morphism from P3 to P3:

(1) the Hadamard involution H : P3 → P3, which is induced by the linear map
on A4 defined by the matrix

1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

 ;

(2) the squaring map

S : (X1 : X2 : X3 : X4) 7−→ (X2
1 : X2

2 : X2
3 : X2

4 ) ;

(3) the scaling maps

C(α:β:γ:δ) : (X1 : X2 : X3 : X4) 7−→ (αX1 : βX2 : γX3 : δX4)

for each (α : β : γ : δ) ∈ P3(k); and
(4) the inversion map

I : (X1 : X2 : X3 : X4) 7−→ (X2X3X4 : X1X3X4 : X1X2X4 : X1X2X3)

= (1/X1 : 1/X2 : 1/X3 : 1/X4) ,

well-defined when all Xi ̸= 0.

We can readily see that H costs 8 k-additions, S costs 4 k-squarings, C costs 4
k-multiplications, and I costs 6 k-multiplications. Now, if K is a Kummer surface
with fundamental theta constants (a : b : c : d), then pseudo-doubling is given by

[2]∗ = CI(OK) ◦ H ◦ S ◦ CI((A:B:C:D)) ◦ H ◦ S .
While K inherits scalar multiplication from J , it loses the group law: π(P ) = ±P

and π(Q) = ±Q in K do not uniquely determine π(P + Q) = ±(P + Q) (unless
at least one of P and Q is in J [2]). However, the operation {π(P ), π(Q)} 7→
{π(P + Q), π(P − Q)} is well-defined, so we have a pseudo-addition operation
(π(P ), π(Q), π(P −Q)) 7→ π(P +Q).

By abuse of notation, we let R = (r1 : r2 : r3 : r4) and S = (s1 : s2 : s3 : s4) be
points on K, and let T+ = (t+1 : t+2 : t+3 : t+4 ) and T

− = (t−1 : t−2 : t−3 : t−4 ) denote the
6
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sum R+S and difference R−S, respectively. There exist biquadratic forms Bij [11,
Theorem 3.9.1] for K such that for 1 ≤ i, j ≤ 4 we have

t+i t
−
j + t−i t

+
j = λBij

(
r1, r2, r3, r4; s1, s2, s3, s4

)
= λBij(R;S),

where λ ∈ k is a common projective factor depending only on the affine represen-
tations chosen for R, S, T+, T−. The biquadratic forms Bi,j for fast Kummer
surfaces are given explicitly by Renes and Smith [46, §5.2].

These biquadratic forms are the basis of explicit pseudo-addition and doubling
laws on K. For example, if the difference T− is known, then the Bij can be used
to compute the coordinates of T+. As we will see in Section 3, the Bij will also be
crucial in determining equations for our (N,N)-isogenies.

3. (N,N)-isogenies on fast Kummer surfaces

Throughout this section, Φ : J = Jac(C)→ J ′ is an (N,N)-isogeny with kernel
G ⊂ J [N ] (a maximal N -Weil isotropic subgroup of J [N ]), where N is a prime
number not equal to the characteristic of the base field k. Our goal is to compute an
explicit and efficiently-computable collection of polynomials defining the induced
map ϕ : K → K′ when K and K′ admit fast models.

3.1. A warm-up with N = 2. We first dispose of the case N = 2. Let T̃0, . . . , T̃15
be the 16 points in J [2], and let T0, . . . , T15 be their images in K. Recall that
Ti = σi(T0), where σi : K → K is a morphism defining the translation-by-Ti map.
There are precisely fifteen (images of) (2, 2)-subgroups in K, and they are the images
of

G̃ij :=
{
T̃0, T̃i, T̃j , T̃i + T̃j

}
⊂ J [2]

in K, where 1 ≤ i ̸= j ≤ 15 such that the linear maps corresponding to σi and
σj commute. This gives 15 corresponding (2, 2)-isogenies given by ϕ : K → K′ =
K/Gi,j . For each unique (2, 2)-subgroup, we can associate a morphism α : K → K
induced by a linear map on A4 such that the corresponding (2, 2)-isogeny K → K̃
is given by

ψ := H ◦ S ◦ α.

We give matrices specifying the linear map α for each of the (2, 2)-subgroups in Ap-
pendix A. For now, it suffices to note that the nonzero entries of these 4×4 matrices
are all fourth roots of unity.

Note however, that K̃ will not be in the correct form, as given by Equation (1).
We must therefore apply a final scaling CU where U = (S−1 ◦ I ◦ ψ)(OK). From
this we obtain a (2, 2)-isogeny ϕ := CU ◦ψ : K → K′ = K/Gi,j , where K and K′ are
fast Kummer surfaces.

Example 3.1. Consider the (2, 2)-subgroup

G1,2 = {(a : b : c : d), (a : b : − c : − d), (a : − b : c : − d), (a : − b : − c : d)}.
7

Submitted to Algor. Num. Th. Symp.



Here A = I4 and the (2, 2)-isogeny is given by

(X1 : X2 : X3 : X4) 7→(
X2

1 +X2
2 +X2

3 +X2
4

A
:
X2

1 +X2
2 −X2

3 −X2
4

B
:

:
X2

1 −X2
2 +X2

3 −X2
4

C
:
X2

1 −X2
2 −X2

3 +X2
4

D

)
We call this the distinguised kernel : the kernel of the first half of doubling. Indeed,
U = (A : B : C : D) and we recover the first three steps CI(A:B:C:D) ◦ H ◦ S of the
doubling map on fast Kummer surfaces.

Remark 3.2. Though the formulæ for (2, 2)-isogenies on fast Kummer surfaces are
extremely compact, we remark that the final scaling requires the computation of
square roots in k. If R, S are the 2-torsion points generating the isogeny, let P ,
Q ∈ K be such that R = [2]∗P , S = [2]∗Q. The coordinates of P , Q contain the
square roots needed for the final scaling (up to a projective factor). We therefore
suspect that these square roots may be inferred directly from coordinates of the
4-torsion, though we have not been able to derive such formulæ.

3.2. The general case: odd N . From this point forward, we suppose N is an
odd prime. Since N is odd, the (N,N)-isogeny Φ restricts to an isomorphism of
2-torsion subgroups J [2]→ J ′[2]. Furthermore, since Φ is an isogeny of p.p.a.v. it
is compatible with the N -Weil pairing by definition, and so it maps the symplectic
structure on J [2] associated with the fast Kummer K onto a symplectic 2-torsion
structure on J ′[2], which is associated with a fast Kummer K′. The isogeny Φ
therefore descends to a morphism ϕ : K → K′ of fast Kummers. Our goal is to
construct explicit equations for ϕ.

To do so, we follow the strategy taken by Cassels and Flynn [11, §9], Bruin,
Flynn and Testa [9], Nicholls [41, §5], and Flynn [27], adapting it to the case of fast
Kummer surfaces. We will observe that the special forms of the affine translation
maps σi are very helpful in this setting, and lead to nice results.

In practice, we are given a fast Kummer K and the image π(G) of an (N,N)-
subgroup G of J in K. There exists a fast Kummer K′ ∼= (J ′/G)/⟨±1⟩, and our
goal is to find K′ and the map ϕ : K → K′ induced by the quotient (N,N)-isogeny
Φ with kernel G. Crucially, ϕ “commutes” with the action by 2-torsion points, in
the sense of the following definition.

Definition 3.3. An isogeny of fast Kummer surfaces is a morphism ϕ : K → K′

induced by an isogeny Φ : J → J ′ such that when lifted to a map on the ambient
space, we have

ϕ ◦ UK
i = UK′

i ◦ ϕ and ϕ ◦ V K
i = V K′

i ◦ ϕ for i = 1, 2 ,

where Ui and Vi are as defined in Section 2.4.

