A computational perspective on
Carmichael numbers

Joint work with Alan Sikarov and llya Volkovich

r%f‘ —\
ANTS]

Nikhil Gupta

Boston College

n € N as log n bits |—— Algorithm # p = 2suchthatp | n

_ p -
Integer Factoring T

« Gold standard: The algorithm & runs in poly(log n) time. Looks unachievable!

« Consequences: RSA will break and modern cryptography will collapse!

* An important approach: 0

n € N as logn bits Algorithm % p = 2suchthatp |n

The algorithm & with oracle access to & is randomized and runs in poly(log n) time.

O either computes Euler’s Totient function (¢(+))
or Carmichael’s Lambda function (A(+))

n € N as log n bits

A(C) or ()

Algorithm A&

p=2stpln

Towards derandomizing &

i A

ANTES

« Status: Known when n = pg but open if n = pgr. Solved if n = pqr is ‘size-bounded’.

« Our work: n is ‘Carmichael’ and has 3 prime factors. We call them C;-numbers.

« Carmichael number: A composite n s.t. for every a < n,gcd(n,d) = 1,a™ = a mod n.

« Our results:

‘simple’ Cs-number n

AC)

A

¢()

&

A factor p

Result 1: & runs in poly(log n) time

‘simple’ Cs-number n that
satisfies some constraints

&

A factor p

Result 2: & runs in poly(log n) time

« Important tool: Coppersmith’s method to find ‘bounded’ roots of an f € Z[x, y].

	Slide 1: A computational perspective on Carmichael numbers
	Slide 2: Integer Factoring
	Slide 3: Towards derandomizing A

