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Abstract. We study the problem of determining the groups that can arise as the
torsion subgroup of an elliptic curve over a fixed quadratic field, building on work
of Kamienny-Najman, Krumm, and Trbović. By employing techniques to study
rational points on curves developed by Bruin and Stoll, we determine the possible
torsion subgroups of elliptic curves over quadratic fields Q(

√
d) for all squarefree

d with |d| < 800, improving on the previously known range of −5 < d < 26. We
use our computations to study the validity of a conjecture of Granville concerning
how many twists of a given hyperelliptic curve admit a nontrivial rational point.

1. Introduction

Let E be an elliptic curve over a number field K. The Mordell-Weil theorem
establishes that the group E(K) of K-rational points of E is finitely generated as
an abelian group, so one has an isomorphism of groups

E(K) ∼= E(K)tors ⊕ Zr,

where E(K)tors is a finite abelian group called the torsion subgroup of E/K, and
r is called the rank of E/K.

The question of classifying which possible torsion subgroups may arise as one
varies over elliptic curves over a fixed number field K - what in this paper we refer
to as uniformity of torsion over K - goes back to Levi’s 1908 ICM address in
Rome [Lev09], in which he conjectured that for K = Q, there are only 15 possible
groups that can arise. As is well-known, this conjecture was finally established in
Mazur’s seminal work [Maz77]; see [SS96] for an interesting history of this landmark
result in the arithmetic of elliptic curves.

Theorem 1.1 (Mazur (1977)). Let E be an elliptic curve over Q. Then E(Q)tors
is isomorphic to one of the following 15 groups:

Z/NZ 1 ≤ N ≤ 10 or N = 12;

Z/2Z⊕ Z/2NZ 1 ≤ N ≤ 4.

Since Mazur’s work in the 70s, much progress has been made towards a closely
related question that in the literature is referred to as strong uniformity of tor-
sion. Here, instead of fixing a number field K, one fixes an integer d, and asks
for a classification Φ(d) of possible torsion subgroups of any elliptic curve over any
number field of degree d over Q. Mazur’s result above establishes this for d = 1.
Subsequently, in a long series of papers in the 80s by Kenku, Momose, and Kami-
enny [Kam82, Kam86a, Kam86b, Kam86c, Kam90, Kam92, Ken75, Ken79, Ken81,
Ken83, KM88, Mom84a, Mom84b], the d = 2 case was studied; the culmination
of the work of Kenku and Momose was [KM88], in which they proposed a list of
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26 possible torsion subgroups for elliptic curves over quadratic fields. The authors
showed that these 26 groups arise infinitely often as one varies both the elliptic curve
and the quadratic field, and moreover showed that this list would be complete if
one can show that no elliptic curve over a quadratic field admits a torsion point of
prime order p > 13. This fact about bounding the so-called torsion primes S(d) in
degree d = 2 by 13 was subsequently established by Kamienny [Kam92]; one there-
fore has the following result that we refer to as the Kamienny-Kenku-Momose
(hereafter KKM) classification.

Theorem 1.2 (Kamienny-Kenku-Momose (1992)). Let E be an elliptic curve over
a quadratic field K. Then E(K)tors is isomorphic to one of the following 26 groups:

Z/NZ 1 ≤ N ≤ 16 or N = 18;

Z/2Z⊕ Z/2NZ 1 ≤ N ≤ 6;

Z/3Z⊕ Z/3NZ 1 ≤ N ≤ 2;

Z/4Z⊕ Z/4Z.

Kamienny and Mazur subsequently showed [KM95] that finiteness of S(d) is equi-
valent to finiteness of Φ(d), albeit in a non-effective way (that is, knowing exactly
what S(d) is does not immediately allow one to determine Φ(d)), and Merel estab-
lished finiteness of S(d) for all d [Mer96], proving the erstwhile Uniform Bounded-
ness conjecture for torsion primes of elliptic curves over number fields. The only
other value of d for which Φ(d) is known fully is d = 3, a recent result due to the
second author with Etropolski, van Hoeij, Morrow, and Zureick-Brown [DEvH+21].
There are partial results known for d = 4, 5, 6 and 7; see e.g. [DS17] or [Sut12] and
the references contained in the introduction there for the state-of-the-art known
about strong uniformity in higher degree number fields.

In this paper, however, we will return to the original uniformity question, and
attempt to classify the torsion subgroups of elliptic curves over fixed quadratic fields
K.

Najman was the first to consider this question, determining which of the 26 groups
in the KKM classification actually arise over each of the cyclotomic quadratic fields
Q(ζ3) and Q(ζ4) [Naj11]. Very soon thereafter, Kamienny and Najman [KN12]
determined the smallest quadratic field (ordered by absolute value of discriminant)
realising each of the 26 torsion subgroups in the KKM classification, and obtained
results about the rank of elliptic curves having prescribed torsion. This latter
phenomenon of the interplay between rank and torsion was further investigated by
Bosman, Bruin, Dujella and Najman [BBDN14], and yielded very striking results
such as any elliptic curve over any quadratic field with torsion subgroup Z/13Z
must have even rank.

The idea of determining the torsion subgroups of elliptic curves over all quadratic
fields Q(

√
d) in some range first appears in a paper of Trbović [Trb20], who attemp-

ted such a classification for the 0 < d < 100 that are squarefree; there were however
16 values of d in this range for which she was unable to fully decide on which torsion
subgroups arise; more precisely, for these 16 values, it remained undecided whether
Z/16Z arises as a possible torsion subgroup. Because of these 16 unknowns, a result
classifying torsion in a range of d was only established for 0 < d < 26. Coupling
with this Najman’s work [Naj11], the range of known quadratic torsion is currently
−5 < d < 26.
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The main result of this paper resolves the situation for these 16 values, considers
negative values of d, and significantly extends the range of square free integers
considered. To succinctly state our results, we make the following observations:

• the 15 groups in Mazur’s classification (which form a subset of the 26 groups
in the KKM classification) arise over every quadratic field; see [Trb20, Sec-
tion 2].

• the groups Z/3Z⊕Z/3Z and Z/3Z⊕Z/6Z (respectively, the group Z/4Z⊕
Z/4Z) correspond to having full 3 (respectively, 4) torsion, and so by a
standard corollary of Galois equivariance of the Weil pairing, can arise only
over Q(ζ3) = Q(

√
−3) (respectively, Q(ζ4) = Q(

√
−1)).

This reduces the problem to determining, for each quadratic field in our range,
which of the remaining 8 torsion subgroups arise over that quadratic field. For a
group Z/MZ⊕Z/NZ (with M |N) and a positive integer B, we therefore make the
following definition:

TB(M,N) :=
{
|d| < B squarefree : Z/MZ⊕ Z/NZ is a torsion group over Q(

√
d)
}
.