We want to compute ϕ : K → K′, but K′ is unknown. However, as K and K′

are both embedded in P3, ϕ must be defined by forms of degree N , and it must
commute with the actions of the Ui and Vi. This imposes heavy constraints on the
shape of the forms defining ϕ, and we can hope to interpolate them using linear
algebra given the action of G, and therefore to interpolate the image Kummer K′

by pushing the theta constants (a : b : c : d) through the isogeny.
8
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Let K[N ] be the image of J [N ] on K and fix R,S ∈ K[N ]. From this point
forward, we write ⟨R,S⟩ ⊂ K[N ] for the image of the subgroup G of J [N ] generated
by the preimages of R,S. By abuse of notation, we say that R, S are N -torsion
points on K.

The first step is to compute two sets of homogeneous forms of degree N in the
coordinates of K that are invariant under translation by R and by S. The following
lemma, due to Nicholls [41, §5.8.4], describes how we can use the biquadratic forms
associated to the Kummer surface introduced in Section 2.3 to construct these
homogeneous forms.

Lemma 3.4. Fix Kummer surface K with coordinates X1, X2, X3, X4 and associ-
ated biquadratic forms Bi,j for 1 ≤ i, j ≤ 4. Let N be an odd prime number, and
fix a point R ∈ K[N ] of order N .

We denote by I ∈ {1, 2, 3, 4}N a list of indices I = (i1, . . . , iN ). Letting τ be a
permutation of {1, . . . , N}, we write

τ(I) = τ((i1, . . . , iN )) := (iτ(1), . . . , iτ(N)).

Then, for each I ∈ {1, 2, 3, 4}N we define

FI :=
∑

τ∈CN

Xiτ(1)
·
(N−1)/2∏

k=1

Biτ(2k),iτ(2k+1)
(X1, X2, X3, X4; kR) ,

where CN is the cyclic group of order N . Then, the set FR := {FI} contains
homogeneous forms of degree N invariant under translation by R.

Applying the lemma above to N -torsion points R and S, we obtain the two sets
FR and FS . The homogeneous forms of degree N in each set will generate a space
of dimension mN ≥ 4. Our experiments suggest mN = 2N + 2 for N ≤ 19, and
possibly beyond, though we have not proven this.

The next step is to compute a basis for these two spaces, say FR
1 , . . . , F

R
mN

is a

basis for the space generated by the homogeneous forms in FR, and F
S
1 , . . . , F

S
mN

a basis for the space generated by FS .
The intersection of these spaces contains homogeneous forms of degree N that

are invariant under translation by any point in the kernel G of our (N,N)-isogeny.
The intersection will be of dimension 4, and a basis for this intersection gives an

(N,N)-isogeny ψ : K → K̃. Explicitly, the third step is to compute a basis of this
intersection, say f1, f2, f3, f4. Then, our (N,N)-isogeny is given by ψ = (f1 : f2 :
f3 : f4).

We note that K̃ may not be in the correct form given by Equation (1). When
computing chains of isogenies, however, it is important to ensure that our (N,N)-
isogenies have domain and image in the same form. Therefore, the last step is to

apply a linear transformation M : K̃ → K′, where K′ is a fast Kummer surface.
Post-composing the map ψ with this linear transformation gives a k-rational (N,N)-
isogeny ϕ : K → K′ between fast Kummer surfaces generated by kernel G = ⟨R,S⟩.
Remark 3.5. The compactness and efficiency of our isogeny formulae is determined
by the choice of basis we make for the spaces generated by the forms in FR and
FS . An open question that arises from this work, therefore, is finding a solution
to the following problem: let f1, . . . , fn ∈ Q(a1, . . . , ak)[x1, . . . , xm] be a basis of
polynomials defined over a function field. Find a “nice” basis g1, . . . , gn where
g1, . . . , gn are Q(a1, . . . , ak)-linear combinations of the fi.
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4. Explicit (3, 3)-isogenies on fast Kummers

We now specialise the discussion in Section 3 to N = 3 to construct (3, 3)-
isogenies between fast Kummer surfaces.

Let J = Jac(C) be the Jacobian of a genus 2 curve C defined over k. Suppose
we have a (3, 3)-subgroup of J [3], which induces an isogeny ϕ on the corresponding
fast Kummer surface K = J /{±} with kernel G = ⟨R,S⟩ for some R,S ∈ K[3]
(i.e., G is the image of the (3, 3)-subgroup in K).

Exploiting the fact that ϕ is an isogeny of fast Kummer surfaces, we obtain the
following lemma, demonstrating that it is determined by five k-rational functions
in the coordinates of OK = (a : b : c : d), R and S.

Lemma 4.1. Let R and S be distinct 3-torsion points on K generating a (3, 3)-
subgroup G ⊂ K[3], and set OK = (a : b : c : d). The (3, 3)-isogeny of fast Kummer
surfaces ϕ : K → K′ generated by kernel G is in the form

(X1 : X2 : X3 : X4) 7−→ (ϕ1(X1, X2, X3, X4) : · · · : ϕ4(X1, X2, X3, X4)) ,

where

ϕ1(X1, X2, X3, X4) = X1

(
c1X

2
1 + c2X

2
2 + c3X

2
3 + c4X

2
4

)
+ c5X2X3X4 ,

ϕ2(X1, X2, X3, X4) = X2

(
c2X

2
1 + c1X

2
2 + c4X

2
3 + c3X

2
4

)
+ c5X1X3X4 ,

ϕ3(X1, X2, X3, X4) = X3

(
c3X

2
1 + c4X

2
2 + c1X

2
3 + c2X

2
4

)
+ c5X1X2X4 ,

ϕ4(X1, X2, X3, X4) = X4

(
c4X

2
1 + c3X

2
2 + c2X

2
3 + c1X

2
4

)
+ c5X1X2X3 ,

with ci ∈ k[a, b, c, d, r1, r2, r3, r4, s1, s2, s3, s4].

Proof. By Lemma 3.4, the isogeny ϕ is given by cubic forms. That is, ϕ is defined
by polynomials

ϕi = ci,1X
3
1 + ci,2X1X

2
2 + ci,3X1X

2
3 + ci,4X1X

2
4 + ci,5X2X3X4

+ ci,6X2X
2
1 + ci,7X

3
2 + ci,8X2X

2
3 + ci,9X2X

2
4 + ci,10X1X3X4

+ ci,11X3X
2
1 + ci,12X3X

2
2 + ci,13X

3
3 + ci,14X3X

2
4 + ci,15X1X2X4

+ ci,16X4X
2
1 + ci,17X4X

2
2 + ci,18X4X

2
3 + ci,19X

3
4 + ci,20X1X2X3 ,

where ci,j are k-rational functions in the coordinates of OK, R, and S for 1 ≤ i ≤ 4
and 1 ≤ j ≤ 20. We are looking for an isogeny of fast Kummer surfaces in the sense
of Definition 3.3, and compatibility with the translations by 2-torsion thus forces

σ′
i((ϕ1 : ϕ2 : ϕ3 : ϕ4)) = ϕ(σi(X1 : X2 : X3 : X4))(5)

for all 1 ≤ i ≤ 15, where σi is the action of the 2-torsion point Ti ∈ K, and similarly
σ′
i is the action of T ′

i ∈ K′ (as defined in Section 2.4). Equation (5) gives rise to
relations between the coefficients of the cubic monomials, from which we deduce
that ϕ is of the form as in the statement of the lemma. See section4/lemma-4 1.m

in the code accompanying this paper. Clearing denominators (as our Kummer
surfaces lie in P3), we obtain the ci ∈ k[a, b, c, d, r1, r2, r3, r4, s1, s2, s3, s4]. □

By Lemma 4.1, to determine explicit formulae for the (3, 3)-isogeny ϕ generated
by kernel G = ⟨R,S⟩ ⊂ K, it suffices to determine the coefficients c1, . . . c5. We
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follow the method given in Section 3 and compute the G-invariant cubic forms.
Define

BR
ij(X1, X2, X3, X4) := Bi,j(X1, X2, X3, X4;R),

BS
ij(X1, X2, X3, X4) := Bi,j(X1, X2, X3, X4;S).

