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Abstract. The Markoff graphs modulo p were proven by Chen (2024) to be connected for all

but finitely many primes, and Baragar (1991) conjectured that they are connected for all primes,
equivalently that every solution to the Markoff equation modulo p lifts to a solution over Z. In this

paper, we provide an algorithmic realization of the process introduced by Bourgain, Gamburd, and
Sarnak [arXiv:1607.01530] to test whether the Markoff graph modulo p is connected for arbitrary

primes. Our algorithm runs in o(p1+ϵ) time for every ϵ > 0. We demonstrate this algorithm by

confirming that the Markoff graph modulo p is connected for all primes less than one million.

1. Introduction

The Markoff equation is

x2 + y2 + z2 − xyz = 0.(1)

It is often written as

x2 + y2 + z2 − 3xyz = 0,

but the solutions to the latter are in bijection with the solutions to the former, reduced by a factor
of 3. In this paper, “the Markoff equation” will always refer to (1).

The set of integer Markoff triples M(Z) is closed under taking the negation of exactly two co-
ordinates; in this paper, we will only consider the nonnegative solutions, denoted M = M(Z≥0).
If (x, y, z) ∈ M, then it is called a Markoff triple. Each of x, y, and z is a Markoff number; the set
of all positive Markoff numbers is x(M).

Fixing the values of y and z, the Markoff equation is quadratic in x. The values of x which form
a Markoff triple (x, y, z) ∈M are given by the quadratic equation

x =
1

2

(
yz ±

√
y2z2 − 4(y2 + z2)

)
.(2)

These two solutions are mapped to each other via x 7→ yz − x. The Markoff Vieta involutions
are this map applied to one coordinate of a Markoff triple:

V1 : (x, y, z) 7→ (yz − x, y, z),
V2 : (x, y, z) 7→ (x, xz − y, z),
V3 : (x, y, z) 7→ (x, y, xy − z).

We represent the action of the Markoff Vieta involutions on the set of solutions as the graph G
with vertex setM and an edge between v1 and v2 labeled Vi if Vi(v1) = v2. Since (0, 0, 0) is fixed
by all three involutions, it is an isolated node in G with three loops. By a result of Markoff, all other
nodes are connected to (3, 3, 3) by a unique sequence of Vi’s [14]. We represent the Markoff tree
rooted at (3, 3, 3) as G× = G \ {(0, 0, 0)}. See Figure 1 for a depiction of G×.

We may also consider the Markoff equation modulo a prime p > 2,

x2 + y2 + z2 − xyz ≡ 0 mod p,

with solutionsM(Fp). The values x(M(Fp)) which appear as solutions is characterized as follows.
1
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Figure 1. The Markoff tree G×.

Lemma 1. Let x(M(Fp)×) denote the set of integers modulo p which appear in a non-trivial Markoff
triple. Then,

x(M(Fp)×) =

{
Fp −1 is a quadratic nonresidue modulo p,

Fp \ {−2, 0, 2} otherwise.

Proof. The solutions (x, y, z) ∈ M(Fp) are given by the quadratic equation (2). Without loss of
generality, fix z ∈ Fp. If z = ±2, then the discriminant of (2) is −16, and the square root lies in Fp
exactly when −1 is a quadratic residue modulo p. Similarily, if z = 0, then the discriminant is −4y2,
and a solution exists when −1 is a quadratic residue or y = 0. But, if y = z = 0, then the only
solution is the trivial one, (0, 0, 0).

Now, fix z ̸∈ {−2, 0, 2}. The map

y 7→ y2z2 − 4(y2 + z2)

is 2-to-1 from Fp \ {0} to Fp. Including y = 0, there are (p+ 1)/2 integers in the image of the map.
But since there are only (p− 1)/2 quadratic non-residues, there must be a y where the discriminant
of (2) is a quadratic residue giving a x value for which (x, y, z) ∈M(Fp). □

As before,M(Fp) is fixed by the Markoff Vieta involutions, and the only fixed point is (0, 0, 0).
We build a graph G×p analogous to the Markoff tree with vertex setM(Fp)× and edges given by the

Markoff Vieta involutions. See Figure 2 for G×5 as an example.

Conjecture 1 (Baragar [1]). For every prime p, the Markoff graph G×p is connected and equivalent

to G× with triples congruent modulo p identified.

Conjecture 2. For every prime p, the canonical projectionM→M(Fp) is onto.

Lemma 2. Conjectures 1 and 2 are equivalent.
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Figure 2. The Markoff graph G×5 .

Proof. If G×p is connected, then for any v ∈ M(Fp), there is a sequence Vi1 , . . . Vin forming a path
from (3, 3, 3) to v. Taking the vertices in this path modulo p,

(Vi1 ◦ · · · ◦ Vin)(3, 3, 3) ≡ v mod p.

