
Rigorous computation of Maass cusp forms of
squarefree level

Andrei Seymour-Howell

University of Bristol

ANTS XV, 8th August 2022

1 / 19



Maass cusp forms
Let H = {z = x + iy | y > 0} denote the upper half-plane. We define the
Hecke congruence subgroup Γ0(N) < SL(2,Z) by

Γ0(N) =

{(
a b
c d

)
∈ SL(2,Z) | c ≡ 0 (mod N)

}
for N > 0.

This group acts on H by linear fractional transformations, i.e(
a b
c d

)
z =

az + b

cz + d
∀γ =

(
a b
c d

)
∈ Γ0(N), z ∈ H.

The modular surface X = Γ0(N)\H is a finite volume non-compact surface
with Laplacian

∆ = −y2
(
∂2

∂x2
+

∂2

∂y2

)
.

We also have the measure

dx dy

y2
.
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Maass cusp forms

We call a function f : H→ C a Maass cusp form of level N (trivial
character) if

1) f is an eigenfunction of the Laplacian, ∆f = λf , λ ≥ 0,

2) f is automorphic, f (γz) = f (z) for all γ ∈ Γ0(N),

3) f ∈ L2(Γ0(N)\H), i.e f is square-integrable,

4) f vanishes at all of the cusps of Γ0(N)\H.

We will denote the space of Maass cusp forms of level N and Laplace
eigenvalue λ by Sλ(N).
The set of functions that just satisfy points (2), (3) and (4) we shall
denote as L2cusp(Γ0(N)\H).
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Pictures of Maass forms

(a) Level 1, λ = 91.141345 . . . (b) Level 1, λ = 190.131547 . . .

(c) Level 2, λ = 79.867724 . . . (d) Level 3, λ = 182.713668 . . .

Figure: Images of Maass forms from the LMFDB.
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Fourier expansion
For any f ∈ Sλ(N) and any non-zero integer n coprime to N, we have the
Hecke operator Tn that maps Sλ(N)→ Sλ(N). Further f has a Fourier
expansion of the form

f (z) = f (x + iy) =
∑
n 6=0

a(n)
√
yKir (2π|n|y) exp(2πinx)

where Kν(u) is the K-Bessel function and λ = 1
4 + r2.

If f is also a Hecke eigenfunction for all Hecke operators Tn with
(n,N) = 1, i.e Tnf = λ(n)f , then we can normalise such that a(1) = 1
and we have

a(n) = λ(n),

a(−n) = ελ(n),

where ε = 1 if a(n) = a(−n) and −1 if a(n) = −a(−n).
From this, we know there exists an orthogonal basis {fj} in
L2cusp(Γ0(N)\H) consisting of eigenfunctions to all Hecke operators Tn

with (n,N) = 1.
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History of Computations

• In the 1990’s Hejhal developed an algorithm to compute Maass cusp
forms, that was generalised by Strömberg in 2006 to work for general
congruence (and non-congruence) subgroups. This algorithm works
very well in practice, however it relies on a heuristic argument and it
has not been proven yet to rigorously converge to genuine Maass cusp
forms.

• In 2006 Booker, Strömbergsson and Venkatesh developed an
algorithm to verify the computations of Maass cusps forms. This was
originally only derived for level 1, however recent work of Child has
generalised this to general level and character.

• Also in 2006, Booker and Strömbergsson used the Selberg trace
formula for computations of Maass cusp forms. However they were
mainly focused on proving the non-existence of Maass forms in an
interval to help prove the Selberg eigenvalue conjecture.
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• Also in 2006, Booker and Strömbergsson used the Selberg trace
formula for computations of Maass cusp forms. However they were
mainly focused on proving the non-existence of Maass forms in an
interval to help prove the Selberg eigenvalue conjecture.

6 / 19



Selberg trace formula

The Selberg trace formula allows one to consider the whole spectrum of
Maass cusp forms for a fixed level N. Selberg derived this in the 1950’s to
prove the existence of Maass cusp forms.

In our case, if we have a Hecke eigenbasis {fj} of L2cusp(Γ0(N)\H) with
respective Laplace eigenvalues λj and Hecke eigenvalues aj(n), the Selberg
trace formula allows us to compare

(Spectral side)
∞∑
j=1

aj(n)H(λj) = (Geometric side)

for some nice (analytic) test function H and n 6= 0.
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Example of a test function
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Aside to modular forms

Explicit versions of trace formulas for modular forms have been used to
compute basis elements of the spaces of modular forms, for example in the
pari command mfeigenbasis. Since these spaces are finite dimensional,
one can use the Hecke operators and linear algebra to extract the Fourier
coefficients of the basis elements.