By Lemma 3.4, the cubic forms invariant under translation by R and S are given
by

FR
ijk := XiB

R
jk +XjB

R
ki +XkB

R
ij ,

FS
ijk := XiB

S
jk +XjB

S
ki +XkB

S
ij ,

respectively, where 1 ≤ i, j, k ≤ 4. Let FR = {FR
ijk}1≤i,j,k≤4 and similarly define

FS . The cubic forms in FR and FS each generate a space of dimension 8, for which
we choose a basis

{FR
111, F

R
234, F

R
222, F

R
134, F

R
333, F

R
124, F

R
444, F

R
123},

and similarly for FS . These spaces will intersect in a space of dimension 4, which
will give a description of the (3, 3)-isogeny. We compute a basis

f1 := z1F
R
111 + z2F

R
234 , f2 := z3F

R
222 + z4F

R
134 ,

f3 := z5F
R
333 + z6F

R
124 , f4 := z7F

R
444 + z8F

R
123

for the intersection, with z1, . . . , z8 ∈ k such that there exist w1, . . . , w8 ∈ k with

f1 = w1F
S
111 + w2F

S
234 , f2 = w3F

S
222 + w4F

S
134 ,

f3 = w5F
S
333 + w6F

S
124 , f4 = w7F

S
444 + w8F

S
123 .

From this, we obtain a (3, 3)-isogeny ψ = (f1 : f2 : f3 : f4) : K → K̃.
To move K̃ to the correct form, we first define

D1 := (ab− cd)(ab+ cd), D2 := (ac− bd)(ac+ bd), D3 := (ad− bc)(ad+ bc).

For a point P = (x1 : x2 : x3 : x4), we define

γ(P ) := (D23(x1x2ab− x3x4cd) +D13(x1x3ac− x2x4bd) +D12(x1x4ad− x2x3bc)),

and hi(P ) as the coordinates of (H ◦ S)(P ), for i = 1, 2, 3, 4.

Applying a linear transformation M to K̃, where M is defined as

M :=


α1 0 0 0
0 α2/2 0 0
0 0 α1/2 0
0 0 0 3α2/2


and where

α1 := D3(γ(R)(s4s3ab− s1s2cd)− γ(S)(r4r3ab− r1r2cd)),
α2 := D1(γ(R)(s2s3ad− s1s4bc)− γ(S)(r2r3ad− r1r4bc)),

we get a simple and efficiently computable expression for our (3, 3)-isogeny ϕ :=
M−1(f1, f2, f3, f4)

T , whose image is in the desired form. The formulæ for the inter-
section and linear transformation can be found and verified in the file
section4/linear-transform.m in the accompanying code.
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4.1. Explicit formulae for (3, 3)-isogenies. We now give the explicit formulae
for the isogeny ϕ : K → K′ generated by kernel G = ⟨R,S⟩. Recall from Lemma 4.1
that it suffices to give the explicit formulae for the coefficients
ci ∈ k[a, b, c, d, r1, r2, r3, r4, s1, s2, s3, s4] for i ∈ {1, 2, 3, 4, 5}. We set

β1 := D23

(
γ(R) · (s3s4ab− s1s2cd)− γ(S) · (r3r4ab− r1r2cd)

)
,

β2 := h1(R) · h2(S)− h2(R) · h1(S).

Then, maintaining the notation above and letting Dij := Di ·Dj , we find

c1 = 2β1h1(R)h1(S),

c2 = β1
(
h1(R)h2(S) + h2(R)h1(S)

)
+ β2

(
γ(R)(s3s4ab− s1s2cd) + γ(S)(r3r4ab− r1r2cd)

)
D23,

c3 = β1
(
h1(R)h3(S) + h3(R)h1(S)

)
+ β2

(
γ(R)(s2s4ac− s1s3bd) + γ(S)(r2r4ac− r1r3bd)

)
D13,

c4 = β1
(
h1(R)h4(S) + h4(R)h1(S)

)
+ β2

(
γ(R)(s2s3ad− s1s4bc) + γ(S)(r2r3ad− r1r4bc)

)
D12,

c5 = 2β2γ(S)γ(R).

Note that the c1, . . . , c5 are symmetric in R and S, as one would expect.

Remark 4.2. The (3, 3)-isogeny is defined over the field of definition of the fun-
damental constants a, b, c, d of K and the kernel generators R,S (rather than the
subgroup ⟨R,S⟩).

4.2. Evaluating points under the (3, 3)-isogeny. Consider the (3, 3)-isogeny
ϕ : K → K′ and assume the coefficients c1, . . . , c5 have been computed. Given a
point P = (x1 : x2 : x3 : x4) ∈ K, the image ϕ(P ) = (x′1 : x

′
2 : x

′
3 : x

′
4) is given by

x′1 := x1(c1x
2
1 + c2x

2
2 + c3x

2
3 + c4x

2
4) + c5x2x3x4,

x′2 := x2(c2x
2
1 + c1x

2
2 + c4x

2
3 + c3x

2
4) + c5x1x3x4,

x′3 := x3(c3x
2
1 + c4x

2
2 + c1x

2
3 + c2x

2
4) + c5x1x2x4,

x′4 := x4(c4x
2
1 + c3x

2
2 + c2x

2
3 + c1x

2
4) + c5x1x2x3.

The fundamental theta constants of the image surface K′ can be computed in the
same way, i.e., as ϕ((a : b : c : d)). Via Equation (2), we can then compute the
constants E′, F ′, G′, H ′ defining the equation of the surface K′.

4.3. Implementation. We implemented (3, 3)-isogeny evaluation using the for-
mulæ above. We give explicit operation counts for k = Fq, which will be necessary
for our cryptographic application in Section 6. To optimise the computation, we
implement the following algorithms:

(1) TriplingConstantsFromThetas: given fundamental theta constants (a : b : c : d),
compute tripling constants consisting of:
• their inverses (1/a : 1/b : 1/c : 1/d);
• their squares (a2 : b2 : c2 : d2);
• squared dual theta constants (A2 : B2 : C2 : D2); and
• their inverses (1/A2 : 1/B2 : 1/C2 : 1/D2).

For k = Fq, this requires 12M, 4S, and 6a.
12
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(2) Compute33Coefficients: given coordinates of R,S and the tripling constants,
compute the coefficients c1, . . . , c5 defining the (3, 3)-isogeny. When k = Fq,
this requires 76M, 8S, and 97a.

(3) Isogeny33Evaluate: given the coefficients c1, . . . , c5, computes the image of
a point P ∈ K under the corresponding (3, 3)-isogeny (as explained in Sec-
tion 4.2). For k = Fq, this requires 26M, 4S and 16a.

(4) ComputeImageThetas: given coefficients c1, . . . , c5 and the tripling con-
stants, compute the fundamental theta constants defining the image curve.
For k = Fq, this requires 26M and 16a.

Details of the implementation can be found in the accompanying code.

4.4. A note on (5, 5)-isogenies on fast Kummers. Suppose we now have a
(5, 5)-subgroup of J [5], which induces a (5, 5)-isogeny ϕ on the corresponding fast
Kummer surface K = J /{±} with kernel G = ⟨R,S⟩ for some R,S ∈ K[5] (i.e., G
is the image of the (5, 5)-subgroup in K).

