Summing M(n): a faster elementary algorithm

Lola Thompson (joint with Harald Andre's Helfgott)

ANTS -XV

The function	Function
$M(N) = \sum_{n \in N} M(n)$	
is called the Methods Function.	
$E_X M(6) = \mu(1) + \mu(2) + \mu(3) + \mu(4) + \mu(5) + \mu(6)$	
$= 1 + (-1) + (-1) + 0 + (-1) + 1$	
$= \boxed{-1}$	

why compete M?

* Testing conjectures
\nE.g., Until when is
$$
|M(N)| \le \sqrt{N}
$$
 true?
\nLaproad:
\nLaproad:
\nCompute MCA) V
\nLapmond be false for extremely
\nand Sum.

Time : at least *For ^N large , asymptotic expressions ☒• (avg . for MIN) are good. For bounded ^N, they are not (computations are preferable).

Compute MCn) Vn=N time it takes $t_{\mathcal{O}}$ Compute $\mathcal{M}(n))$ To save time, we can use the Sieve of Eratosthenes: Time: OnloglogN) Space: O(N)

To save space, we can use a segmented sieve :

Look at segments of length TN and check for divisibility by primes up to \sqrt{N} . $space: 0.077$

One more way to Save Space...

Theorem (Helfgott, 2020)
One Can Construct all primes pSN in
time
$$
O(NlogN)
$$
 and space $O(N^3logN^3)$

Naive Methods

O Combinatorial Methods

First Steps: Meissel (1870s), Lehmer (1959) Improved by Lagarias-Miller-odlyzko (1985) & Peléglise-Rivat (1996)

Main idea: Use number theoretical identifies to break $M(N) = \sum ML(n)$ $n \leq N$ into shorter Sums. Compute the short sums once & USB them many times. Time: about $O(N^{2/3})$

@Analytic Methods | Main idea:

Lagarias - 0∂lyzko (1987)

can write MCN) as sums over the zeros of the Riemann Zeta function. There are o_0 ly many Zeros, but one can truncate & round. If $error < \frac{1}{2}$, result is exact. for $\pi(x)$ Time : OCN $1/2 +$ E) ← in theory (nontrivial to implement (Platt, ²⁰¹²) d slower than combinatorial methods

OUR WORK

Our Goal : Formulate a Combinatorial algorithm that * improves on the previous time bound of $O(N^{2/3})$ * uses as little space as possible *is practical to implement on a computer.

Theorem (Helfgott, T., 2021)
One Can Compute MCN in a g(N ^{3/5} log N)
Time $O_{\epsilon}(N (\log N)^{3/5})$ and $\frac{13}{2}$
Space $O(N^{3/10} (\log N)^{13/10})$
90 (N ^{3/10} (\log N)^{13/10})
10 (N ^{3/10} (\log N)^{13/10})
20 (N ^{3/10} (\log N)^{13/10})
30 (N ³ (\log N)^{13/10})
40 (N ³ (\log N)^{13/10})
50 (log N ³)

Combinatorial algorithms : a- get apph

Start w/ an identity: $M(N) = \partial M(\overline{v_N}) - \sum_{n \in N} \sum_{m,m \neq N} M(m) M(m_2)$ into Cases:
 $M(N) = \partial M(\overline{v_N}) - \sum_{n \neq N} \sum_{m,m \neq N} M(m) M(m_2)$ $n = N \frac{m}{2N}$ mimzl N (3 m, or mz >V Heath-Brown Brown $m_{1,1}m_{2}\in\sqrt{N}$ $k = a$ case swapping the order of summation : Swapping the order of summarion.
M(N) = 2MCNN) - [[[[Mm,) μ (mz) $\lfloor \frac{N}{m_1m_2} \rfloor$ Compute naively M, Mz = UN ang the org
aMCNN in time OWN)

 $v=V\overline{N}$ and split Choose a parameter into cases: To obtain time $O(N^{2/s})$: Delestise-Take $v = N^{\frac{1}{3}}$ od _zzk, etc. . Case \odot (m, mz EV) is the eag case-Use a Segmented Sieve. . Case @ (m, or Mz) V) takes more w_0 _c k .

What we do instead:

$$
t_{\text{ale}}\sqrt{\frac{1}{2N^{2/5}}}
$$

La's per
$$
v \Rightarrow
$$
 Case 0 is the hard case now.

\nThis will be the focus of the rest of my talk of the rest of my talk.

Case @ is easier.

When
$$
t_0
$$
 is the complete:

\n
$$
\sum_{\text{case}^{\text{one}}}
$$
\n
$$
\sum_{\text{one}^{\text{one}}}
$$
\n
$$
\sum_{\text{
$$