Conversely, assume M → M(Fp) is onto. For v ∈ M(Fp), let w ∈ M such that w ≡ v mod p.
Since G× is connected, there is a path S from (3, 3, 3) to w. Now, S also forms a walk in G×p ,
connecting (3, 3, 3) to v. And since every vertex is connected to (3, 3, 3), they are all connected. □

Conjecture 2 is often called “the strong approximation conjecture”.
Bourgain, Gamburd, and Sarnak developed a three-tiered approach in [3] showing that strong

approximation holds for all primes p outside a zero density subset. This result was strengthened by
Chen in [4] to strong approximation holding for all but a finite set of primes. Eddy, Fuchs, Litman,
Martin, Tripeny, and Vanyo proved an upper bound of approximately 3.448 ·10392 on p for which G×p
may be disconnected [7]. Their method proves that G×p is connected for many primes beginning

with p = 1, 327, 363, but is inconclusive for most primes less than 109. An important piece of their
method is the notion of maximal divisors, whose connections to Markoff numbers were originally
considered in [7]; we reintroduce them in Definition 2.

The strong approximation conjecture implies that solutions to the Markoff equation modulo a
prime lift to Markoff triples over Z. Bourgain, Gamburd, and Sarnak use the lifting property to show
that almost all Markoff numbers are highly composite [3, Theorem 18]. The strong approximation
conjecture is the first step towards proving the much larger conjecture that G×p forms an expander
family, first proposed in [3]. Recently, Fuchs, Lauter, Litman, and Tran explored applications of the
Markoff graph being connected to cryptography [8].

In the course of studying the spectral gaps on Markoff graphs in [6], De Courcy-Ireland and Lee
performed computations showing that G×p is connected for all primes p < 3, 000. However, their

method requires calculating the adjacency matrix of G×p , which has on the order of O(p4) entries,
and is therefore infeasible for determining connectivity for larger values of p. Our work aims to fill
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in the gap between p = 3, 001 and p = 1, 327, 363, and provide affirmative answers on the set of
primes for which the results of [7] are inconclusive.

In this paper, we outline an algorithmic realization of the process introduced by Bourgain, Gam-
burd, and Sarnak, along with an implementation of that algorithm in Rust. In particular, we
constructively prove the following theorem.

Theorem 1. There exists an algorithm with runtime o(p1+ϵ) for every ϵ > 0 returning an affirmative
or inconclusive response to the query, is the graph G×p connected?

Conjecture 3. The algorithm exhibited here returns an affirmative response for all primes.

Our algorithm is significantly better than a naive, flood fill-like approach with an O(p2) runtime,
there being p2 + O(p) solutions to the Markoff equation modulo p [6, Proposition 2.1]. We demon-
strate our implementation by testing the connectivity of G×p for all primes less than one million, and
a random sample of primes less than one hundred million.

Theorem 2. The graph G×p is connected for all primes p less than one million.

In the general case of the Markoff equation (1) having an integer on the right hand side, the
solutions are still fixed by the Markoff Vieta involutions and rotation maps, but the corresponding
graphs are no longer connected. A partial classification of these graphs over the integers was carried
out in [9], and Bourgain, Gamburd, and Sarnak announced in [3] a forthcoming article extending
their process to these more general graphs. Structures of the connected components for non-zero
level sets over finite fields were studied in [6]. Extending the results of the present paper similarily
is an interesting direction for future research.

In Section 2, we outline the arguments of [3] and [7], elaborating on the features we will utilize
in our algorithm. In Section 3, we construct the data structures and procedures at the core of our
algorithm. Finally, in Section 4, we present the algorithm in total, along with our computational
results for all primes below one million, as well as auxillary data useful for short circuiting the
computations and improving real world performance.

Acknowledgements. Many thanks to my advisor Elena Fuchs for her mentorship, encouragement,
and suggestions throughout this paper. I also thank Matt Litman for helpful conversations, especially
with regards to Section 2. Finally, thanks to Daniel Martin and Peter Sarnak for helpful feedback on
an earlier draft. This paper is based on work supported by the National Science Foundation under
grant DMS-2154624.

2. The structure of the Markoff graph modulo p

In this section, we review some of the structural properties of G×p . We begin our discussion with
the orbits of the rotation maps, which will form useful walks along the graph.

Let D(n) be the set of positive divisors of n, and D(p± 1) = D(p− 1) ∪ D(p+ 1).
We will consider the group Γ generated by the rotation maps, which are compositions of a Markoff

Vieta involution with a transposition. If i ∈ Z/3Z, then

roti = τi+1,i+2 ◦ Vi+1

is the rotation map fixing coordinate i. Writen explicitly,

rot1 : (a, b, c) 7→ (a, c, ac− b),
rot2 : (a, b, c) 7→ (ab− c, b, a),
rot3 : (a, b, c) 7→ (b, bc− a, c).

Lemma 3. IfM(Fp)× is Γ-transitive, then G×p is connected.
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Proof. Let G = ⟨V1, V2, V3⟩, and let the group S3 act on M(Fp) by permuting the coordinates of
each Markoff triple. Since Vi ◦ σ = σ ◦ Vσ(i), for all Vi and σ ∈ S3, the Γ-action on M(Fp) factors
through G⋊S3. In particular, every sequence of rotations is equivalent to a sequence of Markoff Vieta
involutions followed by a permutation on the coordinates. Therefore, if γ(x) = y for some γ ∈ Γ,
then there is a path Vi1 , . . . , Vin from x to σ(y) for some σ ∈ S3.