Based on the convention that is used for modular curves, we write TB(N) :=
TB(1, N). Our task is then to determine, for some chosen value of B, the 8 sets

genus 1 : TB(11), TB(14), TB(15), TB(2, 10), TB(2, 12)

genus 2 : TB(13), TB(16), TB(18).
(1.1)

These sets have been labelled with a genus that corresponds to the genus of the
modular curve X1(M,N) that plays the role of a moduli space of elliptic curves
having Z/MZ⊕Z/NZ as a subgroup of their torsion subgroup, and the genus plays
a significant role in the arithmetic geometry of these modular curves. The genus
2 cases pose a more significant challenge, and most of the paper will be focussed
on these three cases. Indeed, Kamienny and Najman [KN12] already showed that
determination of the genus 1 sets above correspond to computing whether the rank
of the d-twist of each of the associated (elliptic) modular curves is positive; we carry
this out for B = 10,000 in Section 2.

We may now state our main result.

Theorem 1.3. (1) Letting S13 denote the set

S13 := {17, 113, 193, 313, 481, 1153, 1417,
2257, 3769, 3961, 5449, 6217, 6641, 9881} ,

we have
S13 ⊆ T10,000(13) ⊆ S13 ∪ {9689} .

(2) Letting S18 denote the set

S18 = {33, 337, 457, 1009, 1993, 2833, 7369, 8241, 9049} ,
we have

S18 ⊆ T10,000(18) ⊆ S18 ∪ {2841, 4729, 9969} .
(3) We have

T800(16) = {−671,−455,−290,−119,−15, 10, 15, 41, 51,

70, 93, 105, 205, 217, 391, 546, 609, 679} .
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Together with the aforementioned computation of ranks of twists of the five
elliptic modular curves alluded to above, this result gives a resolution of the uni-
formity of torsion question for every quadratic field Q(

√
d) for |d| < 800, offering a

significant improvement over the previously known range −5 < d < 24. Moreover,
for 13 and 18-torsion, only the sets T256(13) and T680(18) were previously known
[Kru13, Theorems 2.7.7 and 2.7.8]; this illustrates that parts (1) and (2) above also
greatly improve upon previous results.

We briefly describe our methods, based on the aforementioned work of Najman
and Trbović, and give an overview of the paper. The problem may be expressed as
determining, for each quadratic field Q(

√
d) in our range, which of the 8 modular

curves referred to in (1.1) admit a noncuspidal Q(
√
d)-point. As mentioned above,

for the five genus 1 modular curves, Section 2 explains how this essentially boils
down to computing the rank of the d-twist of each (elliptic) modular curve, some-
thing that we carry out in Magma [BCP97]. The torsion groups Z/13Z and Z/18Z
are dealt with in Section 3, where we use work of Krumm [Kru13] that reduces
the problem to determining the existence of a Q-rational point on the d-twist of
the modular curves X1(13) and X1(18). Krumm already used two-cover descent to
resolve this problem for many values of d; here we augment this method with two
improvements: a necessary condition on the rank of the Jacobian varieties Jd

1 (13)
and Jd

1 (18) of the twisted modular curves, and an application of the Mordell-Weil
sieve. This yields parts (1) and (2) of Theorem 1.3. The reason for the ambigu-
ity concerning the values 9689, 2841, 4729 and 9969 is that the Mordell-Weil sieve
method failed here, as we were unable to find explicit generators of the Mordell-Weil
group of the above Jacobians.

Dealing with Z/16Z as a possible torsion subgroup is the most difficult, since
every twist admits a Q-rational point, so we are essentially forced to compute all
Q-rational points, and this is the reason for the significantly smaller value ofB = 800
in part (3). In this range, the elliptic curve Chabauty method is successful in doing
this, establishing Part (3) of Theorem 1.3 in Section 4.

Resolving the genus 2 cases comes down to determining whether quadratic twists
of these curves in a range admit a nontrivial rational point. This is something that
Granville has previously studied [Gra07]; in particular, a conjecture about how
many such twists should admit nontrivial points was given there. We compare our
results with this conjecture; there is an apparent discrepancy between our data and
his conjecture, which we explore in Section 5. Finally in Section 6 we indicate some
avenues for future research.

1.1. Code and computations. We have used Magma (version V2.28-3) [BCP97]
and SageMath [S+12] (version 10.2 using Python 3.9.19) in our computations. The
code accompanying our paper has been released under version v1.0.0 at

https://github.com/isogeny-primes/quadratic-torsion/tree/v1.0.0

All filenames given in the paper will refer to files in this repository. The compu-
tations have been run on a server at the University of Zagreb with an Intel Xeon
W-2133 CPU @ 3.60GHz with 12 cores and 64GB of RAM running Ubuntu 18.04.6
LTS. The most memory consuming part of the computation was verifying the al-
gebraic ranks of the twists of the five genus 1 modular curves in Section 2, requiring
about 2.5GB of RAM. All other computations used less then 350 MB or RAM.
The most time consuming part of the computations is looking for generators of
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the Mordell-Weil groups of Jd
1 (13) and Jd

1 (18) for the 20 values of d in eqs. (3.1)
and (3.2). The time spend on finding these generators is roughly 2 weeks in total.
All other computations combined took less then a week to complete.

More information about runtime of specific computations is described below in
the main body of the paper, and can also be found in the README.md of the above
repository.

Acknowledgements. We are grateful to Jennifer Balakrishnan, Peter Bruin, Aashraya
Jha, Steffen Müller, Filip Najman and Alexander Smith for helpful comments and
correspondence. We are grateful to Michael Stoll for answering queries about get-
ting his Magma implementation of the Mordell-Weil sieve to work in our setting.

The first named author is supported by Simons Collaboration grant ID #550023
for the Collaboration on Arithmetic Geometry, Number Theory, and Computation.
The second named author is supported by the Croatian Science Foundation under
the project no. IP-2022-10-5008.

2. The five genus 1 cases

In this section we deal with the genus 1 cases of (1.1); that is, for every quad-

ratic field Q(
√
d) with |d| < 10,000, we determine if each of the five modular

curves of genus one, viz. X1(11), X1(14), X1(15), X1(2, 10) and X1(2, 12), admits a

noncuspidal Q(
√
d)-rational point. The following result of Kamienny and Najman

shows that this essentially comes down to determining whether or not the rank of
the elliptic modular curve over Q(

√
d) is positive.

Theorem 2.1 (Kamienny-Najman, Theorems 15 and 16 in [KN12]).

