
A computational perspective on
Carmichael numbers

Joint work with Alan Sikarov and Ilya Volkovich

Nikhil Gupta
Boston College

Integer Factoring

• Gold standard: The algorithm A runs in poly(log 𝑛) time. Looks unachievable!

• Consequences: RSA will break and modern cryptography will collapse!

• An important approach:

The algorithm A with oracle access to A is randomized and runs in poly(log 𝑛) time.

O

Algorithm A𝑛 ∈ N as log 𝑛 bits 𝑝 ≥ 2 such that 𝑝 | 𝑛

Algorithm A𝑛 ∈ N as log 𝑛 bits 𝑝 ≥ 2 such that 𝑝 | 𝑛

• O either computes Euler’s Totient function (𝜙(⋅))

or Carmichael’s Lambda function (𝜆(⋅))

Towards derandomizing A

• Status: Known when 𝑛 = 𝑝𝑞 but open if 𝑛 = 𝑝𝑞𝑟. Solved if 𝑛 = 𝑝𝑞𝑟 is ‘size-bounded’.

• Our work: 𝑛 is ‘Carmichael’ and has 3 prime factors. We call them 𝐶3-numbers.

• Carmichael number: A composite 𝑛 s.t. for every 𝑎 < 𝑛, gcd 𝑛, 𝑑 = 1, 𝑎𝑛 ≡ 𝑎 mod 𝑛.

• Our results:

• Important tool: Coppersmith’s method to find ‘bounded’ roots of an 𝑓 ∈ Z[𝑥, 𝑦].

Algorithm A𝑛 ∈ N as log 𝑛 bits 𝑝 ≥ 2 s.t. 𝑝 | 𝑛

𝜆(⋅) or 𝜙(⋅)

A ‘simple’ C3-number 𝑛 A factor 𝑝

𝜆(⋅)

A
‘simple’ C3-number 𝑛 that

satisfies some constraints
A factor 𝑝

𝜙(⋅)

Result 1: A runs in poly(log 𝑛) time Result 2: A runs in poly(log 𝑛) time

	Slide 1: A computational perspective on Carmichael numbers
	Slide 2: Integer Factoring
	Slide 3: Towards derandomizing A