Following the method in Section 3, we first compute the G-invariant quintic
forms. Let BR

i,j and BS
i,j be as before (where now R,S are the 5-torsion points),

and define

B2R
ij (X1, X2, X3, X4) := Bi,j(X1, X2, X3, X4; 2R),

B2S
ij (X1, X2, X3, X4) := Bi,j(X1, X2, X3, X4; 2S).

By Lemma 3.4 (and following Flynn [27]), the quintic forms invariant under trans-
lation by R are given by

FR
ijklm := XiB

R
jkB

2R
lm +XiB

R
jlB

2R
km +XiB

R
jmB

2R
kl +

XiB
R
klB

2R
jm +XiB

R
kmB

2R
jl +XiB

R
lmB

2R
jk +

XjB
R
ikB

2R
lm +XjB

R
ilB

2R
km +XjB

R
imB

2R
kl +

XjB
R
klB

2R
im +XjB

R
kmB

2R
il +XjB

R
lmB

2R
ik +

XkB
R
jiB

2R
lm +XkB

R
jlB

2R
im +XkB

R
jmB

2R
il +

XkB
R
ilB

2R
jm +XkB

R
imB

2R
jl +XkB

R
lmB

2R
ji +

XlB
R
jkB

2R
im +XlB

R
jiB

2R
km +XlB

R
jmB

2R
ki +

XlB
R
kiB

2R
jm +XlB

R
kmB

2R
ji +XlB

R
imB

2R
jk +

XmB
R
jkB

2R
li +XmB

R
jlB

2R
ki +XmB

R
jiB

2R
kl +

XmB
R
klB

2R
ji +XmB

R
kiB

2R
jl +XmB

R
liB

2R
jk ,

where 1 ≤ i, j, k, l,m ≤ 4. We similarly define FS
ijklm: the quintic forms invariant

under translation by S.
Let FR = {FR

ijklm} and FR = {FS
ijklm}. Working modulo the equation defining

the Kummer surface K, the quintic forms in FR and FS each generate a space of
dimension 12, for which we choose a basis{

FR
14444, F

R
23333, F

R
23334, F

R
23344, F

R
23444, F

R
24444,

FR
33333, F

R
33334, F

R
33344, F

R
33444, F

R
34444, F

R
44444

}
,
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and similarly for FS . These spaces intersect in a space of dimension 4, which gives
a description of the (5, 5)-isogeny. Finding the final scaling map to put the image
into the correct form is left as future work.

5. Generating (Nk, Nk)-subgroups

In the remaining two sections, we turn to building a hash function based on
the (3, 3)-isogenies derived in the previous section. The hash function will compute
(3k, 3k)-isogenies as chains of (3, 3)-isogenies, and will start each such chain by com-
puting a (3k, 3k)-subgroup on a fast Kummer surface. This section describes how
such (Nk, Nk)-subgroups can be computed (for prime number N and integer k ≥ 1)
in a way that is amenable to efficient and secure cryptographic implementations.

We do this in two steps: first, in Section 5.1 we show how to compute a sym-
plectic basis for the Nk-torsion on the Jacobian J , which we then push down to
the corresponding fast Kummer surface K = J /{±1}; and second, we use this
basis to compute the generators R,S of the (Nk, Nk)-subgroup G using the three-
dimensional differential addition chain introduced in Section 5.2.

5.1. Generating a symplectic basis on K. We first compute a symplectic basis
for the Nk-torsion on the Jacobian J of the genus-2 curve Cλ,µ,ν corresponding to
K. We compute this basis by generating Nk-torsion points on J until the Nk-Weil
pairing condition given in Definition 2.1 is satisfied.2 These points are then pushed
down to K via

π : J → K,
P 7→

(
CI(OK) ◦ H ◦ C(I◦H◦S)(OK)S ◦ H ◦ κ

)
(P ).

Here, C, H, S and I are the standard Kummer operations defined in Section 2.5 and
κ : J → KSqr maps points in Mumford coordinates on J to the squared Kummer
surface KSqr as follows. For generic points P = (x2 + u1x+ u0, v1x+ v0) ∈ J , we
have

κ : (x2 + u1x+ u0, v1x+ v0) 7→ (X1 : X2 : X3 : X4)

with

X1 = a2(u0(µ− u0)(λ+ u1 + ν)− v20), X2 = b2(u0(νλ− u0)(1 + u1 + µ)− v20),
X3 = c2(u0(ν − u0)(λ+ u1 + µ)− v20), X4 = d2(u0(µλ− u0)(1 + u1 + ν)− v20).

For special points P = (x− u0, v0), the map κ is defined by first adding a point of
order 2 on J . Indeed, by adding (x−u′0, 0) ∈ J [2] (with u′0 ̸= u0) we get the point(

x2 − (u0 + u′0)x+ u0u
′
0,

v0
u0 − u′0

x− v0u
′
0

u0 − u′0

)
,

to which we can apply κ. The translation is then undone by applying the action of
the corresponding 2-torsion point on KSqr. Finally, κ(OJ ) := (a2 : b2 : c2 : d2).

The map κ is due to Bisson, Cosset and Robert [5], while the subsequent opera-
tions that map from KSqr to K appear in Renes and Smith [46, Section 4.3]. Note
that the map π corresponds to a (2, 2)-isogeny, which will not affect the order of
the basis points if N is coprime to 2. If, however, 2 | N then one must additionally
check the order of the image points on K.

2In our implementation, we compute the Nk-Weil pairing of points on J [Nk] using MAGMA’s
in-built functionality.

14

Submitted to Algor. Num. Th. Symp.



Remark 5.1. For applications where N , k, and the domain Kummer K are fixed,
the symplectic basis for J [Nk] can be computed as part of the set-up once and
for all, and the image of these basis points (under π) can be hardcoded as system
parameters. For instance, this will be the case for our cryptographic application
in Section 6. In these scenarios, optimising the efficiency of the operations in this
subsection is not a priority; the important goal is to optimise the efficiency of the
online part of the (Nk, Nk)-subgroup generation procedure, which amounts to opti-
mising the three-dimensional differential addition chain in the following subsection.

5.2. Three-dimensional differential addition chains. Let Q1, Q2, Q3, Q4 ∈ K
be the images of a symplectic basis for J [Nk] under the map π described above.
In this subsection we show how to use this basis to compute the two generators R
and S of our (Nk, Nk)-subgroup.

As a first simplification, we restrict to (Nk, Nk)-subgroups with generators of
the form

(6)
R = Q1 + [α]Q3 + [β]Q4,

S = Q2 + [β]Q3 + [γ]Q4,

where α, β, γ ∈ Z/NkZ. There are N3k such (Nk, Nk)-subgroups (for example,
see [35, Table 1]), and there are O(N3k−1) subgroups that we lose by imposing this
restriction [35, Def. 3]. In other words, at least half of the (Nk, Nk)-subgroups can
be obtained with kernel generators of the form in (6), so in a cryptographic context
we lose at most one bit of security by simplifying in this manner.

The remainder of this subsection presents the 3DAC algorithm that allows us to
compute the kernel generators R and S via Equation (6). Our task is to define an
algorithm that computes P1 + [β]P2 + [γ]P3 for given scalars β, γ ∈ Z/NkZ and for
the points P1, P2 and P3 on K. The analogous computation on J could utilise a
straightforward 3-way multiexponentation algorithm, but on the Kummer surface
we need a three-dimensional differential addition chain. Such an addition chain is
only allowed to include the computation of the sum Q+R if the difference ±(Q−R)
has already been computed at a previous stage.