(1) If X1(11), X1(2, 10) or X1(2, 12) possess a noncuspidal quadratic point, then
that point has infinite order.

(2) X1(14) possesses a noncuspidal Q(
√
d)-torsion point of finite order if and

only if d = −7.
(3) X1(15) possesses a noncuspidal Q(

√
d)-torsion point of finite order if and

only if d = −15.

Since, for E an elliptic curve over Q, one has

rk(E(Q(
√
d)) = rk(E(Q)) + rk(Ed(Q)),

where Ed denotes the dth quadratic twist of E, dealing with these five cases amounts
to checking whether the Q-rank of the corresponding quadratic twists of these el-
liptic modular curves is zero or not (noting that the Q-rank of the five original
curves is zero). Of course, for d = −7 and −15, one only has the three curves in
(1) to deal with.

Hereafter, E will denote one of the above five elliptic modular curves. We first
check via a modular symbols calculation in Sage involving the twisted winding
element (see [Bos08, Section 2.2.2] or [ECdJ+11, Section 6.3.3] for more details)
whether or not the analytic rank of Ed is zero. Here we observe that X1(2, 10)
is isogenous to X0(20), and X1(2, 12) is isogenous to X0(24) (as may be verified
in the LMFDB [LMF21]). The file python_scripts/positive_rank_twists.py

produces a list of values of d for which the analytic rank is positive; these values
are automatically output to the positive_rank_lists folder as JSON files.
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If the analytic rank is zero, then by Kolyvagin [Kol89], we know that the rank is
zero. If it is nonzero, we then verify in magma_scripts/positive_rank_twists.m

that the algebraic rank is nonzero by the standard descent method implemented in
Magma, which incorporates 2,4,8 and 3 descent.

3. X1(13) and X1(18)

In this section we prove parts (2) and (3) of Theorem 1.3. We use the models for
these two modular curves from [Kru13, Section 2.6]:

X1(13) : y
2 = x6 − 2x5 + x4 − 2x3 + 6x2 − 4x+ 1;

X1(18) : y
2 = x6 + 2x5 + 5x4 + 10x3 + 10x2 + 4x+ 1.

Our task is to decide, for every squarefree d with |d| < 10,000, whether each of

these modular curves admits a noncuspidal Q(
√
d)-rational point. For this we start

by employing the methods outlined by Krumm in Section 2 of his thesis [Kru13].
However we add two important improvements.

The first of these is Proposition 3.6, which implies for N = 13 or 18 that if Jd
1 (N)

has rank zero, then there are no such Q(
√
d)-rational points. In particular, the use

of the Magma function Chabauty0 to compute all points onXd
1 (N)(Q) as mentioned

in [Kru13, Section 2.5.1] is no longer necessary since we prove that this set is always
empty if d ̸= −3 and Jd

1 (N) has rank zero. The elimination of this computational
step, and using modular symbol computations to determine the analytic rank of
Jd
1 (N) explains why we could extend our computation to a much large range of d.
The second improvement is that we apply the Mordell-Weil sieve to try and show

Xd
1 (N)(Q) = ∅ in cases where the methods of Krumm fail. This extra step explains

why we can show for example that 18-torsion does not occur over Q(
√
681), while

this is one of the cases that Krumm couldn’t handle.
Throughout this section, we shall use N to denote either 13 or 18. We may also

ignore the values d = −1 and −3 since, as mentioned in the introduction, Najman
has already dealt with these.

Krumm shows that any noncuspidal Q(
√
d)-rational point on X1(N) must have

Q-rational x-coordinate, and therefore yields a Q-rational point on the d-twisted
modular curve Xd

1 (N). Conversely, if Xd
1 (N) admits a Q-rational point, then this in

turn would correspond to a noncuspidal Q(
√
d)-rational point on X1(N); these facts

are proved in [Kru13, Lemma 2.7.3]. This reduces the task to checking whether any
of these twists of these two modular curves possess a Q-rational point.

If such a twist of X1(N) possesses a rational point, then several necessary condi-
tions must be satisfied. We collect these into the following subsections.

3.1. Everywhere Local solubility. If a curve X over a number field K admits a
K-rational point, then it certainly admits a point rational over every completion of
K; i.e., the curve must be everywhere locally soluble. This is a finite computation
to check for any explicitly given curve, for which Magma has an implementation.

3.2. Congruence conditions on d. Krumm provides a necessary condition on d
for there to exist a Q-point on Xd

1 (N).

Proposition 3.1 (Krumm, Theorems 2.6.5 and 2.6.9 in [Kru13]).

(1) If Xd
1 (13)(Q) ̸= ∅, then:
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(a) d > 0;
(b) d ≡ 1 (mod 8).

(2) If Xd
1 (18)(Q) ̸= ∅, then:

(a) d > 0;
(b) d ≡ 1 or 9 (mod 24).

Remark 3.2. That d must be positive here was independently proved by Bosman,
Bruin, Dujella, and Najman; see [BBDN14, Theorem 9].

3.3. Two-cover descent. This is a technique due to Bruin and Stoll [BS09b].
Briefly, they provide a refinement of a classical theorem of Chevalley and Weil
[CW32] to say that, for any fixed n ≥ 2, if a hyperelliptic curve C over a number field
k admits a k-rational point, then this rational point must have a rational preimage
on one of finitely many covering curves of a particular form depending on n, called n-
covers. By considering the set of (isomorphism classes of) everywhere locally soluble
n-coverings, called the n-Selmer set of C, one has the result that if this Selmer set
is empty, then C has no k-rational points. Bruin and Stoll make this explicit and
algorithmic in the case n = 2, by working with a closely related Selmer object (the
fake 2-Selmer group), and most importantly, provide a Magma implementation of
this for genus 2 curves over Q, accessible via the intrinsic TwoCoverDescent. The
upshot is that another necessary condition for Xd

1 (N)(Q) to be nonempty is that
its fake 2-Selmer set must be nonempty.

3.4. Positive rank of Jd
1 (N). One necessary condition that we introduce is Co-

rollary 3.7 below, which is that the rank of Jd
1 (N)(Q) must be positive. We first

establish the following preparatory lemmas concerning torsion growth in J1(N) over
quadratic fields.

