An attack on SIDH with arbitrary starting curve

Luciano Maino and Chloe Martindale

University of Bristol

10th August, 2022

Outline

1 Introduction

2 The Attack

3 Complexity

4 Challenge Parameters

5 Open Problems

- 2016, National Institute of Standards and Technology (NIST) launched **Post-Quantum Cryptography Standardization** competition.
- Isogeny-based protocols
 - $\checkmark\,$ Intensively studied by mathematicians for years
 - $\checkmark~$ Short keys
 - $\chi~{\rm Slow}$

- Supersingular Isogeny Key Encapsulation (**SIKE**) is the only isogeny-based protocol in the competition so far
 - based on Supersingular Isogeny Diffie–Hellman (SIDH)

- Supersingular Isogeny Key Encapsulation (**SIKE**) is the only isogeny-based protocol in the competition so far
 - $\bullet\,$ based on Supersingular Isogeny Diffie–Hellman $({\bf SIDH})$

- Supersingular Isogeny Key Encapsulation (**SIKE**) is the only isogeny-based protocol in the competition so far
 - based on Supersingular Isogeny Diffie–Hellman (SIDH)

- Supersingular Isogeny Key Encapsulation (**SIKE**) is the only isogeny-based protocol in the competition so far
 - based on Supersingular Isogeny Diffie–Hellman (SIDH)

SSI-T

Let p be a large prime p, and let A and B be two large integers such that A, B and p are pairwise coprime. Given two supersingular elliptic curves E_0/\mathbb{F}_{p^2} and E_A/\mathbb{F}_{p^2} connected by an unknown degree-A isogeny $\varphi_A : E_0 \to E_A$, and given the restriction of φ_A to the B-torsion of E_0 , recover the isogeny φ_A .

SSI-T

Let p be a large prime p, and let A and B be two large integers such that A, B and p are pairwise coprime. Given two supersingular elliptic curves E_0/\mathbb{F}_{p^2} and E_A/\mathbb{F}_{p^2} connected by an unknown degree-A isogeny $\varphi_A: E_0 \to E_A$, and given the restriction of φ_A to the B-torsion of E_0 , recover the isogeny φ_A .

 E_0 is not special in any way

SSI-T

Let p be a large prime p, and let A and B be two large integers such that A, B and p are pairwise coprime. Given two supersingular elliptic curves E_0/\mathbb{F}_{p^2} and E_A/\mathbb{F}_{p^2} connected by an unknown degree-A isogeny $\varphi_A: E_0 \to E_A$, and given the restriction of φ_A to the B-torsion of E_0 , recover the isogeny φ_A .

 E_0 is not special in any way Related work: [CD22]

Outline

1 Introduction

2 The Attack

3 Complexity

4 Challenge Parameters

5 Open Problems

The Attack

The Attack

The Attack

Main Theorem

Main Theorem

Let f, A, and B be pairwise coprime integers such that B = f + A and $-1/fA = c^2 \pmod{B}$. Let E/\mathbb{F}_{p^2} and E'/\mathbb{F}_{p^2} be two supersingular elliptic curves connected by an fA-isogeny $\varphi : E \to E'$, let λ be the product polarization on $E \times E'$, let (P_B, Q_B) be a basis of E[B], and let

$$K \coloneqq \langle (P_B, c\varphi(P_B)), (Q_B, c\varphi(Q_B)) \rangle.$$

Then K is the kernel of a (B, B)-isogeny of principally polarized abelian surfaces $(E \times E', B\lambda) \to (E \times E', \lambda)$ represented by the endomorphism

$$\Phi \coloneqq \left(\begin{array}{cc} B - cfA & \widehat{\varphi} \\ c\varphi & -1 \end{array} \right) \in \operatorname{End}(E \times E').$$

Outline

2 The Attack

4 Challenge Parameters

5 Open Problems

- We can compute isogenies via their kernels
- Using Vélu's formulae, computing an isogeny $\varphi \colon E \to E'$ of prime degree ℓ costs $\mathcal{O}(\ell)$ operations over the field of definition of a point that generates the kernel
- The state-of-the-art for large ℓ is given by $\sqrt{\acute{e}lu}$ formulae [BDLS20]
 - $\mathcal{O}(\sqrt{\ell})$ operations over the field of definition of a point that generates the kernel
 - memory/complexity trade-off

• To increase the pool of smooth f's, eB = A + f for some smooth e

Complexity

•
$$A = \ell^a_A, B = \ell^b_B$$

- To increase the pool of smooth f's, $eB\ell_B^{-j} = A\ell_A^{-i} + f$ for some smooth e and small i and j
- 1. Precomputation step of (e, i, j, f)
- 2. Cofactor isogeny computation
- 3. Guess and computation of the endomorphism on $E \times E'$