Three-dimensional differential addition chains have been studied previously by
Rao [43] and more generally by Hutchinson and Karabina [32]. However, both of
those works study the general scenario whereby three scalars are in play. Viewing
Equation (6), we see that there is no scalar multiplication of the point P1 in our
case, which allows for some convenient simplifications. Moreover, the chain due to
Rao [43] is non-uniform and the chain due to Hutchinson and Karabina [32] is not
fixed length unless the input scalars are. Our algorithm 3DAC satisfies both of these
properties regardless of the input scalars, making it secure for use in cryptographic
applications, such as the hash function we present in Section 6. We remark that
these properties would not be necessary for a hash function involving only public
data, but for other cryptographic applications where inputs to the hash function
(or, more broadly, the scalars β and γ) are secret, such as key derivation functions,
these properties are an imperative first-step towards protecting the secret data from
side-channel attacks.

We derived the 3DAC chain by extending the two-dimensional differential ad-
dition chain due to Bernstein [3], the fastest known two-dimensional differential
addition chain that is fixed length and uniform. Beyond the points P1, P2, P3,
3DAC also needs seven additional combinations of sums and/or differences of these
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three points. We specify the full ten-tuple of inputs as

D :=
(
P1, P2, P3, P2+P3, P2−P3, P1−P2, P1−P3, [2](P2+P3), P1+P2+P3, P1−P2−P3

)
,

for points P1, P2, P3 ∈ K. Note that D should be read as an array. Indeed,
P1−P2 appears both in position 6 and 7 to simplify the presentation of Algorithm 6
in Appendix B. In line with Remark 5.1, these additional sums and differences
can be (pre)computed on J and their image in K specified as part of the system
parameters.

Given the tuple D above and the two scalars β, γ ∈ Z/NkZ, our 3DAC algorithm
computes the point P1+[β]P2+[γ]P3 on K using 3ℓ−2 pseudo-additions and ℓ−1
pseudo-doublings on K, where ℓ is the bitlength of Nk. See Appendix B for the full
description of the algorithm.

6. A hash function from (3, 3)-isogenies

Isogenies between superspecial Jacobians of genus 2 curves have been proposed
for use in post-quantum isogeny-based cryptography (e.g., [13, 29]). We follow suit
and henceforth restrict our attention superspecial Jacobians defined over k = Fp.

Definition 6.1. We say that the Jacobian J of a genus 2 curve is superspecial if the
Hasse–Witt matrix M ∈ F2×2

p vanishes identically. We say that a Kummer surface
K = J /{±1} is superspecial if the corresponding Jacobian J is superspecial.

It can be shown that every superspecial J /Fp is Fp-isomorphic to a Jacobian

defined over Fp2 . Similarly, the corresponding superspecial Kummer surface K/Fp

is Fp-isomorphic to a Kummer surface with model defined over Fp2 .
As an application to exhibit our algorithms, we construct a fundamental cryp-

tographic primitive: a hash function. The first isogeny-based hash function was
introduced by Charles, Goren and Lauter who use isogenies between supersingular
ellipitic curves [14]. The use of higher dimensional isogenies between superspecial
Jacobians of genus-2 curves to construct a variant of the Charles–Goren–Lauter
(CGL) hash function was previously explored by Castryck, Decru and Smith [13]
using (2, 2)-isogenies. They argue that although the computation of higher di-
mensional isogenies is more expensive, breaking the security of the hash function

requires Õ(p3/2) time, rather than Õ(p1/2) time as in the CGL hash function.
Therefore, smaller parameters can be used to obtain the same security. Following
this, Castryck and Decru [12] use multiradical formulae for (3, 3)-isogenies to con-
struct such a hash function and obtain an asymptotic speed-up of around a factor
of 9. Later work by Decru and Kunzweiler [23] construct a hash function using
(3, 3)-isogenies between general Kummer surfaces by improving on the formulae
given by Bruin, Flynn and Testa [9].

In this section, we describe a variant of the CGL hash function [14], called
KuHash, that uses the formulae introduced in Section 4 to compute chains of (3, 3)-
isogenies between fast Kummer surfaces. We obtain a speed-up of around 1.4 – 2.3x,
and around 27.0 – 28.3x compared to the Castryck–Decru and Decru–Kunzweiler
hash functions, respectively, for security levels λ = 128, 192 and 256.

6.1. Chains of (3, 3)-isogenies. We first present the Isogeny33Chain routine (Al-
gorithm 2) for computing chains of (3, 3)-isogenies. Though we use it as a building
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block for a hash function, we note that it can also be used in a variety of cryp-
tographic applications. In particular, we have been careful to ensure that each
component of the algorithm is amenable to constant-time cryptographic software.

Tripling algorithm. We start by presenting TPL (Algorithm 1), the algorithm to
compute [3]P from a point P ∈ K and the associated tripling constants (as defined
in Section 4.3). This algorithm requires 26M, 12S and 32a.

Algorithm 1 TPL(P, TC):

Input: Point P ∈ K and tripling constants TC (with i-th entry denoted TCi)
Output: Point Q ∈ K where Q = [3]P .

1: R← S(P )
2: R← H(R)
3: Q← S(R)
4: Q← CTC5(Q)
5: Q← H(Q)
6: Q← CTC4(Q)
7: Q← S(Q)
8: Q← H(Q)
9: S ← CTC5(R)

10: Q← CS(Q)
11: Q← H(Q)
12: Q← CI(P )(Q)
13: return Q

Näıve strategies. Given a (3k, 3k)-subgroup G = ⟨R,S⟩ ⊂ K[3k], we use TPL and
the algorithms from Section 4.3 to compute an isogeny with kernel ⟨R,S⟩ as a chain
of (3, 3)-isogenies of length k. A näıve way of doing so is the following. Set P0 := R,
Q0 := S and K0 := K, and then execute the following four steps for i = 1 to k:

(1) Compute the tripling constants on Ki−1 using TriplingConstantsFromThetas
(2) Compute 3-torsion points (Pi, Qi) := (3k−iR, 3k−iS) using k − i repeated

applications of TPL on R and S.
(3) Compute the (3, 3)-isogeny φi : Ki−1 → Ki with kernel ⟨Pi, Qi⟩, and the

images of Pi−1, Qi−1 under this isogeny using Compute33Coefficients and
Isogeny33Evaluate.

(4) Compute the theta constants of the image Ki of φi using ComputeImage-
Thetas.

The (3k, 3k)-isogeny with kernel G will be given by φk ◦ · · · ◦ φ1 : K0 → Kk.

Optimal strategies. A more efficient way to compute isogeny chains is to use optimal
strategies [25]. This allow us to reduce the number of executions of TPL needed
to compute the kernel at each step in the chain by storing intermediate points
obtained during the triplings and pushing them through each isogeny. In our case,
the cost of tripling is around 1.1x the cost of computing the image of a point under
the isogeny, and so we shift the cost in this way to obtain the strategies (see [25]
for further details on optimising this approach). We give this algorithm in detail
in Algorithm 2, and note that invoking the optimal strategies results in a 3.7–6.6×
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reduction of the cost to compute a chain of (3, 3)-isogenies for the set of parameters
we specify in Section 6.3.