Lemma 3.3. For every quadratic field K, we have

J1(13)(K)tors = J1(13)(Q)tors ∼= Z/19Z.
Proof. For p ≥ 5, p ̸= 13, the torsion subgroup J1(13)(K)tors injects into the re-

duction J̃1(13)(Fp2) (see [Kat80, Appendix]). By computing this latter group for
p = 5 and 17, one sees that it must be a subgroup of Z/19Z. On the other hand, the
torsion over Q is Z/19Z, as may be directly verified in Magma. These computations
may be found in magma_scripts/torsionVerifications.m (this also includes the
verifications for Lemmas 3.5 and 4.1 below). □

Remark 3.4. That J1(13)(Q)tors ∼= Z/19Z was first proved by Ogg in [Ogg72], and
this discovery is of great historical importance in the arithmetic of elliptic curves.
Shortly after finding a point of order 19 on J1(13), Ogg passed through Cambridge,
MA, and communicated this discovery to Mazur and Tate; this inspired them to
prove that in fact J1(13)(Q) consists only of the 19 torsion points; i.e., that it has
zero rank over Q; this has the corollary that no elliptic curve over Q possesses a
rational point of order 13 [MT73]. This argument was shortly thereafter generalised
by Mazur to deal with all primes p ≥ 13; combined with existing work of Kubert
[Kub76], this provided the classification of torsion subgroups of rational elliptic
curves (Theorem 1.1) mentioned at the beginning of this paper.

Lemma 3.5. For K any quadratic field that is not Q(
√
−3), we have

J1(18)(K)tors = J1(18)(Q)tors ∼= Z/21Z.
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Furthermore,

J1(18)(Q(
√
−3))tors ∼= Z/3Z⊕ Z/21Z.

Proof. The last part was already proved by Najman [Naj10, Lemma 7]. For the

first part, by computing the group structure of J̃1(18)(Fp2) for prime p in the range
5 ≤ p ≤ 30, we obtain that, for all quadratic fields K, we have J1(18)(K(ζ3))tors =
J1(18)(Q(ζ3))tors (noting that the residue fields of K(ζ3) are always contained in
Fp2 for p as above), and that J1(18)(K)tors is at most Z/3Z ⊕ Z/21Z. That the
torsion over Q is isomorphic to Z/21Z is a straightforward Magma computation.
That the 3-torsion rank of J1(18) is the same over K(ζ3) as over Q(ζ3) implies that
there can be no extra torsion attained over K. □

Proposition 3.6. Let d ̸= −3 be a squarefree integer, N ∈ {13, 18}, and K =

Q(
√
d). If X1(N)(K) ̸= X1(N)(Q), then J1(N)(K) and hence Jd

1 (N)(Q) has pos-
itive rank.

Proof. If P is a K-point of X1(N) that is not a Q-point, then it embeds under
the Abel-Jacobi map to a K-point of J1(N) that is not a Q-point. Therefore by
Lemmas 3.3 and 3.5 it must be of infinite order. The final assertion comes from the
equality rk(J1(N)(K)) = rk(J1(N)(Q)) + rk(Jd

1 (N)(Q)). □

Corollary 3.7. For N ∈ {13, 18} and d ̸= −3, if Xd
1 (N)(Q) ̸= ∅, then Jd

1 (N)(Q)
has positive rank.

Proof. As explained at the beginning of this section (and shown by Krumm), ra-

tional points on Xd
1 (N)(Q) correspond to noncuspidal Q(

√
d)-points on X1(N) that

are not Q-points; the result then follows from the previous proposition. □

As in Section 2, we use the twisted winding element method to check whether or
not the analytic rank of Jd

1 (N)(Q) is positive; if it is zero, then by Kato’s general-
isation of the work of Kolyvagin-Logachëv [Kat04], we know that the Mordell-Weil
rank is zero.

Putting these four necessary conditions together - which is done in magma_scripts/
x1_13.m and magma_scripts/x1_18.m (see the corresponding log files in the logs
folder for the output) - we obtain

T10,000(13) ⊆{17, 113, 193, 313, 481, 673, 1153, 1417, 1609, 1921, 2089, 2161,
2257, 3769, 3961, 5449, 6217, 6641, 8473, 8641, 9689, 9881} ;

T10,000(18) ⊆{33, 337, 457, 681, 1009, 1329, 1761, 1993, 2833, 2841, 2913, 3769,
4729, 5281, 6217, 7057, 7321, 7369, 8241, 9049, 9969} .

Out of these possible values of d, we run a search for rational points on Xd
1 (N);

the values for which this search yields no rational points (and hence we expect that
there are none) are as follows:

Z/13Z : 673, 1609, 1921, 2089, 2161, 8473, 8641, 9689 (3.1)

Z/18Z : 681, 1329, 1761, 2841, 2913, 3769, 4729, 5281, 6217, 7057, 7321, 9969. (3.2)

To prove that these twists of X1(N) have no rational points, we employ the
Mordell-Weil sieve, a technique also due to Bruin and Stoll [BS10] who have also
provided a Magma implementation [BS09a] for genus 2 curves over Q.
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One input that this Magma implementation needs in order to use the Mordell-
Weil sieve on a curve C of genus 2 is a divisor D of degree 3 on C, see [BS10][Section
7]. This divisor is used by them to provide a map C → J(C) given by P 7→
P +W −D, where W is a canonical divisor. Such a degree 3 divisor is not always
guaranteed to exist. However in the cases where we will apply it, we know a priori
that it has to exist by the following lemma.

Lemma 3.8. Let C be hyperelliptic curve over a number field K with an automorph-
ism γ of order 3 such that C/⟨γ⟩ has genus 0. Then every hyperelliptic quadratic
twist C ′ of C that is everywhere locally solvable has a divisor of degree 3.

Proof. Since the hyperelliptic involution is unique, the automorphism of order 3
commutes with it. In particular γ is also a K-rational isomorphism on every hyper-
elliptic quadratic twist. Now C ′/⟨γ⟩ is of genus 0 since over K it is isomorphic to
C/⟨γ⟩. The curve C ′ is everywhere locally solvable, so C ′/⟨γ⟩ is everywhere locally
solvable as well. By the Hasse principle for genus 0 curves there is a K-rational
point P on C ′/⟨γ⟩. The pullback of P along the quotient map C ′ → C ′/⟨γ⟩ will
then be a divisor of degree 3 on C ′. □

The above proof also gives a practical algorithm to find this degree 3 point.
Namely just search for rational points on the genus 0 curve C ′/⟨γ⟩ and pull them
back to C ′. Under the hypothesis of the lemma this curve is isomorphic to P1

K so
rational points will be easy to find.

