

Chentouf

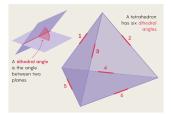
Dehn Invariant Zero Tetrahedra

A. Anas Chentouf

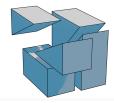
chentouf@mit.edu

(joint with Yihang Sun)

ANTS XVI @ MIT



(a) Six dihedral angles (Quanta Magazine)



(b) Scissors Congruence (Numberphile) Dehn Invariant Zero Tetrahedra

Chentouf

For edge lengths ℓ_e and dihedral angles α_e

$$\mathsf{Dehn Invariant} \ := \sum_{\mathsf{edges } e} \ell_e \otimes \alpha_e \ \in \ \mathbb{R} \otimes_{\mathbb{Q}} (\mathbb{R}/\mathbb{Q}\pi).$$

Theorem (Dehn-Sydler; Hilbert's 3rd Problem)

Two polyhedra are scissors-congruent if and only if their volumes and Dehn invariants are both equal.

Given a tetrahedron \mathcal{T} , define $V_{\mathcal{T}} := \operatorname{Span}_{\mathbb{Q}}(\{\alpha_e\}_e) \subseteq \mathbb{R}/\mathbb{Q}\pi$.

Rational Tetrahedra

The case dim $(V_T) = 0$ corresponds to tetrahedra whose dihedral angles α_e all lie in $\mathbb{Q}\pi$. These tetrahedra were fully classified by Kedlaya, Kolpakov, Poonen, and Rubinstein.

We are interested in the maximal possible $\dim(V_T) = 5$.

Theorem (C.-Sun)

Up to scaling, there exist (effectively) finitely many tetrahedra T of Dehn invariant zero for which dim(V_T) = 5.

Dehn Invariant Zero Tetrahedra

Chentouf

Lemma

In the case dim $(V_T) = 5$, the tetrahedron can be scaled so $\ell_e \in \mathbb{Z}$ and $\sum_e \ell_e \alpha_e \in \mathbb{Q}\pi$.

Let $z_e = \exp(i\alpha_e)$. One can show that $z_e^2 \in \mathbb{Q}(\sqrt{-2D})$ where $D \in \mathbb{Z}$ is the *Cayley-Menger* determinant. If $\dim(V_T) = 5$, then

$$\mathcal{T}$$
 has Dehn invariant zero $\iff \prod z_e^{\ell_e}$ is a root of unity $\iff \prod z_e^{2\ell_e}$ is a root of unity

But the roots of unity in quadratic fields are known! Some other aspects of the problem:

Modulo p arguments for roots of unity

- **2** Computing the dimension $\dim(V_T)$
- **③** Classifying by symmetries in ℓ_e

THANK YOU!