AssumingM(Fp) is Γ-transitive, there are paths P1 from x to (3, 3, 3) and P2 from (3, 3, 3) to σ(y)
for all x, y ∈ G×p . Then, P1 followed by σ−1(P2) is a path from x to y in G×p . □

Fix (a, b, c) ∈M(Fp). Denote the rotation map rot1 restricted to acting on triples with fixed first
coordinate a by

rot′a

(
b
c

)
=

(
c

ac− b

)
=

(
0 1
−1 a

)(
b
c

)
.

Let a ̸= ±2. If a = χ+ χ−1 for χ ∈ Fp2 , then the matrix diagonalizes as

(3)

(
0 1
−1 χ+ χ−1

)
=

(
1 1
χ χ−1

)(
χ 0
0 χ−1

)(
1 1
χ χ−1

)−1

.

The size of the orbit of rot1 acting on (a, b, c) is dependent on a only, and will be the same for any
orbit with fixed first coordinate a. We therefore refer to the order of a Markoff number a modulo p
as the size of any orbit with fixed first coordinate a. According to (3), this is equivalent to

ordp(a) = |χ|

when a ̸= ±2, where | · | is the multiplicative order in F×
p2 .

The following lemma guarantees that the order of χ always divides p ± 1, a fact we will use in
our classification of Markoff triples. Equivalently, either χ ∈ F×

p , or χ ∈ F×
p2 with norm 1 to Fp.

Lemma 4. Let χ ∈ F×
p2 . Then (χ+ χ−1) ∈ Fp if and only if |χ| ∈ D(p± 1).

Proof. If χ ∈ F×
p2 with |χ| ∈ D(p± 1), then(

χ+
1

χ

)p
= χp +

1

χp

= χ∓1 +
1

χ∓1

= χ+
1

χ
,

and therefore |χ+ χ−1| ∈ D(p− 1), equivalently (χ+ χ−1) ∈ Fp.
Since F×

p2 is cyclic, there are 2p values χ ∈ F×
p2 for which |χ| is divisible by p − 1 or p + 1. The

map ϕ : χ+ χ−1 is 2-to-1 on F×
p2 , so the image of ϕ on the set {χ : |χ| ∈ D(p± 1)} is p values in Fp.

But, that is all of Fp, so there must be no more values of χ ∈ F×
p2 for which χ+ χ−1 ∈ Fp. □

The diagonalization (3) allows us to parameterize the Markoff triples in an orbit in terms of χ.
Specifically, if (a, b, c) ∈M(Fp) and a = χ+ χ−1, then

⟨rot′a⟩(b, c) =
{
k

(
αχℓ + β

1

χℓ
, αχℓ+1 + β

1

χℓ+1

)
: ℓ ∈ Z

}
,

where

k =

(
χ− 1

χ

)−1

, α =

(
c− b

χ

)
, and β = (χb− c) .
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A parameterization for arbitrary orbits is given in [7, Equation 3] as{(
χ+

1

χ
,
χ+ χ−1

χ− χ−1

(
rχℓ +

1

rχℓ

)
,
χ+ χ−1

χ− χ−1

(
rχℓ+1 +

1

rχℓ+1

))
: ℓ ∈ Z

}
,(4)

where any values r, χ ∈ F×
p2 \ {±1} gives a set of triples solving the Markoff equation over Fp2 fixed

by rot1. For fixed χ ∈ F×
p2 , the orbits given by r1, r2 ∈ F×

p2 according to (4) will be the same exactly

when r1⟨χ⟩ = r2⟨χ⟩. We therefore seek one representative r for each coset of ⟨χ⟩ giving

r + r−1

χ− χ−1
∈ Fp,

so that our expression (4) gives solutions to the Markoff equation in Fp. The solutions are charac-
terized by Lemma 5.

Lemma 5. Let χ, r ∈ F×
p2 and χ ̸= ±1. Let k ∈ Fp be a quadratic nonresidue.

(a) If χ ∈ F×
p , then χ− χ−1 ∈ Fp.

(b) If |χ| ∈ D(p+ 1), then χ− χ−1 ∈
√
kFp.

(c) If |r| ∈ D(2(p+ 1)) \ D(p+ 1), then r + r−1 ∈
√
kFp.