- f determines the cost of computing the cofactor isogeny φ_f
 - if q|f, the minimal field of definition for a q-torsion point has extension degree $\thickapprox q$
- j has no restrictions since $B\ell_B^{-j}$ -torsion points can be computed from B-torsion points via a ℓ_B^j multiplication
- i determines the number of guesses for $\varphi_{\ell^i_A}$
- e must be smooth since to compute the endomorphism on $E \times E'$, we must compute $(eB\ell_B^{-j}, eB\ell_B^{-j})$ -isogenies

• Let $\varphi_q \colon E_n \to E_{n+1}$ be a prime factor of φ_f

- Let $\varphi_q \colon E_n \to E_{n+1}$ be a prime factor of φ_f
- We can guarantee that
 - the codomain E_{n+1} must be defined over \mathbb{F}_{p^2}
 - for all $P \in E_n[AB], \varphi_q(P) \in E_{n+1}(\mathbb{F}_{p^2})$

- Let $\varphi_q \colon E_n \to E_{n+1}$ be a prime factor of φ_f
- We can guarantee that
 - the codomain E_{n+1} must be defined over \mathbb{F}_{p^2}
 - for all $P \in E_n[AB], \varphi_q(P) \in E_{n+1}(\mathbb{F}_{p^2})$
- $\bullet\,$ Methods to compute isogenies over \mathbb{F}_{p^2}
 - $\sqrt{\acute{e}lu}$ formulas in [BDLS20, §4.14] at the cost of $\widetilde{\mathcal{O}}(q^{3/2})$
 - Kohel's Algorithm from kernel polynomials [K96, §2.4] at the cost of $\widetilde{\mathcal{O}}(q^2)$

- Let $\varphi_q \colon E_n \to E_{n+1}$ be a prime factor of φ_f
- We can guarantee that
 - the codomain E_{n+1} must be defined over \mathbb{F}_{p^2}
 - for all $P \in E_n[AB], \varphi_q(P) \in E_{n+1}(\mathbb{F}_{p^2})$
- $\bullet\,$ Methods to compute isogenies over \mathbb{F}_{p^2}
 - $\sqrt{\acute{e}lu}$ formulas in [BDLS20, §4.14] at the cost of $\widetilde{\mathcal{O}}(q^{3/2})$
 - Kohel's Algorithm from kernel polynomials [K96, §2.4] at the cost of $\widetilde{\mathcal{O}}(q^2)$
- Factoring q-division polynomials is polynomial time in q and $\log(p)$

Outline

1 Introduction

2 The Attack

3 Complexity

4 Challenge Parameters

5 Open Problems

Microsoft SIKE Challenge: $A = 3^{67}, B = 2^{110},$ i = 7, e = 1, j = 2, $f = 5 \cdot 7 \cdot 13^3 \cdot 43^2 \cdot 73 \cdot 151 \cdot 241 \cdot 269 \cdot 577 \cdot 613 \cdot 28111 \cdot 321193.$ The extension field degrees for all the factors of f are given by [k, q] = [8, 5], [12, 7], [24, 13], [28, 43], [144, 73], [75, 151], [480, 241],

[67, 269], [1152, 577], [1224, 613], [56220, 28111], [642384, 321193].

Outline

1 Introduction

2 The Attack

3 Complexity

4 Challenge Parameters

(5) Open Problems

- 1. How can we compute the optimal choice for f, taking into account all speed-ups available? Can we implement an operation counter to find best trade-off?
- 2. The algorithm we currently use to select parameters is just a brute-force search over the entire parameter space, which becomes infeasible for large instances, although good parameters may still exist. Can we improve this search, or even construct a smooth f deterministically?
- 3. Given a security parameter λ , can we prove that there exists no (e, i, j, f) such that our attack takes more than 2^{λ} multiplications over \mathbb{F}_{p^2} ?

Thanks for your attention! Questions?

An Attack on SIDH

References

Wouter Castryck and Thomas Decru (2022) An efficient key recovery attack on SIDH (preliminary version) https://eprint.iacr.org/2022/975

 Daniel J. Bernstein and Luca De Feo and Antonin Leroux and Benjamin Smith (2020)
Faster computation of isogenies of large prime degree https://eprint.iacr.org/2020/341

David Kohel (1996)

Endomorphism rings of elliptic curves over finite fields

http://iml.univ-mrs.fr/~kohel/pub/thesis.pdf