Modular curves, Chen type isogeny and many points

Pietro Mercuri a joint work with V. Dose, G. Lido and C. Stirpe

Sapienza Università di Roma

ANTS XVI July 16, 2024

Modular curves, Chen type isogeny...

Let X_H be the modular curve corresponding to a subgroup H of $\operatorname{GL}_2(\mathbb{Z}/n\mathbb{Z})$ such that, for every prime p|n and $p^e||n$, $H \mod p^e$ is conjugate to one of the following subgroups:

 $\begin{array}{c} \left\{ \begin{pmatrix} * & * \\ 0 & * \end{pmatrix} \right\}; \quad \left\{ \begin{pmatrix} * & 0 \\ 0 & * \end{pmatrix} \right\}; \quad \left\{ \begin{pmatrix} * & 0 \\ 0 & * \end{pmatrix} \right\}; \\ \text{split Cartan} & \text{normalizer split Cartan} \\ \left\{ \begin{pmatrix} a & b\xi \\ b & a \end{pmatrix} \right\}; \left\{ \begin{pmatrix} a & b\xi \\ b & a \end{pmatrix}, \begin{pmatrix} a & b\xi \\ -b & -a \end{pmatrix} \right\}; \\ \left\{ \begin{pmatrix} a & b \\ b & a+b \end{pmatrix} \right\}; \left\{ \begin{pmatrix} a & b \\ b & a+b \end{pmatrix} \right\}, \left\{ \begin{pmatrix} a & b \\ b & a+b \end{pmatrix} \right\}, \\ \text{normalizer non-split Cartan} \\ \hline p \text{ odd and } \xi \text{ mod } p^e \text{ non-square} \\ \end{array}$

Let W be a subgroup of $Aut(X_H)$, then

$$\operatorname{Jac}(X_H/W) \sim \prod_{d \mid n^2 ext{ with some conditions}} \left(J_0^{\mathsf{new}}(d)/W_d\right)^{m_d},$$

where $J_0^{\text{new}}(d)$ is the new part of the Jacobian of the classical Borel modular curve $X_0(d)$, $m_d \in \mathbb{Z}_{\geq 1}$ and W_d is a subgroup of the Atkin-Lehner operators of $X_0(d)$ depending on W and d.

...and many points

There is the Hasse-Weil-Serre upper bound for the number of points of a smooth, projective, absolutely irreducible algebraic curve X over a finite field \mathbb{F}_q of genus g, with $q = p^k$ and p prime; it is

$$|\#X(\mathbb{F}_q) - q - 1| \le g\lfloor 2\sqrt{q} \rfloor.$$

In particular cases sharper upper bounds can be given. On the website manypoints.org there are tables collecting, for a given pair genus-finite field (g, \mathbb{F}_q) , the best curve with "many points", meaning that it has at least $\left\lfloor \frac{U(g, \mathbb{F}_q) - 1 - q}{\sqrt{2}} \right\rfloor + 1 + q$ points, where $U(g, \mathbb{F}_q)$ is the lowest upper bound for the given pair (g, \mathbb{F}_q) .

Let [f] be the Galois-orbit of the newform f appearing in the decomposition of $J_0^{\text{new}}(d)$. Using Fourier coefficients $a_p(h)$, for $h \in [f]$, contained in LMFDB and computing numerically the roots α_h , β_h of the polynomial $x^2 - a_p(h)x + p = 0$, we have a fast algorithm to compute

$$\#(X_H/W)(\mathbb{F}_{p^k}) = p^k + 1 - \sum_{[f]} m_d \sum_{h \in [f]} (\alpha_h^k + \beta_h^k).$$

We analysed 14800 curves in around 4 hours and we found 112 improvements (+88 matches of previous best results) over 2950 slots in the table on manypoints website.

Pietro Mercuri a joint work with V. Dose, G. Lido and C. Stirpe Modular curves, Chen type isogeny and many points