Fast change of level and applications to isogenies

David Lubicz, Damien Robert

Université de Rennes 1 and Mathematic Institute of Bordeaux.

Outline

Outline

The aim of this talk

In this talk, we are going to present:

- change of level algorithm for theta functions;
- an application to isogeny computation between Abelian varieties.

The results apply to a fairly general situation (Abelian varieties of any dimension over any base field) but we will specialize to $\mathbb C$ for the sake of simplicity.

Abelian varieties

Definition

An Abelian variety is a smooth complete connected group variety over a base field k.

Abelian variety = subset of a projective space given as the zero of homogeneous polynomials together with an Abelian group law given by rational functions.

Example

- Elliptic curves= Abelian varieties of dimension 1;
- If *C* is a (smooth) curve of genus *g*, its Jacobian is an Abelian variety of dimension *g*;
- In dimension g ≥ 4, not every Abelian variety is a Jacobian.

Abelian varieties over \mathbb{C}

- In this talk, we consider Abelian varieties over C;
- Let \mathbb{H}_g be the Siegel upper-half space;
- For $\Omega \in \mathbb{H}_g$, let $\Lambda_{\Omega} = \mathbb{Z}^g + \Omega \mathbb{Z}^g \subset \mathbb{C}^g$.

Definition

- The analytic Abelian variety A associated to Ω is $\mathbb{C}^g/\Lambda_{\Omega}$;
- A (principally polarized) Abelian variety A over C is isomorphic to an analytic Abelian variety.

Projective embedding

• Let $\Lambda = \mathbb{Z}^g + \Omega \mathbb{Z}^g$;

A projective embedding of A = C^g/Λ can be given by quasi-periodic functions with respect to Λ.

Definition

A Λ -quasi-periodic function of level *n* is a function *f* on \mathbb{C}^g such that for all $z \in \mathbb{C}^g$ and $\lambda \in \mathbb{Z}^g$:

$$f(z + \lambda) = f(z), \quad f(z + \Omega\lambda) = \exp(-\pi i \frac{1}{\alpha} \lambda \Omega \lambda - 2\pi i \frac{1}{\alpha} z \lambda) f(z).$$

Let R_{Ω}^{n} be a vector space of level *n* functions.

Theta functions I

Definition

For $a, b \in \mathbb{Q}^g$, the theta function with rational characteristics (a, b) is a function $\mathbb{C}^g \times \mathbb{H}_g \to \mathbb{C}$ given by:

$$\theta\left[\begin{smallmatrix}a\\b\end{smallmatrix}\right](z,\Omega) = \sum_{n\in\mathbb{Z}^g} \exp\left[\pi i^t(n+a).\Omega.(n+a) + 2\pi i^t(n+a).(z+b)\right].$$

Theta functions II

Definition

For $n \ge 2$, let $Z(n) = (\mathbb{Z}/n\mathbb{Z})^g$, the n^g level n theta functions are: $\theta_i(z) = \theta \begin{bmatrix} 0\\ i/n \end{bmatrix} (z, \Omega/n)$, for $i \in Z(n)$.

- The $(\theta_i(z))_{i \in \mathbb{Z}(n)}$ form a basis a R^n_{Ω} .
- An embedding of $A = \mathbb{C}^g / (\mathbb{Z}^g + \Omega \mathbb{Z}^g)$ in $\mathbb{P}^{Z(n)}$ if $n \ge 3$:

$$\varphi_{n,\Omega}: \mathbf{Z} \mapsto (\theta_i(\mathbf{Z}))_{i \in \mathbf{Z}(n)}.$$

The point φ_{n,Ω}(0) ∈ P^{Z(n)}(C) is called the Theta null point of φ_{n,Ω}.

Change of level algorithm

Definition

Let ℓ , *n* positive integers, a change of level algorithm is an algorithm to compute a theta basis of R_{Ω}^{n} from the knowledge of a theta basis $R_{\Omega}^{\ell n}$ (going down) and the other way around (going up).

Previous results:

- duplication formula: going up from level *n* to level 2*n* and the other way around.
- Koizumi formula: going down from the level ln to level n.

We want to expand these results and improve the complexity of change of level algorithms.

Algebraic representation

We suppose that *n* is even:

- The Theta null point $\varphi_{n,\Omega}(0)$ is rational.
- Riemann's equations parametrized by $\varphi_{n,\Omega}(0)$ provides a complete set of quadratic equation for $\varphi_{n,\Omega}(\mathbb{C}^g)$.
- Riemann's equations allows to recover the arithmetic of A inside P^{Z(n)}.
- Theta functions can be regarded as sections of the line bundle Lⁿ = φ^{*}_{n,Ω}(𝒫_{P^{Z(n)}(1))} (where ℒ is a principal line bundle).

Locus of theta null points

It is clear that from Ω one can recover the theta null point $\varphi_{n,\Omega}(0)$. Reciprocally, we have:

Theorem (Mumford-Kempf)

If $n \ge 4$ even, the function of Ω , $\varphi_{n,\Omega}(0)$ is an embedding of $\mathcal{A}_g(n) = \mathbb{H}_g/\Gamma(n, 2n)$ into $\mathbb{P}^{Z(n)}$, where $\Gamma(n, 2n)$ is a congruence subgroup of $\operatorname{Sp}_{2g}(\mathbb{Z})$ (Igusa level n subgroups).