Proof. The proof of (a) is identical to the proof of Lemma 4 where |χ| ∈ D(p − 1). So, as-
sume |χ| ∈ D(p+ 1). Then, (

χ− 1

χ

)p
=

1

χ
− χ,

therefore |χ− χ−1| ̸∈ D(p− 1). However,(
χ− 1

χ

)2p

=

(
χ2 +

1

χ2
− 2

)p
=

(
1

χ2
+ χ2 − 2

)
,

so (χ− χ−1)2 has multiplicative order dividing p− 1. Finally, let |r| ∈ D(2(p+ 1)). Then,(
r +

1

r

)2p

=

(
r2 +

1

r2
+ 2

)p
=

(
1

r2
+ r2 + 2

)
,

therefore (r + r−1)2 has multiplicative order dividing p− 1. □

Corollary 1. Let χ, r ∈ F×
p2 with |χ| ∈ D(p + 1), |r| ∈ D(2(p + 1)) \ D(p + 1), and χ ̸= ±1.

Then, χ − χ−1 = b1
√
k and r + r−1 = b2

√
k for b1, b2, k ∈ Fp and k a quadratic nonresidue. With

these choices of χ and r, the orbit (4) contains triples with all coordinates in Fp.

In the spirit of [3], we say that an element a ∈ Z/pZ is parabolic if a = ±2. Otherwise, it is
hyperbolic if ordp(a) divides p− 1, or elliptic if ordp(a) divides p+ 1.

Remark 1. The orbits of triples with fixed parabolic coordinates have sizes ordp(a) = p or 2p. If a
is parabolic and a = χ+ χ−1, then χ = ±1. The matrix in (3) is not invertible, and |χ| is 1 or 2.

Definition 1. The order of the triple (a, b, c) ∈M(Fp) is

ordp((a, b, c)) = max(ordp(a), ordp(b), ordp(c)).

If the order of a triple is p± 1, then it is called a triple of maximal order.
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Bourgain, Gamburd, and Sarnak showed in [3] that G×p is connected for every prime p outside a
zero density subset of the primes. They did so by first observing that all triples of maximal order
and parabolic triples belong to the same connected component Cp. (An explicit proof that triples
with parabolic coordinates are connected to triples of maximal order is given in [2, Lemma 3.3].)
Then, they iteratively lower the bound on the orders of triples which must be connected to Cp. In

the first step, the endgame, all triples of order at least pδ+1/2 are shown to be connected to Cp for
some δ dependent on p. In the middle game, they show that there is an ϵ > 0 dependent only on p for
which ordp(a) > pϵ implies that every orbit of rot′a contains a triple of order larger than ordp(a). By

successively walking from triple to triple of higher order, eventually a triple of order at least pδ+1/2

is reached. Finally, in the opening, they bound the size of |Gp \ Cp| from below, and show that for
primes p with p ± 1 not having too many factors, there can not be enough unaccounted for triples
to constitute a connected component disconnected from Cp. Specifically, Bourgain, Gamburd, and

Sarnak proved in [3] a lower bound of (log p)1/3 on the size of any connected component. This
bound was improved by Konyagin, Makarychev, Shparlinski, and Vyugin [12] to (log p)7/9, and
again improved by Chen [4] to the size being divisible by p.

The bounds on the endgame were made explicit in [7], where the following inequality was proved.

Lemma 6 ([7, Proposition 6.1]). A Markoff triple of order d ∈ D(p± 1) is connected to Cp provided

d >
8
√
p(p± 1)τ(p± 1)

ϕ(p± 1)
.(5)

We will call the right hand side of (5) for each choice of sign the endgame breakpoints and denote
them B(p,±).

We now wish to bound from below the orders of triples which are part of the middle game. We
will consider an orbit of size t, and give an upper bound on the number of triples in that orbit with
order less than t. If the number of such triples is less than t, then the orbit being considered must
contain a triple of order larger than t. A suitable bound is given in [7] and relies on an approximation
of Corvaja and Zannier [5].

Lemma 7 ([7, Lemma 2.1]). If χ ∈ F×
p2 has order t > 2, then the number of values n between 0

and t− 1 for which

ordp

(
χ+ χ−1

χ− χ−1

)(
srn + (srn)

−1
)

divides d is at most

3

2
max

(
3
√
6td,

4td

p

)
.(6)

We now introduce the notion of maximal divisors, coined in [7].

Definition 2 ([7, Definition 1.2]). Let n be a positive integer, and let x ∈ R. A positive divisor d
of n is maximal with to respect to x if d ≤ x and there is no other positive divisor d′ of n such
that d′ ≤ x and d | d′. The set of maximal divisors of n with respect to x is denoted Mx(n).

Fix a divisor t of p ± 1. If we sum (6) over all maximal divisors of p − 1 and p + 1 with respect
to t, then we have an upper bound on the number of triples with order less than t in each orbit of
order t. Explicitly, if

t >
∑

d∈Mt(p±1)

3

2
max

(
3
√
6td,

4td

p

)
,(7)

then every orbit of order t is guaranteed to have a triple of order larger than t. (In fact, this is still
double counting elements of order dividing more than one maximal divisor; sharpening this bound
is a direction for future work.)

Let Lp be the smallest d ∈ D(p± 1) such that every d′ ≥ d, with d′ ∈ D(p± 1), satisfies (7). If it
exists, then we call Lp the middle game breakpoint.
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Lemma 8. Every triple of order at least Lp is connected to Cp.

