Reciprocity obstructions in continued fraction semigroups

James Rickards

Saint Mary's University

james.rickards@smu.ca

16 July 2024

Zaremba's conjecture

$$[a_0; a_1, a_2, \dots, a_n] := a_0 + rac{1}{a_1 + rac{1}{\ddots + rac{1}{a_n}}}$$

Conjecture (Zaremba's Conjecture)

Consider all rational numbers q which have a continued fraction built from the alphabet $\{1, 2, 3, 4, 5\}$. Then every positive integer appears as a denominator of such a q.

Main result

Theorem (R.-Stange)

Consider all rational numbers q which have a continued fraction of the form

$$q = [0; a_1, a_2, \dots, a_k, b, 1, 2]$$

where $a_k \in \{4, 8, 12, 16, \ldots\} = 4\mathbb{Z}^+$ and $b \in \mathbb{Z}^+$. Then no denominator of q is a perfect square.

Squares are not ruled out by counting or congruence.

We computed up to $2\times10^{13},$ and the last missing non-square is 7968219670470 $\approx7.9\cdot10^{12}.$

This disproves a generalization of Zaremba's conjecture made by Kontorovich.