If there were no floor functions...
\n
$$
\Sigma
$$
 u(m) u(n) $\frac{N}{mn}$
\n Σ u(m) u(n) $\frac{N}{mn}$
\n $= \sum_{(m,n)\in I_x \times I_y} u_{(m)} u_{(n)} (\frac{N}{m_0 n_0} + c_2(m-m_0) + c_3(n-n_0))$
\n $\frac{M}{mn}$
\n $= \sum_{(m,n)\in I_x \times I_y} u_{(m)} (\frac{N}{m_0 n_0} + c_2(m-m_0)) \cdot \sum_{n \in I_y} u_{(n)}$
\n $+ (\sum_{n \in I_y} u_{(n)} c_3(n-n_0)) \cdot \sum_{m \in I_x} u_{(m)}$
\n $+ (\sum_{n \in I_y} u_{(n)} c_3(n-n_0)) \cdot \sum_{m \in I_x} u_{(m)}$
\n $= \sum_{n \in I_x} u_{(n)} \frac{N}{m_0 n_0} + c_2(m-n_0) \cdot \sum_{n \in I_y} u_{(n)}$
\n $= \sum_{n \in I_y} u_{(n)} \frac{N}{m_0 n_0} + c_2(m-n_0) \cdot \sum_{n \in I_y} u_{(n)}$
\n $= \sum_{n \in I_y} u_{(n)} \frac{N}{m_0} + c_2(m-n_0) \cdot \sum_{n \in I_y} u_{(n)}$
\n $= \sum_{n \in I_y} u_{(n)} \frac{N}{m_0} + c_2(m-n_0) \cdot \sum_{n \in I_y} u_{(n)}$
\n $= \sum_{n \in I_y} u_{(n)} \frac{N}{m_0} + c_2(m-n_0) \cdot \sum_{n \in I_y} u_{(n)}$
\n $= \sum_{n \in I_y} u_{(n)} \frac{N}{m_0} + c_2(m-n_0) \cdot \sum_{n \in I_y} u_{(n)}$
\n $= \sum_{n \in I_y} u_{(n)} \frac{N}{m_0} + c_2(m-n_0) \cdot \sum_{n \in I_y} u_{(n)}$
\n $= \sum_{n \in I_x} u_{(n)} \frac{N}{m_0} + c_2(m-n_0) \cdot \sum_{n \in I_x} u_{(n)}$
\n $= \sum_{n \in I_y$

How to handle L J

Notice that Computing

\n
$$
\delta_{0} = \sum_{(m,n)\in I_{X} \times I_{X}^{T}} \mu(m) \mu(n \left(\frac{N}{m_{0}m_{0}} + c_{x}(m-m_{0}) \right) + \cdots + c_{1}(m-n_{0})
$$
\nis the Same as above.

What we have from our Linear Approx:
\n
$$
S_1 = \sum_{(m,n)\in I_x} \mu(m) \mu(n) \left(\frac{N}{m_{0}n_{0}} + C_{x}(m_{0}+m_{0}) + C_{y}(m_{0}+m_{0}) \right)
$$
\n(2)

What we actually want:
\n
$$
S_{2} := \sum_{(m,n)\in I_{x}x_{\frac{1}{2}}}\mu(m)\mu(n)\left(\frac{N}{mn}\right)
$$

Notice that
\n
$$
LA+BJ-(LAJ+LBJ)=\begin{cases} 0 \text{ if } \frac{3}{4}.\frac{3}{8}l^{2} \text{ if } 1 \\ 1 \text{ div} \end{cases}
$$
\n
$$
S_{3} \text{ the difference between a term in} \quad S_{3} \text{ if a term in} \quad S_{0} \text{ is either } 0 \text{ or } 1.
$$
\n
$$
(Same for the terms in S_{3} vs S_{3})
$$

$$
\lim_{\begin{subarray}{l}A_{j+1}^{2}\\
+1\end{subarray}} \frac{|\det P_{0}(m,n)|}{\begin{subarray}{l}L_{0}(m,n)=\frac{N}{mn^{n_{0}}}+C_{X}(m-m_{0})+C_{Y}(n-m_{0})\\L_{1}(m,n)=\frac{N}{mn^{n_{0}}}+C_{X}(m-m_{0})+C_{Y}(n-m_{0})\end{subarray}}
$$
\n
$$
\lim_{n\rightarrow 1}\lim_{h\rightarrow 1}\frac{N}{\begin{subarray}{l}L_{1}(m,n)=\frac{N}{mn}\end{subarray}}
$$
\n
$$
\frac{N}{\begin{subarray}{l}L_{2}(m,n)=\frac{N}{mn}\end{subarray}}
$$
\n
$$
\frac{N}{\begin{subarray}{l}L_{1}-L_{0}\text{ can be computed}\\Q^{\text{wickly}\end{subarray}}
$$

Use approximate Cy by a rational #

\nOn each

\n
$$
\frac{\alpha_o}{\theta} , \quad \beta \leq Q = \exists b
$$
\nJohnd

\n
$$
I_{x \times I_{\theta}}
$$
\nSuch that

\n
$$
\delta := c_g - \frac{a_o}{\delta} \quad satisfies
$$
\n
$$
|\delta| \leq \frac{1}{\delta^Q}.
$$
\nThus,

\n
$$
|c_g(n-no) - \frac{a_o(n-no)}{\delta}| \leq \frac{1}{\delta^2}
$$

*we can find such an $\frac{a_{o}}{b}$ in time $\Theta(\log b)$ Using continued fractions * Now, our task is to show that Lz(m,n)=L1(m,n) except in at most 2 " bad" congruence classes (Same for L_1 Cm,n) vs (Sume To
Lo (m,n)

* In the case where ^m or ⁿ is in a "bad" residue class $(m_{\text{o}}\partial \rho)$, we show that L_{z} - L_{1} , L_{1} - L_{0} are $\qquad \qquad$ me T_{bad} char. functions of intervals which requires pre-(or Unions of intervals) .

 \downarrow So, we just need to compute a table of $\sum_{j=1}^{n}$ M(m) $_{bad}$ (mod $_{\n}$) which reguires pre-computing a table of values of Mcm); can be done in time 0lb) & space 0/ blogb) ↑ Savings: a factor of "a" compared with the naive method

Computations we wrote our algorithm in C++ and ran it on an 80 core machine at the Max Planck Institute for Mathematics :