Proof. Let v1 ∈M(Fp)× with order d > Lp. Then, v1 is connected to some triple v2 of order d′ ⪈ d.
This argument may be repeated until a triple of order p ± 1 is found, at which point we have
reached Cp. □

Algorithm 1 shows a procedure for calculating Lp.

Algorithm 1: Finding the middle game breakpoint Lp.

Input: prime p.
Result: Lp, either a real number or None.
Lp ← None;

for t in D(p± 1) \ {2} in ascending order do
sum ← 0;

for d in D, d < t do

sum ← sum+max( 3
√
6dt, 4dt/p);

end

if t ≥ sum and Lp is None then
Lp ← t;

end

else if t < sum then
Lp ← None;

end

end

return Lp;

In [4], Chen showed that the size of any connected component disconnected from Cp is divisible
by p. This result was used in [7] to show the following.

Lemma 9 ([7, Lemma 2.2]). If p > 3, then |Gp \ Cp| is divisible by 4p.

Lemma 6 and Corollary 8 give two bounds on the orders of triples in Cp. Our goal is now to count
the number of triples which we have not yet shown are connected to Cp. If the number of triples
thus counted is less than 4p, then Gp is connected by Lemmas 3 and 9.

Definition 3. Let ϕ :M(Fp)→ {0, 1} be the boolean function

ϕ(a) =


1 a is hyperbolic and ordp(a) < min(Lp, B(p,−)),

1 a is elliptic and ordp(a) < min(Lp, B(p,+)),

0 otherwise,

where Lp and B(p,±) are the middle game and endgame breakpoints, respectively. A coordinate a
has small order if ϕ(a) = 1. The set of coordinates with small order is denoted S.

Definition 4. Let φ be a boolean function M(Fp) → {0, 1}. A triple v ∈ M(Fp) is a bad triple
if φ(v) = 0. The set of bad triples is denoted B.

We now wish to construct a boolean function φ with two competing mandates. First, φ must be
as sensitive as possible; that is, we wish to minimize the number of triples v connected to Cp but for
which φ(v) = 0. Second, we would like φ to be easy to compute, in the sense that a computer can
quickly identify bad triples with respect to φ. To this end, we have two strategies:

Strategy 1. For each (a, b) ∈ S×S, determine the zero, one, or two values of c for which (a, b, c) ∈M(Fp)
using (2). Any triple found this way for which a, b, and c all have small order is a bad triple.
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Strategy 2. For each a ∈ S and a = χ + χ−1, and for each coset of ⟨χ⟩, pick a representa-
tive r ∈ F×

p2/⟨χ⟩ and calculate the entries in the orbit of rot′a given by (4). Note that r ∈ Fp if a

is hyperbolic, and r ∈ F×
p2 with order dividing 2(p + 1) if a is elliptic; see Corollary 1. Check a set

number of triples in the orbit1; if they are all of small order, then every triple in the orbit is bad.
Otherwise, none of the triples in the orbit are bad.

For every a ∈ Fp, we run one of the two above strategies to identify all bad triples with
first coordinate a. We choose the strategy requiring fewer checks, i.e., we choose Strategy 1
when |S × S| < (p± 1)/|χ|, and Strategy 2 otherwise.

Remark 2. Strategy 2 is more sensitive, since a triple may have all coordinates with small order
and yet still be “good”. It is possible that, for some prime p, choosing to only run Strategy 2 could
affirmatively show that Gp is connected while sometimes running Strategy 1 is inconclusive.

Strategy 2 has a second advantage; it will only ever test Markoff triples. Strategy 1, on the other
hand, must filter through (a, b) pairs for which no value of c gives a Markoff triple. The runtime
cost of performing this filter is similar to the weakening of the estimations in [7] caused by assuming
each pair (a, b) has two values of c making (a, b, c) ∈ M(Fp). Nevertheless, when the middle game
breakpoint or |χ| is small, Strategy 1 may still be faster.

3. Computational Machinery

In this section, we describe the data structures and procedures needed to implement the strategies
described in Section 2. We begin with the factor trie2, encoding a canonical poset on D(p±1). This
poset will allow us to recursively generate only those elements a ∈ Fp satisfying ordp(a) less than
some upper bound (or a being parabolic), without having to filter the entirety of Fp by order.

Associate a word w(n) to each n = pt11 · · · ptnn with primes in increasing order given by

w(n) = p1 . . . p1︸ ︷︷ ︸
t1

. . . pn . . . pn︸ ︷︷ ︸
tn

.(8)

Let D(n) be the set of positive divisors of n. Define a partial ordering ≺ on D(p± 1) as n ≺ m if
the word w(n) is a prefix for the word w(m). If n ≺ m and there is no ℓ such that n ≺ ℓ ≺ m, then
we write n ≺· m.

Define the factor trie Tn = (V,E) as the graph with vertex set V = {w(d) : d ∈ D(n)} and
directed edge set E = {(w(ℓ), w(m)) : ℓ ≺· m}. When the context is clear, we will identify D(n)
and ≺· with the vertex and edge sets directly. An example factor trie for n = 60 is shown in Figure 3.

