Abelian extensions arising from elliptic curves with complex multiplication

Asimina S. Hamakiotes

University of Connecticut

ANTS XVI,
July 15-19, 2024

Background and Motivation

Let E be an elliptic curve defined over a number field F.

- Let $N \geq 2$ and $E[N]=E(\bar{F})[N]$ be the N-torsion subgroup of $E(\bar{F})$.
- $F(E[N])$ is the field of definition of the coordinates of points in $E[N]$.
- $F(E[N]) / F$ is a Galois extension.

Q1: When is $F(E[N]) / F$ an abelian extension?

Theorem (H. and Lozano-Robledo, 2023)

Let E / F be an elliptic curve with $C M$, where $F=\mathbb{Q}(j(E))$. Then $F(E[N]) / F$ is only abelian for $N=2$, 3 , or 4 .

Q2: What is the maximal abelian extension contained in $F(E[N]) / F$?

Main Theorem

Theorem (H., 2024)

Let E / \mathbb{Q} be an elliptic curve with $C M$ by an order $\mathcal{O}_{K, f}$ of $K, f \geq 1$.
(1) If p is any prime such that $p \nmid \Delta_{K} f^{2}$, then

$$
\mathbb{Q}\left(E\left[p^{n}\right]\right) \cap \mathbb{Q}^{a b}=K\left(\zeta_{p^{n}}\right)
$$

(2) If $p>2$ prime such that $p \mid \Delta_{K} f^{2}$, then

$$
\mathbb{Q}\left(E\left[p^{n}\right]\right) \cap \mathbb{Q}^{a b}= \begin{cases}\mathbb{Q}\left(\zeta_{p^{n}}, \sqrt{\alpha}\right) & \text { if } E \text { is a quadratic twist by } \alpha, \\ \mathbb{Q}\left(\zeta_{p^{n}}\right) & \text { if } E \text { is a simplest model. }\end{cases}
$$

(3) Let $p=2$ such that $2 \mid \Delta_{K} f^{2}$.

- If $\Delta_{K} f^{2}=-12$ or -28 , then $\mathbb{Q}\left(E\left[2^{n}\right]\right) \cap \mathbb{Q}^{a b}=K\left(\zeta_{2^{n+1}}\right)$.
- If $\Delta_{K} f^{2}=-4,-8$, or -16 , then

$$
\mathbb{Q}\left(E\left[2^{n}\right]\right) \cap \mathbb{Q}^{a b}= \begin{cases}\mathbb{Q}\left(\zeta_{2^{n+1}}, \sqrt{\alpha}\right) & \text { if } E \text { is a quadratic twist by } \alpha, \\ \mathbb{Q}\left(\zeta_{2^{n+1}}\right) & \text { if } E \text { is a simplest model. }\end{cases}
$$