Algorithm 2 Isogeny33Chain(k,OK, R, S, strategy):

Input: Fundamental theta constants OK = (a : b : c : d) defining Kummer surface
K, generators R,S ∈ K of (3k, 3k)-subgroup for k ≥ 1, and optimal strategy
strategy.
Output: Fundamental theta constants defining image Kummer surface K′ of
(3k, 3k)-isogeny φ : K → K′ with kerφ = ⟨R,S⟩.
1: for e = k − 1 to 1 do
2: P,Q = R,S
3: pts = [ ]
4: inds = [ ]
5: i← 0
6: TC← TriplingConstantsFromThetas(OK)
7: while i < k − e do
8: Append [R,S] to pts

9: Append i to inds

10: m← strategy[k − i− e+ 1]
11: for j = 1 to m do
12: R← TPL(R, TC)
13: S ← TPL(S, TC)
14: i← i+m
15: cs← Compute33Coefficients(P,Q, TC)
16: OK ← ComputingImageThetas(cs)
17: for [P1, P2] in pts do
18: P1 ← Isogeny33Evaluate(P1, cs)
19: P2 ← Isogeny33Evaluate(P2, cs)
20: if pts not empty then
21: [R,S]← pts[−1]
22: i← inds[−1]
23: Remove last element from pts and inds

24: TC← TriplingConstantsFromThetas(OK)
25: cs← Compute33Coefficients(R,S, TC)
26: OK ← ComputingImageThetas(cs)
27: return OK

6.2. A cryptographic hash function. We are now ready to present the hash
function KuHash that uses chains of (3, 3)-isogenies between fast Kummer surfaces.
For a fixed security parameter λ and working over characteristic p ≈ 2λ, the hash
function parses the message into three scalars α, β, γ ∈ Z/3kZ which are fed into
the 3DAC algorithm to compute a (3k, 3k)-subgroup G = ⟨R,S⟩. This is then used
to compute the corresponding (3k, 3k)-isogeny φ : K → K′, and the output of the
hash function is the fundamental theta constants of the image surface K′.

To optimise our hash function, we want to ensure that the (3k, 3k)-isogeny is
Fp2-rational. Given a security parameter λ, we choose a suitably sized prime p =

16f ·3k−1 ≈ 2λ (the fact that 16 | p+1 ensures rational 2-torsion), where f is a small
18
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cofactor, and take a small pseudo-random walk3 from the superspecial Jacobian of
the curve C0 : y2 = x6 + 1 to arrive at our starting Jacobian J = Jac(C). Since
J (Fp2) ∼= (Z/(p+1)Z)4, the Rosenhain invariants of C are all rational in Fp2 and we
use these to compute OK = (a : b : c : d), i.e. the fundamental theta constants of the
starting Kummer surface K = J /{±1}. Using the methods described in Section 5.1,
we compute a symplectic basis for J [3k], which (together with the auxiliary sums
and differences defined in Section 5.2) is pushed down to our starting fast Kummer
surface K via π : J → K to obtain the two tuples of points DR and DS . The setup
routine outputs gens = {DR, DS} and data = {k, ⌈λ/ log(3)⌉, OK}.

The hash function takes as input data, gens and a message4 msg = (α, β, γ),
where α, β, γ ∈ Z/3kZ, and the output of the hash function is a tuple of elements
Fp2 , namely the fundamental theta constants of the image Kummer surface K′ un-

der the (3k, 3k)-isogeny defined by scalars (α, β, γ). The output is of size 8 log(p)
without normalising the theta constants (a′, b′, c′, d′), and of size 6 log(p) with nor-
malisation (a′/d′, b′/d′, c′/d′), which comes at a cost of one inversion and 3M. We
fully specify KuHash in Algorithm 3.

We remark that, as the message must be parsed into three scalars lying in Z/3kZ,
our hash function requires an input message of length 3k log2(3) bits. To allow
for arbitrary length messages, after each (3k, 3k)-isogeny is computed, we must
sample a new symplectic basis on the image Kummer surface. We can do this
efficiently using [36, Alg. 1] (the full version of [35]). However, we emphasize that
our main objective in presenting the hash function KuHash is to benchmark our
algorithm Isogeny33Chain for computing chains of (3, 3)-isogenies against others
in the literature. We therefore restrict our implementation and experiments to
messages of length 3k log2(3).

Algorithm 3 KuHash(msg, data, gens)

Input: A message msg, auxiliary data data and generators gens of K[3k].
Output: Fundamental theta constants (a′, b′, c′, d′) of image Kummer surface K′

1: Parse msg as α, β, γ.
2: Parse data as k, ℓ,OK.
3: Parse gens as two sets DR, DS (see Section 5.2).
4: R← 3DAC(DR, α, β, ℓ,OK)
5: S ← 3DAC(DS , β, γ, ℓ,OK)
6: (a′ : b : c′ : d′)← Isogeny33Chain(k,OK, R, S)
7: return (a′, b′, c′, d′)

6.3. Implementation. We implement KuHash and give parameters for security
levels λ = 128, 192, and 256.

Security. Let λ be the security parameter and p ≈ 2λ. We follow the discussion
in [13, §7.4] to determine the security of the hash function KuHash. In particular,
the security of our hash function is not affected by taking N = 3 rather than

3In our implementation, we used MAGMA’s inbuilt Richelot isogeny routine to take 20 (2, 2)-

isogenies away from C0.
4In practice, the input message msg to the hash function would be a bit string, which would

then be parsed into the scalars α, β, γ.
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N = 2, and as a result the security of our hash function relies on similar problems,
namely Problem 6.2 and Problem 6.3 below.

Problem 6.2. Given two superspecial genus 2 curves C1, C2 defined over Fp2 find

a (3k, 3k)-isogeny between Jac(C1) and Jac(C2).

Problem 6.3. Given a superspecial genus 2 curve C1 defined over Fp2 , find

• a curve C2 and a (3k, 3k)-isogeny Jac(C1)→ Jac(C2),

• a curve C ′
2 and a (3k

′
, 3k

′
)-isogeny Jac(C1)→ Jac(C ′

2),

such that Jac(C2) and Jac(C ′
2) are Fp-isomorphic. Here, we can have k = k′, but

the kernels of the corresponding isogenies must be different.

Previous works take the general Pollard-ρ attack to be the best classical at-

tack against these problems, which runs in Õ(p3/2). We take a more conservative
approach and consider the Costello–Smith algorithm [20] to be the best classical

attack, which runs in Õ(p). The best quantum attack is based on Grover’s claw-

finding algorithm and runs in Õ(p1/2) [20, Theorem 2].
Considering these attacks, we obtain the following parameters:

• λ = 128 : p = 5 · 24 · 3k − 1 with k = 75;
• λ = 192 : p = 37 · 24 · 3k − 1 with k = 115;
• λ = 256 : p = 11 · 24 · 3k − 1 with k = 154.

Cost Metric. To benchmark KuHash, we count Fp-operations. Indeed, our im-
plementation in Python/SageMath will call underlying Fp-operations to compute
Fp2-operations. For simplicity, our cost metric will take M = S and ignore a, as
additions have only a very minor impact on performance. Note that it is rela-
tively straightforward to convert this cost into a more fine-grained metric (e.g., bit
operations, cycle counts, etc.).

Results. We ran KuHash in SageMath version 10.1 using Python 3.11.1 and record
the cost, as per the cost metric above, averaging over 100 random inputs for each
prime size. We present the results in Table 1. Taking the Fp2-operation count
from [23, §3.2] and using our cost metric, the cost of computing the coefficients
of Decru and Kunzweiler’s (3, 3)-isogeny is 6702 (assuming 1 Fp2-multiplication is
equivalent to 3 Fp-multiplications). We use this to obtain a lower bound on the
cost of the Decru–Kunzweiler hash function. Though this is a lower bound, we see
in Table 1 that the cost already exceeds the total cost of KuHash.

The codebase for the other (3, 3)-isogeny CGL hash variant by Castryck and
Decru [12] uses Gröbner basis calculations, which is not realistic to convert to a
fixed number of Fp-operations. Therefore, for fair comparison, we ran all three
hash functions in MAGMA V2.25-6 on Intel(R) Core™ i7-1065G7 CPU @ 1.30GHx ×
8 with 15.4 GiB memory, and record the time taken to run the hash functions for
the different λ in Table 1. We again average over 100 random inputs for each prime
size.