Associate to each vertex of Tn a finite cyclic group via the covariant functor Fn : Tn → Ab defined
by Fn : w(d) 7→ Z/dZ and taking the directed edge ℓ ≺· m to the inclusion map Z/ℓZ ↪→ Z/mZ.
Note that there are no intermediate subgroups between these groups.

The tries Tp±1 will form the call graphs for our recursive procedure, with vertex d ̸∈ {1, 2}
generating the elements {x ∈ Z/pZ : ordp(x) = d}; these are exactly the generators of Fp±1(d).
(If d ∈ {1, 2}, then x = ±2 and is parabolic, see Remark 1.) If d1 ≺ d2, then |Fp±1(d1)| < |Fp±1(d2)|,
so our x values are generated with increasing ordp(x) moving down the call graph induced by Tp±1,
and we can stop the procedure when we have reached the desire bound.

We could represent elements of the group Fp±1(d) as integers modulo d. However, it will be more
convenient to represent them instead as integer arrays based on the unique decomposition of these
groups into a direct sum of prime power cyclic groups. The multiplicative group operations can then

1See Figure 5 for the maximum number of triples checked per orbit. We cap the number of triples checked to

prevent our program hanging on a prime for which an exceptional number of checks must be performed. In practice,

we found no such exceptional prime out of all primes less than one million, or among those randomly sampled less
than 110,000,000.

2A trie is a tree where the vertex set is the set of unique paths from the root. Some authors use this as the
definition for a tree; others define a tree as a connected acyclic graph. We use the term trie to emphasize the word

structure of the graph.
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10 COLBY AUSTIN BROWN

1

2

22

22 · 3

22 · 3 · 5

22 · 5

2 · 3

2 · 3 · 5

2 · 5

3

3 · 5

5

Figure 3. The factor trie for n = 60.

be performed by the CPU using only componentwise addition and subtraction, which are much faster
than direct multiplication and reciprocal taking. One drawback is that addition and subtraction are
not easily represented, so a conversion back to Fp is necessary before any ring operations. We now
describe this representation.

Let p− 1 = pt11 · · · ptnn and p+ 1 = qs11 · · · qsmm , and assume p1 = q1 = 2.
Fix, once and for all, a Z-basis of F×

p of the form {gi}ni=1, where |gi| = ptii . Making this choice
is a special case of [13, Algorithm 6.1], which is our preferred method. This choice induces a group
isomorphism

ιp−1 : F×
p

∼−→
n⊕
i=1

Z/ptii Z

given by
n∏
i=1

grii 7→ (r1, . . . , rn).(9)

An identical construction exists for the elliptic coordinates by replacing F×
p with the subgroup E ⊂ F×

p2

with order p+ 1. Taken together, we have the commutative diagram

Z/pZ

F×
p

(⊕n
i=1 Z/p

ti
i Z

)
⨿ (

⊕m
i=1 Z/q

si
i Z) E

ψp−1

ιp−1

ψp+1

ιp+1

where ψp±1(χ) = χ + χ−1 (see Lemma 4). To the vertex d = pd11 · · · pdnn ∈ D(p − 1) we have now
associated both the subgroup of F×

p of order d and the group

Fp−1(d) = Z/dZ ∼=
n⊕
i=1

Z/pdii Z

containing integer arrays given by (9), and similarly for the divisors of p+ 1.

Remark 3. Since ψp±1(χ) = ψp±1(χ
−1), the maps ψp−1 and ψp+1 are 2-to-1 when restricted

to F×
p \ {±1} and E \ {±1}, respectively. Since ψp−1(±1) = ψp+1(±1), the induced (dotted) map in

the commutative diagram is 2-to-1.

We now describe the recursive procedure for generating a value a ∈ S (see Definition 3) with
order ordp(a) = d. We begin with the integer array (0, 0, . . . , 0) associated to w(1), and propagate

Submitted to Algor. Num. Th. Symp.
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this array down the factor trie recursively, with each node w(d) yielding3 all the coordinates a ∈ Fp
with ordp(a) = d, mapping the integer array to a via the inverse map of (9).

Remark 4. Parabolic triples are connected to Cp by definition, so we do not want to generate χ
values for which |χ| = d ∈ {1, 2} (see Remark 1).

In light of Remark 3, we would like to yield only one representative from each {χ, χ−1} pair. The
following definition and lemma provides a characterization for making this choice canonical.

Definition 5. Let p ± 1 = pt11 · · · ptnn with p1 = 2, and let (r1, . . . , rn) ∈ ⊕ni=1Z/p
ti
i Z be an integer

array according to (9) not representing a χ ∈ F×
p2 with order 1 or 2. Let

k = min{j : rj ̸= 0 and (pj , rj) ̸= (2, 2t1−1)}.

The integer array is in the lower half if rk ≤ ptkk /2.