Remark 3.9. We found that Mordell-Weil sieving in order to show that Xd
1 (N) is

empty was much faster then we initially expected. The Mordell-Weil sieve works
by choosing a suitable set S of primes and an auxilary integer N ′. The integer N ′

here is actually called N in [BS10]. The Mordell-Weil sieve applied to Xd
1 (N) works

by trying to prove Xd
1 (N) = ∅ using the commutativity of the the diagram

Xd
1 (N)(Q) //

��

Jd
1 (N)(Q)/N ′Jd

1 (N)(Q)

��∏
p∈S X

d
1 (N)(Fp) //

∏
p∈S J

d
1 (N)(Fp)/N

′Jd
1 (N)(Fp)

and trying to show that Jd
1 (N)(Q)/N ′Jd

1 (N)(Q) and
∏

p∈S X
d
1 (N)(Fp) have empty

intersection in
∏

p∈S J
d
1 (N)(Fp)/N

′Jd
1 (N)(Fp). In order for this strategy to be suc-

cessful we need the different |Jd
1 (N)(Fp)| to share many common factors [BS10, §3.1]

for the primes p ∈ S. It turns out that many of these common factors will also be
factors of N ′; the reason for this is that there is no new information learned from
reducing mod p if Jd

1 (N)(Fp)/N
′Jd

1 (N)(Fp) = {0}. In running the Mordell-Weil
sieve for N = 13 we found that the value of N ′ chosen by the Mordell-Weil sieve
implementation of Bruin and Stoll [BS09a] was often either 19 or divisible by 19.
Here we give a heuristic explanation of why this is to be expected.

Let N ′ be some fixed integer. If the integers |Jd
1 (N)(Fp)| are roughly uniformly

distributed modulo N ′, then the chance of |Jd
1 (N)(Fp)| being divisible by N ′ is

roughly 1/N ′, which seems a reasonable assumption at first. However for N = 13
and a fixed d we have that |Jd

1 (13)(Fp)| is far from randomly distributed modulo

19. Indeed let p be a prime that splits in Q(
√
d); then |J1(13)(Fp)| = |Jd

1 (13)(Fp)|;
however the left hand side is 0 mod 19 since J1(13)(Q) contains a point of order
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10 BARINDER S. BANWAIT AND MAARTEN DERICKX

19, meaning that 19 | |Jd
1 (13)(Fp)| for a density of at least 1/2 of the primes. So the

fact that a multiple of 19 is often chosen in the Mordell-Weil sieve can be explained
by this unusually high density of primes for which 19 | |Jd

1 (13)(Fp)|. A similar story
holds for N = 18 where N ′ was often divisible by 21.

Carrying out this strategy in magma_scripts/MWSieve-x1_13.m (and the ana-
logous file for X1(18)) dealt with all of the above values, except 9689 for 13-torsion,
and the three values 2841, 4729, 9969 for 18-torsion. In these cases, the reason for
the failure was the call to MordellWeilGroupGenus2; this did not finish given the
search bounds declared there, so we were unable to find explicit generators for the
Mordell-Weil group of the Jacobian of the twist. It is possible that increasing these
bounds and waiting longer might yield these generators in these cases. However,
already for the value 8641, it took over two days of Magma computation to furnish
the generators.

This concludes the proof of parts (2) and (3) of Theorem 1.3.

4. X1(16)

In this section we prove part (4) of Theorem 1.3. We work with the following
model, as before to be found in [Kru13, Section 2.6]:

X1(16) : y
2 = x(x2 + 1)(x2 + 2x− 1).

The curve X1(16) has 14 cusps. On this model, the point at infinity and the 5
points with y = 0 are cusps. The other 8 cusps are the points whose x-coordinate
satisfies the equation:

(x− 1)(x+ 1)(x2 − 2x− 1) = 0.

As for X1(13) and X1(18), Krumm showed that any noncuspidal quadratic point
must have rational x-coordinate on this model, and so corresponds to a Q-rational
point on the d-twist Xd

1 (16). However, unlike before, it is not the case that every Q-
rational point on Xd

1 (16) corresponds to a noncuspidal quadratic point on X1(16),
because the point (0, 0) on X1(16) (which is a cusp) gives the rational point (0, 0)
on every twist Xd

1 (16). In this way we see that our problem reduces to determining
the existence or otherwise of a rational point on Xd

1 (16) with nonzero y-coordinate.
In particular, since Xd

1 (16) admits a rational point for every d, this is a different
problem than that of the previous section. Indeed the existence of a global rational
point prevents all local techniques from yielding any results. And hence we are
essentially forced to compute all Q-rational points on Xd

1 (16), rather than merely
determining the existence of them, and it is this that makes this case the most
difficult. Many of the necessary conditions in the previous section no longer apply.
One that does survive, however, is the condition of positive rank of the Jacobian
Jd
1 (16) of X

d
1 (16).

4.1. Positive rank of Jd
1 (16). We again start with a preparatory lemma concern-

ing torsion growth of J1(16) in quadratic fields.

Lemma 4.1.

(1) J1(16)(Q)tors ∼= Z/2Z⊕ Z/10Z.
(2) J1(16)(Q(i))tors ∼= Z/2Z⊕ Z/2Z⊕ Z/10Z.
(3) J1(16)(Q(

√
2))tors ∼= Z/2Z⊕ Z/2Z⊕ Z/10Z.
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(4) J1(16)(K)tors ∼= Z/2Z⊕ Z/10Z for K ̸= Q(i),Q(
√
2) any quadratic field.

Proof. Part (1) may be directly verified in Magma. Parts (2) and (3) follow from a
Magma computation that shows that the torsion subgroup is at most Z/2Z⊕Z/2Z⊕
Z/10Z (TorsionBound), together with finding the points (

√
−1, 0), (−

√
−1, 0),

(−1+
√
2, 0) and (−1−

√
2, 0) that are 2-torsion (since they are Weierstrass points;

note that these correspond to cusps on X1(16)). Part (4) follows in a similar way to

the proof of Lemma 3.5, by computing the abelian group structure of J̃1(16)(Fp2)
for several small p to show that over any quadratic field K, one has

• J1(16)(K)tors is at most Z/2Z⊕ Z/2Z⊕ Z/2Z⊕ Z/10Z;
one then concludes by considering 2-torsion rank which can easily be read off from
the factorisation of the hyperelliptic equation. □

Corollary 4.2. For d ̸= −1, 2, if Xd
1 (16)(Q) admits a point with nonzero y-

coordinate, then Jd
1 (16)(Q) has positive rank.

Proof. A point on Xd
1 (16)(Q) with nonzero y-coordinate corresponds to a K-point

of X1(16) that is not a Q-point, so the same proof as Proposition 3.6 applies. □

Using the twisted winding element computation from before, we compute the
squarefree values of d with |d| < 10,000 for which the analytic rank of Jd

1 (16)
is positive; this yields 674 values. We search for rational points with nonzero y-
coordinate, and find such points on 55 of the twists, leaving 619 values to be dealt
with. While we are not able to deal with all of these values, we can deal with the
majority of them - 581 to be specific - via a method due to Bruin known as elliptic
curve Chabauty, which we use in conjunction with a two-cover descent.