Comparing the time taken per input bit for λ = 128 ad 256, we observe a
speed-up of around 8 – 9x compared to the Castryck–Decru hash function, and
around 32 – 34x compared to the Decru–Kunzweiler hash function. For a precise
comparison between implementations, however, exact Fp-operation counts of the
Castryck–Decru and Decru–Kunzweiler hash functions are required. We note that
an advantage of the algorithms developed with our approach is that we do not rely
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λ Message Length Cost Time (s) Time per input bit (ms)

KuHash

128 225 log2(3) 177956 0.18 0.50

192 345 log2(3) 286636 0.29 0.53

256 462 log2(3) 396942 0.53 0.72

[23]

128 240 log2(3) > 536160 5.99 15.75

171 315 log2(3) > 703710 10.16 20.35

256 477 log2(3) > 1065618 18.29 24.19

[12]

128 357 - 1.51 4.23

171 547 - 2.82 5.16

256 732 - 4.81 6.57

Table 1. Comparison of cost using cost metric and time taken
to run KuHash and hash functions in [12] and [23]. All results are
averaged over 100 runs with random inputs. We remark that the
cost of KuHash is the same for all runs because it is uniform.

on in-built functionality and all our algorithms are uniform. Therefore, we are able
to give precise Fp-operation counts for KuHash.

References

[1] D. J. Bernstein, C. Chuengsatiansup, T. Lange, and P. Schwabe. “Kummer
strikes back: new DH speed records”. In: ASIACRYPT 2014. Springer. 2014,
pp. 317–337.

[2] D. J. Bernstein, L. De Feo, A. Leroux, and B. Smith. “Faster computation of
isogenies of large prime degree”. In: Open Book Series 4.1 (2020), pp. 39–55.

[3] Daniel J Bernstein. Differential addition chains. 2006. url: http://cr.yp.
to/ecdh/diffchain-20060219.pdf.

[4] G. Bisson. “Endomorphism rings in cryptography”. PhD thesis. Institut Na-
tional Polytechnique de Lorraine-INPL; Technische Universiteit Eindhoven,
2011.

[5] G. Bisson, R. Cosset, and D. Robert. AVIsogenies – a library for computing
isogenies between abelian varieties. URL: http://avisogenies.gforge.
inria.fr. 2012.

[6] J. W. Bos, C. Costello, H. Hisil, and K. Lauter. “Fast cryptography in genus
2”. In: Journal of Cryptology 29 (2016), pp. 28–60.

[7] W. Bosma, J. Cannon, and C. Playoust. “The Magma algebra system. I.
The user language”. In: J. Symbolic Comput. 24.3-4 (1997). Computational
algebra and number theory, pp. 235–265.

[8] J.-B. Bost and J.-F. Mestre. “Moyenne arithmético-géométrique et périodes
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Appendix A. Explicit (2, 2)-isogenies on fast Kummers

The 15 unique (2, 2)-subgroups are given by

G1,2 := {(a : b : c : d), (a : b : − c : − d), (a : − b : c : − d), (a : − b : − c : d)},
G1,4 := {(a : b : c : d), (a : b : − c : − d), (b : a : d : c), (b : a : − d : − c)},
G1,6 := {(a : b : c : d), (a : b : − c : − d), (b : − a : d : − c), (b : − a : − d : c)},
G2,8 := {(a : b : c : d), (a : − b : c : − d), (c : d : a : b), (c : − d : a : − b)},
G2,9 := {(a : b : c : d), (a : − b : c : − d), (c : d : − a : − b), (c : − d : − a : b)},
G3,12 := {(a : b : c : d), (a : − b : − c : d), (d : c : b : a), (d : − c : − b : a)},
G3,14 := {(a : b : c : d), (a : − b : − c : d), (d : c : − b : − a), (d : − c : b : − a)},
G4,8 := {(a : b : c : d), (b : a : d : c), (c : d : a : b), (d : c : b : a)},
G4,9 := {(a : b : c : d), (b : a : d : c), (c : d : − a : − b), (d : c : − b : − a)},
G5,10 := {(a : b : c : d), (b : a : − d : − c), (c : − d : a : − b), (d : − c : − b : a)},
G5,11 := {(a : b : c : d), (b : a : − d : − c), (c : − d : − a : b), (d : − c : b : − a)},
G6,8 := {(a : b : c : d), (b : − a : d : − c), (c : d : a : b), (d : − c : b : − a)},
G6,9 := {(a : b : c : d), (b : − a : d : − c), (c : d : − a : − b), (d : − c : − b : a)},
G7,10 := {(a : b : c : d), (b : − a : − d : c), (c : − d : a : − b), (d : c : − b : − a)},
G7,11 := {(a : b : c : d), (b : − a : − d : c), (c : − d : − a : b), (d : c : b : a)}.

For each unique (2, 2)-subgroup, we can associate morphism α : K → K induced
by a linear map on A4 defined by a matrix A = (ai,j)1≤i,j≤4 with a2i,j ∈ {0, 1,−1},
such that the corresponding (2, 2)-isogeny K → K̃ is given by

ψi,j := H ◦ S ◦ α.

Let i be a root of x2 + 1 in k[x]. The matrices A for each (2, 2)-subgroup Gi,j

above are given by:

G1,2 : A =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , G1,4 : A =


1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1



G1,6 : A =


1 i 0 0
1 −i 0 0
0 0 1 i
0 0 1 −i

 , G2,8 : A =


1 0 1 0
1 0 −1 0
0 1 0 1
0 1 0 −1



G2,9 : A =


1 0 i 0
1 0 −i 0
0 1 0 i
0 1 0 −i

 , G3,12 : A =


1 0 0 1
1 0 0 −1
0 1 1 0
0 1 −1 0



G3,14 : A =


1 0 0 i
1 0 0 −i
0 1 i 0
0 1 −i 0

 , G4,8 : A =


1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1
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G4,9 : A =


1 1 i i
1 1 −i −i
1 −1 i −i
1 −1 −i i

 , G5,10 : A =


−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1



G5,11 : A =


1 −1 −i −i
1 −1 i i
1 1 −i i
1 1 i −i

 , G6,8 : A =


1 i 1 i
1 i −1 −i
1 −i 1 −i
1 −i −1 i



G6,9 : A =


1 −i −i −1
1 −i i 1
1 i −i 1
1 i i −1

 , G7,10 : A =


1 −i −1 −i
1 −i 1 i
1 i −1 i
1 i 1 −i



G7,11 : A =


1 i i 1
1 i −i −1
1 −i i −1
1 −i −i 1



Appendix B. Three-dimensional Addition Chain

We describe the three-dimensional addition chain 3DAC needed to compute ker-
nel generators of the form P1 + [β]P2 + [γ]P3, for scalars β, γ ∈ Z/3kZ and points
P1, P2, P3 ∈ K. We obtain our three-dimensional differential addition chain – 3DAC
– by extending the two-dimensional differential addition chain due to Bernstein [3],
the fastest known chain of this kind that is both fixed length and uniform.

The three main subroutines used in 3DAC are DBLTHRICEADD, an encoding
algorithm ENCODE and an indexing algorithm IND.

The algorithm DBLTHRICEADD is defined to compute the mapping(
P,Q, P −Q,R, S,R− S, T, U, T − U

)
7→
(
[2]P, P +Q,R+ S, T + U

)
,

for points P,Q,R, S, T, U ∈ K, using one pseudo-doubling and three pseudo-additions
on the Kummer surface K.