Lemma 10. Let χ ∈ F×
p2 such that |χ| ̸∈ {1, 2} and |χ| ∈ D(p ± 1). Then, exactly one of ιp±1(χ)

or ιp±1(χ
−1) is in the lower half.

Proof. Consider a hyperbolic a ∈ Fp with a = χ + χ−1 and χ ∈ F×
p . (The elliptic case is handled

identically.) Let χ = gr11 · · · grnn . Since ιp−1(χ
−1) = (a1, . . . , an) where

ai = (ptii − ri) mod ptii ,

if |χ| ̸∈ {1, 2}, then at least one of rk and ptkk − rk is less than or equal to ptkk /2. Therefore, at least
one of ιp−1(χ) and ιp−1(χ

−1) is in the lower half.
Now assume that both χ and χ−1 are in the lower half. For each j such that pj ̸= 2, it must

be that rj = 0. But then our array is either (0, . . . , 0) or (2t1−1, . . . , 0), rearranging if necessary
so p1 = 2, and these arrays correspond to |χ| = 1 and |χ| = 2, respectively. □

We will only yield integer arrays in the lower half, thus generating each desired element of Fp
exactly once. We do this by setting upper bounds on the entries in the arrays yielded by node w(d)

for d = pd11 · · · pdmm according to

rj ≤ ℓd,j =

{
p
tj
j /2 j = min{j : pdjj ̸= 2},
p
tj
j otherwise.

(10)

We now present our algorithm for yielding Markoff coordinates a ∈ S in Algorithm 2. Each value
of χ yielded corresponds to a Markoff coordinate χ+ χ−1.

Besides generating all a ∈ S, we can use the factor trie to generate cosets of ⟨χ⟩ for χ ∈ F×
p2 , as in

Strategy 2. For this we need one representative for each coset of ⟨χ⟩. That is, for |χ| ∈ D(p± 1), we
need one value of order d for each divisor d of (p ± 1)/|χ|. Let |χ| = ps11 · · · psnn . We can repurpose
Algorithm 2 by instead interpreting the yielded values as r in (4), and replacing the upper bounds
in (10) with

ℓd,j =


0 dj ≤ sj ,
p
tj
j /2 dj > sj and j = min{j : pdjj ̸= 2},
p
tj
j otherwise.

(11)

3A yield statement is similar to a return statement in that it passes data back to the caller of the function; it

differs in that execution continues in the callee, allowing for more than one value to be yielded.
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Algorithm 2: Generating χ corresponding to desired Markoff coordinates χ+ χ−1 ∈ S.
Input: Factor trie Tp±1 with p± 1 = pt11 · · · ptnn ,
Limits ℓ1, . . . , ℓn as in (10),

Node w(d) with d = pd11 · · · pdmm ,
Array of integers r1, . . . , rm.
Base case: propagate(w(1), 0, . . . , 0)
Result: Stream of χ values.
fn propagate(w(d), r1, . . . , rm)

for i in 0 to pm do
r′m ← rm + ptm−dm

m ;

if r′m > ℓd,m then
break;

end

if dm < tm then

propagate(w(pd11 · · · pdm+1
m ), r1, . . . , r

′
m);

end

if i = 0 then
/* Yielding when i = 0 would not respect the trie structure, i.e.,

there would be multiple call paths to yield the same value. */

continue;

end

if 2 < d < min(Lp, B(p,±)) then

yield gr11 · · · g
rm−1

m−1 · g
r′m
m ;

end

for j in m+ 1 to n do
if dj < tj and w(d · pj) or there is a d′ ≻ d such that d′ < min(Lp, B(p,±)) then

propagate(w(d · pj), r1, . . . , r′m);
end

end

end

4. Our Algorithm & Results

In this section, we combine the process described in Section 2 with the machinery constructed in
Section 3 to produce a comprehensive algorithm for proving that G×p is connected. The code described
in this section can be found at https://github.com/colbyaustinbrown/libbgs, with executable
code found in the examples directory. We used the Rust programming language, version 1.78, for
our libbgs library defining the data structures described in Section 3. Rust is a strongly, statically
typed imperative language prioritizing speed, memory safety, and concurrency. We now present our
algorithm for testing whether G×p is connected.

Submitted to Algor. Num. Th. Symp.
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Algorithm 3 (Testing Gp for connectivity).

(1) Calculate the prime factorizations for p± 1, and construct the factor tries Tp±1. Also, fix Z-
bases of F×

p and E for (9), and also a valuem with order 2t||p2−1 (see Corollary 1) using [13,
Algorithm 6.1]. Note that the choice of basis requires O(log p) choices via randomly sampling
elements of Fp2 , with each choice being made within an expected 2 samples.

(2) Use (5) and Algorithm 1 to determine the endgame and middle game breakpoints.
(3) Generate all coordinates with small order a ∈ Fp according to Definition 3 via Algorithm 2,

and proceed to step 4 for each a.
(4) If (p± 1)/ ordp(a) < |S × S|, go to step 4(b); otherwise, go to step 4(a).