4.2. Elliptic curve Chabauty. The use of elliptic curve quotients in explicitly
carrying out Chabauty’s method for the computation of rational points goes back
to Bruin’s paper [Bru03]; the method we use is described in [BS09b, Section 8],
which we now briefly summarise. For simplicity here C will denote a hyperelliptic
curve of genus 2 over Q, although the method works for higher genus hyperelliptic
curves over arbitrary number fields. It is based on the idea that, even if C(Q) is

nonempty and so the fake 2-Selmer group Sel
(2)
fake(C/Q) is nonempty, it still contains

useful information that can be exploited to fully determine C(Q).
The main theoretical result of [BS09b] is a refined version of the Chevalley-Weil

theorem, that every rational point on C lifts to a rational point on one of finitely
many 2-covers D

π→ C; the algorithmic result is that one can explicitly construct
these covers D. So if, for each D, we can determine π(D(Q)), then we are done.
The problem is that D has large genus, so computing D(Q) is difficult. The idea
is to work with other quotients of D besides C. Indeed, if C is given by a model
y2 = f(x) with f of odd degree, then by taking a degree 3 factor of f over some
number field L, and by taking an appropriate twist γD, one may construct the
elliptic curve defined over L:

ED : γDy
2 = g(x)

together with an L-rational map D → ED. The Chabauty condition is that, if
rk(ED(L)) < [L : Q], then x(ED(L)) ∩ P1(Q) is finite and explicitly computable by
[Bru03]. And since x(π(D(Q)) is contained in this finite set, then so is D(Q). If
this method successfully manages to compute x(ED(L))∩P1(Q) and prove that it is
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12 BARINDER S. BANWAIT AND MAARTEN DERICKX

finite for every 2-covering D in the fake 2-Selmer set of C, then one can successfully
determine C(Q). The algorithm is implemented in Magma as the intrinsic Chabauty
(note that this is overloaded: the same intrinsic works for the classical Chabauty-
Coleman method; the type of the parameters passed to it determine which is used).

In our case, the polynomial f(x) that determines the model of X1(16) we are
working with is highly composite, meaning that the number fields L arising in the
above construction will always be quite small (of degrees 1, 2 or 4), which aids the
computation. Our implementation, as well as the execution of it, may be found in
magma_scripts/x1_16_chabauty.m. (The point search occurs in magma_scripts/

x1_16_point_search.m; the output of the Magma sessions may be found in the
logs folder.)

The values for which this method did not succeed are as follows:
−8259,−7973,−7615,−7161,−7006,−6711,−6503,−6095,−6031,

−6005,−4911,−4847,−4773,−4674,−4371,−4191,−4074,−3503,

−3199,−1810,−1749,−815, 969, 1186, 3215, 3374, 3946, 4633, 5257,

5385, 7006, 7210, 7733, 8459, 8479, 8569, 9709, 9961.

(4.1)

In particular, we see that we are able to deal with all values in the range |d| < 800,
completing the proof of part (4) of Theorem 1.3.

Remark 4.3. It would be interesting to attempt to deal with the above values for
which elliptic curve Chabauty failed using two-cover descent together with quadratic
Chabauty on curves D′ intermediate to D and C. We did attempt to run quadratic
Chabauty directly on these twists of X1(16), but in each case the Picard rank was
1 (as may be verified with the code associated to [CMSV19]), which is a nonstarter
for that method. However, a combination method may be successful, and would be
of interest to consider further.

In particular, if one can use this to determine the rational points on the two twists
C = X−815

1 (16) and C = X969
1 (16) of X1(16), one would have established explicit

uniformity of torsion over quadratic fields Q(
√
d) for all |d| < 1000.

5. Comparison of our results with a conjecture of Granville

In this section we report on the results of the computation for the genus 2 curves
X1(13), X1(16), and X1(18). We focus only on the genus 2 cases because the
question of when twists of elliptic curves have positive rank has already been well-
studied in the literature; see for example [WDE+14] for computational work in this
direction, [LJC+18] for an overview of what was known as of 2018, and Smith’s
recent work [Smi22] showing that Goldfeld’s conjecture (that asymptotically 50%
of twists in a quadratic twist family have rank 0 and 50% have rank 1) follows from
BSD under some additional assumptions on the level-2 structure of the elliptic
curve. (In forthcoming work of Smith [Smi] these additional assumptions have been
removed.)

Our data can be compared to work of Granville [Gra07] that studies how many
twists of a given hyperelliptic curve admit nontrivial rational points. By trivial,
Granville means those with y-coordinate 0, as well as the points at ∞ when the
defining polynomial of the curve has odd degree, so this is exactly the situation
we have studied in Sections 3 and 4. In particular, Granville makes the following
conjecture about the number of twists that admit such a nontrivial rational point.
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Conjecture 5.1 (Granville, part of Conjecture 1.3 in [Gra07]). Let C be a hyper-
elliptic curve over Q of genus g ≥ 2, defined by a model y2 = f(x) for f ∈ Z[x]
that does not have repeated roots. Then there exists a positive constant κ′

f such that

there are ∼ κ′
fB

1/(g+1) squarefree integers d with |d| < B for which the quadratic
twist Cd has a nontrivial rational point.

Remark 5.2. Granville makes a similar conjecture about integral points that also
applies to elliptic curves; this part of the conjecture is not relevant for our purposes
so we omit it here.

The basis upon which this may be elevated to the stature of a conjecture is one
of the main theorems of that paper; namely that this conjecture follows from the
abc-conjecture provided various assumptions on f are satisfied (see Theorem 1.4 in
loc. cit.). These conditions do not cover our case of g = 2, so in this case, the
conjecture is still open even if one assumes the abc-conjecture. In this section, we
wish to see if our computations agree with the above conjecture of Granville; that
is, we will study the growth of |TB(N)| as B grows, for N = 13, 16 and 18, and
compare it to κ′

fB
1/3.

In Section 1.1 of his paper, Granville gives a formula for the κ′
f constant, which

we now briefly review in our case of g = 2 and with various simplifications; we
refer the interested reader to loc. cit. for the more general case. To this end,
we let f be a monic polynomial of degree 5 or 6 with integer coefficients and no
repeated roots. We define F (x, z) := z6f(x/z). For each integer r let ω(r) be
the number of residue classes t (mod r) for which r divides f(t), and for k a
positive integer write ω′(pk) := pk−1(p − 1)ω(pk). We define V ′

f to be the area of

{(x, y) ∈ R2 : |F (x, y) ≤ 1} and Af (Q) to be |AutQ(C)|/2, which must equal 1, 2,
3, 4, 6, 8 or 12. We then have

κ′
f :=

V ′
f

Af (Q)

∏
p

{
1 +

(
1− 1

p2/3

)(
ω′(p2)

p10/3
+

ω′(p4)

p20/3
+ · · ·

)}
which converges to a well-defined real number. For p ∤ ∆(f), the pth term of the
Euler product is more simply 1 + ω(p)(p− 1)(p2/3 − 1)/(p3 − p5/3).