The encoding algorithm ENCODE takes as input two ℓ-bit scalars β, γ ∈ Z/3kZ
and outputs a single bit b and four (ℓ − 1)-bit scalars bi for i = 0, 1, 2, 3. The bit
b determines one of two possible input combinations that is fed into a differential
addition that kickstarts the chain (see Step 5 of Algorithm 6), after which the j-th
bits (for j = 1 . . . ℓ) of each of the four bi determine one of 16 input permutations
that is fed into the DBLTHRICEADD routine (see Step 10 of Algorithm 6).

The indexing algorithm IND is used to choose one of four points as the last input
to the DBLTHRICEADD algorithm.

The full algorithm 3DAC is specified below. 3DAC computes P1 + [β]P2 + [γ]P3,
given scalars β, γ ∈ Z/3kZ, the length ℓ of the chain, the fundamental theta con-
stants OK of the fast Kummer surface K that we are working on, and a tuple of
points

D :=
(
P1, P2, P3, P2+P3, P2−P3, P1−P2, P1−P3, [2](P2+P3), P1+P2+P3, P1−P2−P3

)
on K.
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Algorithm 4 ENCODE(β, γ):

Input: two ℓ-bit scalars β = (β[ℓ− 1], . . . , β[0]) and γ = (γ[ℓ− 1], . . . , γ[0])
Output: a bit b ∈ {0, 1}, and four (ℓ− 1)-bit scalars (b0, b1, b2, b3)

1: b← β[1]
2: for i = 1 to ℓ− 1 do
3: b1[i]← β[i]⊕ β[i+ 1]
4: b0[i]← b1[i]⊕ γ[i]⊕ γ[i+ 1]
5: b2[i]← β[i+ 1]⊕ γ[i+ 1]
6: b3[i]← b
7: b← b1[i]⊕ (b0[i]⊕ 1)⊗ b
8: return b, (b0, b1, b2, b3)

Algorithm 5 IND(I):

Input: a 6-tuple of integers I = (I1, . . . , I6)
Output: an integer index ind ∈ {1, 2, 3, 4}
1: switch ([I3 − I1, I4 − I2])
2: case [−1,−1]: ind← 1
3: case [ 1, 1]: ind← 2
4: case [ 1,−1]: ind← 3
5: case [−1, 1]: ind← 4
6: end switch
7: return ind
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Algorithm 6 3DAC(D, β, γ, ℓ,OK):

Input: Scalars β, γ ∈ Z/3kZ, the length of chain ℓ, fundamental theta constants
OK, and a tuple D of points on K.
Output: P1 + [β]P2 + [γ]P3 where P1, P2, P3 are D1,D2,D3, respectively.

1: initialise P ← (D4,D8,D4,D9)
2: initialise D ← (D2,D3,D4,D5)
3: initialise ∆← (D1,D10,D6,D7)
4: initialise I ← (1, 1, 2, 2, 1, 1)
5: b, (b0, b1, b2, b3)← ENCODE(β, γ)
6: if b = 1 then
7: (P3, I6)← ((P3, D2, D1), I6 + 1)
8: else
9: (P3, I5)← ((P3, D1, D2), I5 + 1)

10: switch ((b0, b1, b2, b3))
11: case (0, 0, 0, 0): I ← (I1 + I3, I2 + I4, 2I3, 2I4, I3 + I5, I4 + I6)

(P2, P1, P3, P4)← DBLTHRICEADD(P2, P1, D3, P3, P2, D2, P2, P4,∆IND(I))
12: case (0, 0, 0, 1): I ← (I1 + I3, I2 + I4, 2I3, 2I4, I3 + I5, I4 + I6)

(P2, P1, P3, P4)← DBLTHRICEADD(P2, P1, D3, P3, P2, D1, P2, P4,∆IND(I))
13: case (0, 0, 1, 0): I ← (I1 + I3, I2 + I4, 2I3, 2I4, I3 + I5, I4 + I6)

(P2, P1, P3, P4)← DBLTHRICEADD(P2, P1, D4, P3, P2, D2, P2, P4,∆IND(I))
14: case (0, 0, 1, 1): I ← (I1 + I3, I2 + I4, 2I3, 2I4, I3 + I5, I4 + I6)

(P2, P1, P3, P4)← DBLTHRICEADD(P2, P1, D4, P3, P2, D1, P2, P4,∆IND(I))
15: case (0, 1, 0, 0): I ← (I1 + I3, I2 + I4, 2I1, 2I2, I1 + I5, I2 + I6)

(P2, P1, P3, P4)← DBLTHRICEADD(P1, P2, D3, P3, P1, D2, P1, P4,∆IND(I))
16: case (0, 1, 0, 1): I ← (I1 + I3, I2 + I4, 2I1, 2I2, I1 + I5, I2 + I6)

(P2, P1, P3, P4)← DBLTHRICEADD(P1, P2, D3, P3, P1, D1, P1, P4,∆IND(I))
17: case (0, 1, 1, 0): I ← (I1 + I3, I2 + I4, 2I1, 2I2, I1 + I5, I2 + I6)

(P2, P1, P3, P4)← DBLTHRICEADD(P1, P2, D4, P3, P1, D2, P1, P4,∆IND(I))
18: case (0, 1, 1, 1): I ← (I1 + I3, I2 + I4, 2I1, 2I2, I1 + I5, I2 + I6)

(P2, P1, P3, P4)← DBLTHRICEADD(P1, P2, D4, P3, P1, D1, P1, P4,∆IND(I))
19: case (1, 0, 0, 0): I ← (I1 + I3, I2 + I4, 2I5, 2I6, I3 + I5, I4 + I6)

(P2, P3, P1, P4)← DBLTHRICEADD(P3, P2, D2, P1, P2, D3, P3, P4,∆IND(I))
20: case (1, 0, 0, 1): I ← (I1 + I3, I2 + I4, 2I5, 2I6, I1 + I5, I2 + I6)

(P2, P3, P1, P4)← DBLTHRICEADD(P3, P1, D1, P1, P2, D3, P3, P4,∆IND(I))
21: case (1, 0, 1, 0): I ← (I1 + I3, I2 + I4, 2I5, 2I6, I3 + I5, I4 + I6)

(P2, P3, P1, P4)← DBLTHRICEADD(P3, P2, D2, P1, P2, D4, P3, P4,∆IND(I))
22: case (1, 0, 1, 1): I ← (I1 + I3, I2 + I4, 2I5, 2I6, I1 + I5, I2 + I6)

(P2, P3, P1, P4)← DBLTHRICEADD(P3, P1, D1, P1, P2, D4, P3, P4,∆IND(I))
23: case (1, 1, 0, 0): I ← (I1 + I3, I2 + I4, 2I5, 2I6, I1 + I5, I2 + I6)

(P2, P3, P1, P4)← DBLTHRICEADD(P3, P1, D2, P1, P2, D3, P3, P4,∆IND(I))
24: case (1, 1, 0, 1): I ← (I1 + I3, I2 + I4, 2I5, 2I6, I3 + I5, I4 + I6)

(P2, P3, P1, P4)← DBLTHRICEADD(P3, P2, D1, P1, P2, D3, P3, P4,∆IND(I))
25: case (1, 1, 1, 0): I ← (I1 + I3, I2 + I4, 2I5, 2I6, I1 + I5, I2 + I6)

(P2, P3, P1, P4)← DBLTHRICEADD(P3, P1, D2, P1, P2, D4, P3, P4,∆IND(I))
26: case (1, 1, 1, 1): I ← (I1 + I3, I2 + I4, 2I5, 2I6, I3 + I5, I4 + I6)

(P2, P3, P1, P4)← DBLTHRICEADD(P3, P2, D1, P1, P2, D4, P3, P4,∆IND(I))
27: end switch
28: return P4
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