(a) Perform Strategy 1: Use Algorithm 2 to generate all b ∈ Fp with small orders. For
each b value, calculate the 0, 1, or 2 values of c for which (a, b, c) ∈ Gp. Any c value
with small order gives a bad triple (a, b, c).

(b) Perform Strategy 2: Generate r values given by Algorithm 2 modified with (11), and
use them to calculate up to (fixed) n values b from (4). (If a is elliptic, the values r
must be multiplied by the value m chosen in Step 1 before being plugged in to (4), see
Corollary 1.) If every b has order smaller than L, then every triple in the orbit is bad.

(5) Count the number of bad triples found. If the result is less than 4p, then Gp is connected.
Otherwise, the algorithm is inconclusive.

Using Algorithm 3, we confirmed that Gp is connected for all p < 1, 000, 000, confirming Theo-
rem 2. We also ran our algorithm for a random sample of 1, 000 primes p < 110, 000, 000, and G×p
was connected for each of these primes, too. We did not find any Gp with at least p bad triples,
with two exceptions: p = 7, 558, 541 and p = 96, 840, 901, for which the number of bad triples found
was 9, 716, 411 and 103, 370, 751, respectively. The criteria for connectivity of [4] was nearly always
sufficient in our tests, although we did rely on the improved bounds of [7] that any |G×p \ Cp| ≥ 4p.
The number of bad triples per prime is shown in Figure 4. Table 1 shows the prime factorizations
of p ± 1 and bad triple counts for a sample of primes less than one million. Generally, the number
of bad triples is inversely correlated with the number of prime divisors (with multiplicity) of p± 1.

Table 1. For p < 1, 000, 000, the 10 primes with the largest ratio |B|/p, and the 5
largest primes with B = ∅.

Hyperbolic Elliptic

p p− 1 Bad Triples p+ 1 Bad Triples

825,287 2 · 7 · 11 · 23 · 233 277,287 23 · 3 · 137 · 251 320,209
916,879 2 · 3 · 17 · 89 · 101 251,391 24 · 5 · 73 · 157 425,410
804,203 2 · 7 · 17 · 31 · 109 295,979 22 · 32 · 89 · 251 286,714
936,259 2 · 3 · 17 · 67 · 137 307,155 22 · 5 · 132 · 277 362,722
734,803 2 · 3 · 29 · 41 · 103 171,268 22 · 72 · 23 · 163 351,854
550,811 2 · 5 · 13 · 19 · 223 211,593 22 · 3 · 197 · 233 168,181
858,701 22 · 52 · 31 · 277 279,547 2 · 3 · 13 · 101 · 109 304,704
843,229 22 · 32 · 59 · 397 320,154 2 · 5 · 37 · 43 · 53 250,655

995,677 22 · 3 · 11 · 19 · 397 0 2 · 497, 839 0
995,987 2 · 497, 993 0 22 · 3 · 7 · 71 · 167 0
996,783 22 · 3 · 5 · 37 · 449 0 2 · 498, 391 0
997,583 2 · 498, 791 0 24 · 3 · 7 · 7, 969 0
999,958 2 · 499, 979 0 23 · 3 · 5 · 13 · 641 0

In the worst case, steps 1 and 2 require on the order of |D(p ± 1)| + |D(p + 1)| computations.
Step 4 executes at most p times, and each iteration is bounded above by the runtime of step 4(b),
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Figure 4. Total number of bad triples for all primes less than 1, 000, 000 (top)
and random primes less than 110, 000, 000 (bottom).

which checks at most D(p ± 1) orbits. The check on each orbit terminates after finding any triple
not in B; the largest number of such checks per prime is shown in Figure 5.

For the cap given in step 4(b), we used n = 60. In our execution of Algorithm 3, step 4(b) was
terminated after 60 checks for only one prime, p = 119, 659, and the algorithm still affirmatively
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determined G×p is connected. We note that this cap is necessary to guarentee an almost linear
asymptotic runtime at the expense of a possibly inconclusive response by the algorithm; however,
the lack of growth in the number of required checks over the large range p < 110, 000, 000 (as shown
in Figure 5) provides evidence that this check does not reduce the algorithm’s power. We use the
following result.

Theorem 3 ([10, theorem 315]). For every ϵ > 0, the divisor function D(n) ∈ o(nϵ).

Therefore, our algorithm runs in o(p1+ϵ) time, in the worst case. The runtimes for all the primes
we tested are shown in Figure 6. As emphasized in the figures, the almost linear bound on the
runtime is a worst-case upper bound, and our algorithm performs well below this upper limit for a
large number of primes.

The actual time to run Algorithm 3 depends heavily on both the endgame and middle game
breakpoints. A plot of a the breakpoints for our random primes beneath 110 million, calculated
using equation (5) and Algorithm 1, is shown in Figure 7. The first prime for which Algorithm 1
returns a middle game breakpoint is p = 1, 328, 247.
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Figure 5. Maximum number of orbits checked during any iteration of Step 4(b)
for all primes less than 1, 000, 000 (top) and random primes less than 110, 000, 000

(bottom).
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