Remark 5.3. Granville defines Af (Q) as the number of distinct Q-linear trans-
formations (x, z) 7→ (αx + βz, γx + δz) of F for which F (αx + βz, γx + δz) ≡
F (x, z) (mod (Q∗)2), and αδ − βγ ̸= 0; this is equal to |AutQ(C)|/2. Indeed if
F (αx + βz, γx + δz) = k2F (x, y) for some rational number k then y2 − F (x, z) =
0 ⇔ (ky)2 − F (ax + bz, cx + dz). So both (x, y, z) 7→ (αx + βz, ky, γx + δz) and
(x, y, z) 7→ (αx + βz,−ky, γx + δz) are automorphisms of C seen as a curve in
weighted projective space. Since every automorphism of C commutes with the hy-
perelliptic involution one also gets (x, z) 7→ (αx + βz, γx + δz) back since every
automorphism of C induces an automorphism of P1 = C/h where h is the hyperel-
liptic involution.

See granville/kappa_consts.py for the implementation of these constants for
the three defining polynomials of interest for us (written explicitly at the beginning
of Sections 3 and 4). The most challenging aspect of this was the computation of V ′

f

for X1(16), which is an unbounded region with 8 cuspidal spikes; see granville/

euclidean_contribution.ipynb to see this and the other such regions. Note that
this implementation does not use interval arithmetic, or yield rigorously proven
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Figure 5.1. Graphs showing how |TB(N)| grows with B for N = 13,
16 and 18, together with the conjectural growth of κ′

fB
1/3; the values

of κ′
f here are, respectively, 1.65, 12.4 and 1.5.

upper or lower bounds of V ′
f ; this is sufficient for our purpose of getting a sense of

the larger picture.
Plotting |TB(N)| against B, and comparing it to κ′

fB
1/3 yields Figure 5.1. Here

we have assumed that the values we have not been able to decide upon (specifically,
9689 for X1(13); 2841, 4729 and 9969 for X1(18); and the 38 values in (4.1) for
X1(16)) are not in TB(N); this seems the most likely outcome for the vast majority
of the unhandled cases given that we have searched for points whose x-coordinate
has näıve height at most 10, 000 on each of the relevant twists. Indeed, as can be seen
in logs/x1_16_point_search_log.txt, the vast majority of the rational points
found on Xd

1 (16) have x-coordinate whose näıve height is < 100. Furthermore, the
point (

1681

882
,
479110914870

8823

)
on X8570

1 (16) was the only point we found where the height of its x coordinate
exceeded 1000. This is also what is expected according to [Gra07, Thm. 1.1], which
states that under the abc-conjecture rational points on twists should have a small x-
coordinate. In any case, these exceptions make up less than 1% of the total number
of squarefree integers d with |d| < 10,000 that we can deal with for each of our three
curves, so this also does not affect the larger picture.

One clearly sees that the conjectural distribution of κ′
fB

1/3 is significantly larger
than what the data is suggesting. From Figure 5.1 even the shape of the asymp-
totic behaviour is not apparent; so in Figure 5.2 we have artifically reduced the κ′

f
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Figure 5.2. The same graph as Figure 5.1 but with smaller values
of κ′

f , viz. respectively, 0.65, 2.5, 0.4.

constant to show more clearly that the growth of the data is indeed asymptotically
proportional to B1/3.
Therefore, for X1(16) (respectively, X1(13), X1(18)), it seems that the constant

κ′
f is about 5 (respectively, 2.5, 3.75) times too big. To investivate this discrepancy,

we plot in Figure 5.3 B against |TB(N)|/B1/3, which conjecturally should converge
to κ′

f .
On the graph for X1(16), there is a clear upward trend, so while it seems to

hover at about 2.5 (the value of the fitted graph), it is not inconceivable that it
will continue to drift upwards and reach Granville’s value of 12.5. Put in other
words, Figure 5.3 suggests that our results are not necessarily incompatible with
Granville’s κ′

f constant; more data is needed to determine this.
Other potential reasons for this discrepancy are as follows:

(1) When computing κ′
f we clearly had to take only finitely many summands in

the sum for bad primes, and only finitely many primes in the Euler product.
However, taking more would only increase κ′

f , making the discrepancy lar-
ger.

(2) The value of V ′
f was approximate, and involved numerical integration in the

real plane. However, it seems unlikely that this would be off by an order of
magnitude.

(3) Our assumption that the values we were not able to determine are not ac-
tually in TB(N). However, as explained above, these account for a tiny per-
centage of the total values (especially so in the case of X1(13) and X1(18)),
and so also would not explain this larger observed discrepancy. Taking the
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Figure 5.3. Plot of B against |TB(N)|/B1/3; this should conjectur-
ally converge to κ′

f .

other extreme - that all of these unknown values actually are in TB(N) -
would increase |T10,000(16)| (respectively, |T10,000(13)|, |T10,000(18)|) by 69%
(respectively, 7%, 33%). This does seem more significant (even if extremely
unlikely), but still is not enough to explain the e.g. factor of 5 discrepancy
in the X1(16) case (much less for the other two curves).

The graphs in this section may be generated with the script granville/results.
py in the top level.

5.1. abc triples from quadratic twists. Recall that an abc triple is a triple of
positive coprime integers a, b and c such that a + b = c and c > rad(abc), where
rad(abc) denotes the product of all distinct prime divisors of abc. The quality of
such a triple is log(c)/ log(rad(abc)). The abc conjecture states that for any q > 1
there are only finitely many abc triples whose quality is larger than q.
One of Granville’s main theorems in loc. cit. is as follows.

Theorem 5.4 (Granville, Theorem 1.1(ii) in [Gra07]). Assume that the abc conjec-
ture is true. Suppose that f(x) ∈ Z[x] does not have repeated roots, and let d ∈ Z.
Consider the curve Cd : dy

2 = f(x), and assume that its genus g is at least 2. Given
any rational point on Cd, write its x-coordinate as r/s with gcd(r, s) = 1. Then r
and s satisfy

|r|, |s| ≪ |d|1/(2g−2)+o(1).