Theta structure

The following data are equivalent:

- A theta null point $\varphi_{n,\Omega}(0)$;
- A point of $\mathcal{A}_g(n)$;
- A suitable basis $(\theta_i(z))_{i \in Z(n)}$ of $H^0(\mathcal{L}^n)$.

Definition

We call it a level *n* (symmetric) theta structure .

If Θ^n is a level *n* theta structure for *A*, we denote by $\varphi^{\Theta^n} : A \to \mathbb{P}^{Z(n)}$ the associated embedding.

Introduction The results Consequences

Compatible theta structure

Definition

Two theta structures of level n_1 and n_2 given by $\Omega_1, \Omega_2 \in \mathbb{H}_g$ are compatible if there exists ℓ such that $n_1 = \ell n_2$ and there exists $\Omega \in \mathbb{H}_g$ such that $\Omega/n_i \cong \Omega_i \mod \Gamma(n_i, 2n_i)$ for i = 1, 2.

Outline

Change of level algorithms

Let ℓ and *n* be two relatively prime integers, let $(A, \Theta_A^{\ell n})$ be an Abelian variety together with a level ℓn theta structure:

- From φ^{Θ^{ℓn}}(0), one can recover A[ℓ] = A₁[ℓ] ⊕ A₂[ℓ] a symplectic decomposition for the Weil pairing.
- Reciprocally, given (A, Θⁿ_A) by φ<sup>Θⁿ_A(0) and
 A[ℓ] = A₁[ℓ] ⊕ A₂[ℓ] can we compute φ<sup>Θ^{ℓn}_A(0) ?
 </sup></sup>

A result

Theorem

Let (A, Θ_A^n) and let $A[\ell] = A_1[\ell] \oplus A_2[\ell]$ be a symplectic decomposition for the Weil pairing. Suppose ℓ odd, there exists a unique theta structure $\Theta_A^{\ell n}$ compatible with the preceding data. One can compute $\varphi^{\Theta^{\ell n}}(0)$ from the knowledge of $\varphi^{\Theta^n}(0)$ and the decomposition $A[\ell] = A_1[\ell] \oplus A_2[\ell]$ at the expense of $O(n^g \ell^{2g} \log(\ell))$ operations in the base field.

We have a similar result for going down with complexity $O(n^g \ell^g \log(\ell))$.

Outline

D. Lubicz, D. Robert Change of level

Link with isogeny computations

The problem:

- Let A an Abelian variety and K an isotropic sub-group of $A[\ell]$ for the Weil pairing;
- Compute B = A/K and the isogeny $f : A \rightarrow B$.

Representation:

- A is given by its theta null point of level n (n^g coordinates);
- *K* is given as a subvariety of $A \subset \mathbb{P}^{Z(n)}$.

Previous results

To compute isogenies, we have at least the following general algorithms:

- dimension 1: Vélu's formula;
- dimension *g*, *l*-isogenies Cosset-L.-Robert :

•
$$\widetilde{O}(\ell^g)$$
 if $\ell \equiv 1 \mod 4$;

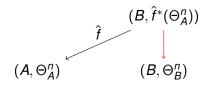
•
$$\widetilde{O}(\ell^{2g})$$
 if $\ell \equiv 3 \mod 4$.

- dimension g, cyclic isogenies
 Dudeau-Jetchev-Robert-Vuile, linear complexity but not practical;
- dimension 2: Couveignes, ℓ -isogenies in $\widetilde{O}(\ell^2)$.

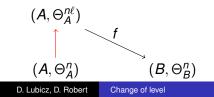
Link with change of level

We have to endow *B* with a theta structure Θ_B^n . Two approaches:

Compute *f*^{*}(Θⁿ_A) via the isogeny theorem (a level *ln* theta structure for *B*), then going down from level *ln* to level *n*:



go up from level *n* to level ℓn then compute *f* via the isogeny theorem:



A result

Theorem

Let (A, Θ_A^n) an Abelian variety. Let $K \subset A[\ell]$ be a subgroup isotropic for the Weil pairing and let B = A/K. One can compute the theta null point associated to (B, Θ_B^n) and the isogeny $f : A \to B$ in time $O((n\ell)^g \log(\ell))$ operations in the base field.

Representations

For practical implementation, we work in:

- level 4: 4^g coordinates, gives a projective embedding of A;
- level 2: 2^g coordinates, gives a projective embedding of K = A/(-1).

Computation of level 2 or 4 theta null points:

- via Thomae's like formulas when A = J(C);
- by picking up a point of $A_g(4)$ a projective embedding of which is given by Riemann and symmetry equations.

Implementations

There are two implementations available:

- a magma implementation: AVIsogeny by Bisson-Cosset-Robert.
- a sagemath implementation by Somoza.

All the details and link to implementations are in the paper !

Other applications and open questions

Ohter application of change of level formulas:

- Higher level Thomae formulas;
- Computation of modular functions of arbitrary level.

Open question:

- The case $\ell = 2$;
- Change of level algorithm to compute modular forms.

Thanks for your attention