In the Maass form case, the spaces we will be working with are infinite
dimensional, hence the requirement for the test function in the trace
formula. Our idea is to choose a test function such that the contribution
from the larger eigenvalues is negligible and we can then treat the problem
as a finite linear algebra one.
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Verification using the Selberg trace formula

Fix a level N. Let {fj} be a Hecke eigenbasis of L2cusp(Γ0(N)\H) with
respective Laplace eigenvalues λj such that λ1 ≤ λ2 ≤ . . .. Let aj(n) be
the Hecke eigenvalues of fj , that is Tnfj = aj(n)fj for (n,N) = 1.

We will fix a sufficiently nice test function H that is positive and
monotonically decreasing for λ > 0. The Selberg trace formula allows us
to compute

t(n,H) :=
∞∑
j=1

aj(n)H(λj)

for any n 6= 0 and (n,N) = 1.
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The details
Using the Hecke relations, we have for any real sequence of numbers
{c(m)}Mm=1 satisfying c(m) = 0 if (m,N) > 1, that(

M∑
m=1

c(m)aj(m)

)2

=
M∑

m1=1

M∑
m2=1

c(m1)c(m2)
∑

d |(m1,m2)

aj

(m1m2

d2

)
.

We define

Q(c ,H) :=
∞∑
j=1

(
M∑

m=1

c(m)aj(m)

)2

H(λj)

=
M∑

m1=1

M∑
m2=1

c(m1)c(m2)
∑

d |(m1,m2)

∞∑
j=1

aj

(m1m2

d2

)
H(λj)

=
M∑

m1=1

M∑
m2=1

c(m1)c(m2)
∑

d |(m1,m2)

t
(m1m2

d2
,H
)
.
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Intuition

Suppose that we have putative numerical approximations λ̃j , ãj(m) to
λj , aj(m). Then we want to choose numbers ci (m) such that ci (m) = 0 if
(m,N) > 1 and

M∑
m=1

ci (m)ãj(m) =

{
1 if j = i ,

0 otherwise.

Let H̃i (λ) = H(λ)(λ− λ̃i )2. For the verification we shall prove that there
exists a Laplace eigenvalue near λ̃i . For this, we use the definition of Q to
compute

εi :=

√
Q(ci , H̃i )

Q(ci ,H)
.

Then there exists a cuspidal eigenvalue λ ∈ [λ̃i − εi , λ̃i + εi ].
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Computing the Laplace eigenvalues

With the same H as before, we define H̃(λ) = λH(λ). Let Q and Q̃
denote the respective matrices of the quadratic forms Q(c,H) and
Q(c , H̃). To find the eigenvalues λj , we seek solutions to the generalised
symmetric eigenvalue problem

Q̃x = λQx .

This gives us numerical approximations to the Laplace eigenvalues.

The corresponding eigenvectors we then use as the ci . This way means we
only have to do two matrix diagonalisations per level.
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In practice

Suppose that we have putative numerical approximations λ̃j . Define

εi :=

√
Q(ci , H̃i )

Q(ci ,H)
,

for the ci from the eigenvectors of the previous computation. Then, similar
to before, there exists a cuspidal eigenvalue λ ∈ [λ̃i − εi , λ̃i + εi ] for each i .

We can further prove that we did not miss any by essentially using our
approximations to approximate the trace formula and measure the
difference between the two values.

In addition, we can also get rigorous error bounds on the Fourier
coefficients aj(n).
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Computational remarks

• The computations were done in C using a library called ARB, which
does rigorous real and complex arithmetic with arbitrary precision.
This is done using ball arithmetic, a form of interval arithmetic, which
represents its numbers by a midpoint and radius.

• Currently this method has only been implemented for square-free level
N due to availability of explicit forms of the Selberg trace formulas
with Hecke operators.

• We computed 33214 Laplace eigenvalues of Maass forms with
squarefree levels between 2 ≤ N ≤ 105. The range of the εi ’s
computed is between 10−15 and 10−2.

• We also verified the Ramanujan-Petersson conjecture for prime
p ≤ 2000 for 13271 forms.
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Sato-Tate

Figure: Distribution of the classical Sato-Tate distribution of the aj(p) for prime p.
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Thanks for listening!
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Example of trace formula, composite square-free level

µ(N)σ1(|n|)√
|n|

h

(
i

2

)
+
∞∑
j=1

h(Rj)aj(n)

=
∑
t∈Z√

D=
√
t2−4n 6∈Q

D>0

cN(D) · g

(
log

(
(|t|+

√
D)2

4|n|

))

+
∑
t∈Z√

D=
√
t2−4n 6∈Q

D<0

cN(D) ·
√
|D/4n|
2π

∫ ∞
−∞

g(u) cosh(u/2)

sinh2(u/2) + |D/4n|
du

+

[
if
√
n ∈ Z :

∏
p|N(p − 1)

12
√
n

∫ ∞
−∞

g ′(u)

sinh
(
u
2

)du] .
cN(D) =

L(1, ψd)

l

∏
p|N

(ψd(p)− 1)
∏
p|l

[
1 + (p − ψd(p))

(l , p∞)− 1

p − 1

]
.
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