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Integer Factoring

•  Gold standard: The algorithm A runs in poly(log 𝑛) time. Looks unachievable!

•  Consequences: RSA will break and modern cryptography will collapse!

•  An important approach:

The algorithm A with oracle access to A is randomized and runs in poly(log 𝑛) time.

O

Algorithm A𝑛 ∈ N as log 𝑛 bits 𝑝 ≥ 2 such that 𝑝 | 𝑛

Algorithm A𝑛 ∈  N as log 𝑛 bits 𝑝 ≥ 2 such that 𝑝 | 𝑛

•  O  either computes Euler’s Totient function (𝜙(⋅))     

or Carmichael’s Lambda function (𝜆(⋅))



Towards derandomizing A

•  Status: Known when 𝑛 = 𝑝𝑞 but open if 𝑛 = 𝑝𝑞𝑟. Solved if 𝑛 = 𝑝𝑞𝑟 is ‘size-bounded’.

•  Our work: 𝑛 is ‘Carmichael’ and has 3 prime factors. We call them 𝐶3-numbers. 

•  Carmichael number: A composite 𝑛 s.t. for every 𝑎 < 𝑛, gcd 𝑛, 𝑑 = 1, 𝑎𝑛 ≡ 𝑎 mod 𝑛.

•  Our results:

•  Important tool: Coppersmith’s method to find ‘bounded’ roots of an 𝑓 ∈ Z[𝑥, 𝑦]. 

Algorithm A𝑛 ∈ N as log 𝑛 bits 𝑝 ≥ 2 s.t. 𝑝 | 𝑛

𝜆(⋅) or 𝜙(⋅) 

A ‘simple’ C3-number 𝑛 A factor 𝑝

𝜆(⋅)

A 
‘simple’ C3-number 𝑛 that

satisfies some constraints
A factor 𝑝

𝜙(⋅)

Result 1: A runs in poly(log 𝑛) time Result 2: A runs in poly(log 𝑛) time
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