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« Gold standard: The algorithm & runs in poly(log n) time. Looks unachievable!

« Consequences: RSA will break and modern cryptography will collapse!

* An important approach: 0
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The algorithm & with oracle access to & is randomized and runs in poly(log n) time.

O either computes Euler’s Totient function (¢(+))
or Carmichael’s Lambda function (A(+))
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Towards derandomizing &
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« Status: Known when n = pg but open if n = pgr. Solved if n = pqr is ‘size-bounded’.

« Our work: n is ‘Carmichael’ and has 3 prime factors. We call them C;-numbers.

« Carmichael number: A composite n s.t. for every a < n,gcd(n,d) = 1,a™ = a mod n.

« Our results:
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Result 1: & runs in poly(log n) time

‘simple’ Cs-number n that
satisfies some constraints
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Result 2: & runs in poly(log n) time

« Important tool: Coppersmith’s method to find ‘bounded’ roots of an f € Z[x, y].
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