Summing M(n): a faster elementary algorithm

Lola Thompson (joint with Harald Andrés Helfgott)

ANTS - XV

The Mertens Function
Def The function

$$M(N) = \sum_{n \leq N} M(n)$$

is called the Mertens Function.
 $E_X M(G) = M(1) + M(2) + M(3) + M(4)$
 $+ M(5) + M(G)$
 $= 1 + (-1) + (-1) + 0$
 $+ (-1) + 1$
 $= -1$

★ Testing Conjectures
E.g., Until when is |M(N)| ≤ UN true?
4 Known to be false for extremely large N (Odlyzko-te Riele)

Naive Approach: Compute M(n) Vn SN and Sum. Time: at least O(N. (aug. time it takes to compute M(n))) To Save time, we can use the Sieve of Eratosthenes: Time: $O(N \log \log N)$ Space: O(N)

70	71	72	73	74	75	76	77	78	79
----	----	----	----	----	----	----	----	----	----

Look at segments of length JN and check for divisibility by primes up to JN. Space: O(JN)

One more way to Save Space...

Naive Methods Less

O Combinatorial Methods

First Steps: Meissel (1870s), Lehmer (1959) Improved by Lagarias - Miller-Odlyzko (1985) & Deléglise - Rivat (1996)

Main idea : Use number theoretical identities to break M(M) = Z M(n) $n \leq N$ into shorter Sums. Compute the short sums once & use them many times. Time : about O(N^{2/3})

@Analytic Methods

Lagarias - Odlyzko (1987)

Main idea: Can write M(N) as sums over the zeros of the Riemann Zeta function. There are obly many Zeros, but one Can truncale & round. If error < 2, result is exact. Time: $O(N^{1_{a+e}})$ in theory (nontrivial to implement (Platt, 2012) & Slower than combinatorial methods in practice)

Our work

Our Goal: Formulate a combinatorial algorithm that * improves on the previous time bound of O(NZ/3) * uses as little space as possible * is practical to implement on a computer.

Theorem (Helfgott, T., 2021)
One Can Compute MCN) in
$$O(N^{3/5}lgN)$$

time $O_{\mathcal{E}}(N(logN)^{3/5})$ and U^{sing} Helfgotts
Space $O(N^{3/10}(logN)^{40})$
 U^{sing} Helfgotts
Sieve

Start w/ an identity : $M(N) = \partial M(VN) - \sum \sum M(m_1) M(m_2)$ Heath-Brown mimzevi K=2 case Swapping the order of Summation: $M(N) = aM(NN) - \sum \mu(m_1) \mu(m_2) \lfloor \frac{N}{m_1 m_2} \rfloor$ m, mz = UN Compute naively in time O(VN)

Choose a parameter v = JTV and split into Cases: () m, Mz ≤ V 2 m, or mz >V To obtain time $O(N^{2/3})$: Deleglise-Take $v = N^{1/3}$ odly Zks, etc. · Case (mi, mzev) is the easy case -Use a Segmented Sieve. · Case @ (m, or mz > v) takes more Work.

what we do instead:

Larger
$$v \Rightarrow$$
 Case D is the hard case now.
This will be the focus
of the rest of my talk

Case (2) is easier.

How we handle Case D
Want to compute:

$$\sum_{mi, m \in S^{n}} \mathcal{M}(m_{i}) \mathcal{M}(m_{2}) \lfloor \frac{N}{m_{i} m \in I} + \frac{N}{m_{i} m_{i} m_{$$

If there were no floor functions...

$$\sum u(m) u(n) \frac{N}{mn}$$

 $(m,n) \in I_X \times I_Y$
 $= \sum u(m) u(n) (\frac{N}{mon} + c_X(m-m_0) + c_y(n-n_0))$
 $(m,n) \in I_X \times I_Y$
 $= \sum u(m) u(n) (\frac{N}{mon} + c_X(m-m_0) + c_y(n-n_0))$
 $(m,n) \in I_X \times I_Y$
 $\cong \sum u(m) (\frac{N}{mon} + c_X(m-m_0)) \cdot \sum u(n)$
 $m \in I_X$
 $+ (\sum u(n) C_y(n-n_0)) \cdot \sum u(n)$
 $m \in I_X$
 $+ (\sum u(n) C_y(n-n_0)) \cdot \sum u(n)$
 $m \in I_X$
 $m \in I_X$
 $= \sum u(n) C_y(n-n_0) \cdot \sum u(n)$
 $m \in I_X$
 $= \sum u(n) C_y(n-n_0) \cdot \sum u(n)$
 $m \in I_X$
 $= \sum u(n) C_y(n-n_0) \cdot \sum u(n)$
 $= \sum u(n) C_y(n-n_0) \cdot \sum u(n)$

How to handle L J

Notice that computing Variables are
So:=
$$\sum M(m) M(n) \left(\frac{N}{mono} + c_x (m-mo) \right) + V$$

 $(m,n) \in I_X \times I_Y$
is the same as above.

what we have from our Linear Approx:

$$S_1 := \sum_{(m,n) \in I_X \times I_Y} \mu(n) (\lfloor \frac{N}{m_0 n_0} + C_X(m-m_0) + C_y(n-n_0) \rfloor)$$

What we actually want:

$$S_2 := \sum_{(m,n) \in I_X \times I_Y} \mathcal{U}(n) \left(\frac{N}{mn} \right)$$

$$\frac{|\det \alpha : \operatorname{Let}}{L_{0}(m,n) = \left\lfloor \frac{N}{m_{0}n_{0}} + C_{X}(m-m_{0}) \right\rfloor + \left\lfloor C_{y}(n-m_{0}) \right\rfloor}{L_{1}(m,n) = \left\lfloor \frac{N}{m_{0}n_{0}} + C_{X}(m-m_{0}) + C_{y}(n-n_{0}) \right\rfloor}$$

$$L_{2}(m,n) = \left\lfloor \frac{N}{m_{n}} \right\rfloor$$

$$L_{2}(m,n) = \left\lfloor \frac{N}{m_{n}} \right\rfloor$$

$$\frac{1}{2} \text{ We show that } L_{2} - L_{1} \text{ and}$$

$$L_{1} - L_{0} \text{ can be computed}$$

$$q_{vickly}$$

We approximate cy by a rational #
On each
$$\frac{a_0}{2}$$
, $g \in Q = 2b$
Isolated Track of that $\delta := Cy - \frac{a_0}{2}$ satisfies
 $|\delta| \leq \frac{1}{2Q}$.
Thus,
 $|C_y(n-n_0) - \frac{a_0(n-n_0)}{2}| \leq \frac{1}{2Q}$

* we can find such an as in time O(logb) using Continued Fractions * Now, our task is to show that Lz(m,n)=L1(m,n) except in at most 2 "bad" Congruence classes (Same for L1(m,n) vs Lo(m,n))

* In the case where m or n is in a "bad" residue class (mod g), we show that Lz - L1, L1 - Lo are char, functions of intervals (or unions of intervals).

* So, we just need to compute a table of $\sum_{m \equiv \alpha_{bad}}^{2} \mathcal{M}(m)$ me I bad which requires pre-computing a table of values of Mcm); can be Jone in time O(b) & Space Olblogb) Savings : a factor of "a" Compared with the noise method