The proof of this theorem contains a method of constructing abc triples from
points on Cd. However, this construction relies on a Belyi map on Cd (i.e. a map
to P1 ramified only at 0, 1 and ∞) that factors via the hyperelliptic involution.
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Now for the modular curves X1(N) one has that the j-invariant j : X1(N) →
X(1) ∼= P1 only ramifies at 0, 1728,∞, so in particular j/1728 is a Belyi map.
Furthermore the hyperelliptic involutions of X1(13) and X1(16) are the diamond
operators ⟨5⟩ and ⟨7⟩ and hence the j-invariant factors via the hyperelliptic map.
A consequence of this is that any point P ∈ Xd

1 (13)(Q) or P ∈ Xd
1 (16)(Q) whose

x coordinate has large enough height with respect to d will give an abc triple that
can easily be derived from the j-invariant, by setting c = Numerator(j(P )/1728),
a = Denominator(j(P )/1728), and b = c− a; if any of these are negative, one takes
absolute values and possibly reorders a, b and c to obtain an actual abc triple.
We computed the j-invariants of all noncuspidal points that we found on Xd

1 (16).
This led to 57 distinct j-invariants. Of these j-invarants, 46 had an associated
abc-triple of quality > 1. The abc-triple of highest quality we found is:

a = 218 · 351 · 54 · 7 · 1116 · 172 · 194 · 601
b = 1914 · 3532 · 42892 · 49932 · 61432 · 2047512 · 39452332

c = 48013 · 311533 · 1168333 · 94070893.
The quality of this triple is ≈ 1.06919289. This triple comes from the point with
x-coordinate 8

19
and j-invariant 1728c/a on X4522

1 (16)(Q). The other abc-triples we
computed via the method above can be found in logs/x1_16_abc_triples_list.

txt, which was generated from magma_scripts/x1_16_abc_triples.m.
The size of an abc triple is the number of decimal digits of c (i.e. log(c)/ log(10)),

and we say that one abc triple beats another if it has both a larger size and a larger
quality. Bart de Smit maintains a list [dS19] of record-breaking triples; there we
find triples of comparable quality to the found exhibited above, but with a much
larger size of roughly 300 digits.

For X1(18) the hyperelliptic involution is w2⟨7⟩, meaning that the j-invariant
does not factor via the hyperelliptic map and hence the idea sketched above will
not work here. It would therefore be interesting to try and find a suitable Belyi
map in this case.

6. Future research

In light of the results and discussion of Section 5 it would therefore be interesting
to obtain more data to fully ascertain the situation regarding the growth of |TB(N)|
as B increases, or for this to be investigated further. More rigorous computation of
Granville’s κ′

f constants would also be of value to undertake.
In a different direction, one could consider the uniformity of torsion question for

cubic fields, given that we now have the list of groups in this case. Note that Bruin
and Najman [BN16] have found all possible torsion subgroups over the cyclic cubic
field Q(ζ13 + ζ513 + ζ813 + ζ1213 ) as well as the quartic field Q(ζ5), so this would be a
good place to start with this investigation.

References

[BBDN14] Johan Bosman, Peter Bruin, Andrej Dujella, and Filip Najman. Ranks of elliptic
curves with prescribed torsion over number fields. International mathematics research
notices, 2014(11):2885–2923, 2014.

[BCP97] Wieb Bosma, John Cannon, and Catherine Playoust. The Magma algebra system.
I. The user language. J. Symbolic Comput., 24(3-4):235–265, 1997. Computational
algebra and number theory (London, 1993).

10 Jun 2024 07:26:51 PDT
240125-Banwait Version 2 - Submitted to Algor. Num. Th. Symp.

https://github.com/isogeny-primes/quadratic-torsion/blob/v1.0.0/logs/x1_16_abc_triples_list.txt
https://github.com/isogeny-primes/quadratic-torsion/blob/v1.0.0/logs/x1_16_abc_triples_list.txt
https://github.com/isogeny-primes/quadratic-torsion/blob/v1.0.0/magma_scripts/x1_16_abc_triples.m


18 BARINDER S. BANWAIT AND MAARTEN DERICKX

[BN16] Peter Bruin and Filip Najman. A criterion to rule out torsion groups for elliptic curves
over number fields. Research in Number Theory, 2:1–13, 2016.

[Bos08] Johan G. Bosman. Explicit computations with modular Galois representations. Thesis,
Universiteit Leiden, December 2008.

[Bru03] Nils Bruin. Chabauty methods using elliptic curves. Journal für die reine und ange-
wandte Mathematik, 2003(562):27–49, 2003.

[BS09a] Nils Bruin and Michael Stoll. The Mordell-Weil sieve; Magma implementation, 2009.
https://www.mathe2.uni-bayreuth.de/stoll/magma/MWSieve-new.m.

[BS09b] Nils Bruin and Michael Stoll. Two-cover descent on hyperelliptic curves. Mathematics
of computation, 78(268):2347–2370, 2009.

[BS10] Nils Bruin and Michael Stoll. The mordell–weil sieve: proving non-existence of rational
points on curves. LMS Journal of Computation and Mathematics, 13:272–306, 2010.

[CMSV19] Edgar Costa, Nicolas Mascot, Jeroen Sijsling, and John Voight. Rigorous computation
of the endomorphism ring of a jacobian. Mathematics of Computation, 88(317):1303–
1339, 2019.
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over number fields. Astérisque, 228:81–100, 1995. With an appendix by Andrew Gran-
ville.

[KN12] Sheldon Kamienny and Filip Najman. Torsion groups of elliptic curves over quadratic
fields. Acta Arithmetica, 152:291–305, 2012.

[Kol89] Victor Kolyvagin. Finiteness of E(Q) and X(E,Q) for a subclass of Weil curves.
Mathematics of the USSR-Izvestiya, 32(3):523, 1989.

[Kru13] David Krumm. Quadratic points on modular curves. Thesis, University of Georgia,
2013.

[Kub76] Daniel Sion Kubert. Universal bounds on the torsion of elliptic curves. Proceedings of
the London Mathematical Society, 33:193–237, 1976.

[Lev09] Beppo Levi. Sull’equazione indeterminata del 3. ordine. In Atti del IV Congresso
Internatzionale dei matematici, volume 2, pages 175–177. Accademia dei Lincei, 1909.

[LJC+18] Chao Li, L Ji, SY Cheng, ST Yau, and XP Zhu. Recent developments on quad-
ratic twists of elliptic curves. Proceedings of the International Consortium of Chinese
Mathematicians 2017, pages 381–399, 2018.

[LMF21] The LMFDB Collaboration. The L-functions and modular forms database. http:
//www.lmfdb.org, 2021. [Online; accessed 5 February 2021].

[Maz77] Barry Mazur. Modular curves and the Eisenstein ideal. Publications Mathématiques
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