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The aim of this talk

In this talk, we are going to present:
change of level algorithm for theta functions;
an application to isogeny computation between Abelian
varieties.

The results apply to a fairly general situation (Abelian varieties
of any dimension over any base field) but we will specialize to C
for the sake of simplicity.
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Abelian varieties

Definition

An Abelian variety is a smooth complete connected group
variety over a base field k .

Abelian variety = subset of a projective space given as the zero
of homogeneous polynomials together with an Abelian group
law given by rational functions .

Example
Elliptic curves= Abelian varieties of dimension 1;
If C is a (smooth) curve of genus g, its Jacobian is an
Abelian variety of dimension g;
In dimension g > 4, not every Abelian variety is a
Jacobian.

D. Lubicz, D. Robert Change of level



Introduction The results Consequences

Abelian varieties over C

In this talk, we consider Abelian varieties over C;
Let Hg be the Siegel upper-half space;

For Ω ∈ Hg , let ΛΩ = Zg + ΩZg ⊂ Cg .

Definition

The analytic Abelian variety A associated to Ω is Cg/ΛΩ;
A (principally polarized) Abelian variety A over C is
isomorphic to an analytic Abelian variety.
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Projective embedding

Let Λ = Zg + ΩZg ;
A projective embedding of A = Cg/Λ can be given by
quasi-periodic functions with respect to Λ.

Definition

A Λ-quasi-periodic function of level n is a function f on Cg

such that for all z ∈ Cg and λ ∈ Zg :

f (z + λ) = f (z), f (z + Ωλ) = exp(−πi n t
λΩλ− 2πi n tzλ)f (z).

Let Rn
Ω be a vector space of level n functions.
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Theta functions I

Definition

For a,b ∈ Qg , the theta function with rational characteristics
(a,b) is a function Cg ×Hg → C given by:

θ [ a
b ] (z,Ω) =

∑
n∈Zg

exp
[
πi t (n + a).Ω.(n + a) + 2πi t (n + a).(z + b)].
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Theta functions II

Definition

For n > 2, let Z (n) = (Z/nZ)g , the ng level n theta functions
are:

θi(z) = θ
[

0
i/n

]
(z,Ω/n), for i ∈ Z (n).

The (θi(z))i∈Z(n) form a basis a Rn
Ω.

An embedding of A = Cg/(Zg + ΩZg) in PZ (n) if n > 3:

ϕn,Ω : z 7→ (θi(z))i∈Z (n).

The point ϕn,Ω(0) ∈ PZ (n)(C) is called the Theta null point
of ϕn,Ω.
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Change of level algorithm

Definition

Let `,n positive integers, a change of level algorithm is an
algorithm to compute a theta basis of Rn

Ω from the knowledge of
a theta basis R`n

Ω (going down) and the other way around (going
up).

Previous results:
duplication formula: going up from level n to level 2n and
the other way around.
Koizumi formula: going down from the level `n to level n.

We want to expand these results and improve the complexity of
change of level algorithms.
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Algebraic representation

We suppose that n is even:
The Theta null point ϕn,Ω(0) is rational.

Riemann’s equations parametrized by ϕn,Ω(0) provides a
complete set of quadratic equation for ϕn,Ω(Cg).
Riemann’s equations allows to recover the arithmetic of A
inside PZ (n).
Theta functions can be regarded as sections of the
line bundle L n = ϕ∗n,Ω(OPZ (n)(1)) (where L is a principal
line bundle).

D. Lubicz, D. Robert Change of level



Introduction The results Consequences

Locus of theta null points

It is clear that from Ω one can recover the theta null point
ϕn,Ω(0). Reciprocally, we have:

Theorem (Mumford-Kempf)

If n > 4 even, the function of Ω, ϕn,Ω(0) is an embedding of
Ag(n) = Hg/Γ(n,2n) into PZ (n), where Γ(n,2n) is a

congruence subgroup of Sp2g(Z) (Igusa level n subgroups).

D. Lubicz, D. Robert Change of level



Introduction The results Consequences

Theta structure

The following data are equivalent:
A theta null point ϕn,Ω(0);
A point of Ag(n);
A suitable basis (θi(z))i∈Z (n) of H0(L n).

Definition

We call it a level n (symmetric) theta structure .

If Θn is a level n theta structure for A, we denote by
ϕΘn

: A→ PZ (n) the associated embedding.
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Compatible theta structure

Definition
Two theta structures of level n1 and n2 given by Ω1,Ω2 ∈ Hg are
compatible if there exists ` such that n1 = `n2 and there exists

Ω ∈ Hg such that Ω/ni
∼= Ωi mod Γ(ni ,2ni) for i = 1,2.
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Change of level algorithms

Let ` and n be two relatively prime integers, let (A,Θ`n
A ) be an

Abelian variety together with a level `n theta structure:
From ϕΘ`n

(0), one can recover A[`] = A1[`]⊕ A2[`] a
symplectic decomposition for the Weil pairing.
Reciprocally, given (A,Θn

A) by ϕΘn
A(0) and

A[`] = A1[`]⊕ A2[`] can we compute ϕΘ`n
A (0) ?
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A result

Theorem
Let (A,Θn

A) and let A[`] = A1[`]⊕ A2[`] be a symplectic
decomposition for the Weil pairing. Suppose ` odd, there exists
a unique theta structure Θ`n

A compatible with the preceding
data. One can compute ϕΘ`n

(0) from the knowledge of ϕΘn
(0)

and the decomposition A[`] = A1[`]⊕ A2[`] at the expense of
O(ng`2g log(`)) operations in the base field.

We have a similar result for going down with complexity
O(ng`g log(`)).
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Link with isogeny computations

The problem:
Let A an Abelian variety and K an isotropic sub-group of
A[`] for the Weil pairing;
Compute B = A/K and the isogeny f : A→ B.

Representation:
A is given by its theta null point of level n (ng coordinates);
K is given as a subvariety of A ⊂ PZ (n).
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Previous results

To compute isogenies, we have at least the following general
algorithms:

dimension 1: Vélu’s formula;
dimension g, `-isogenies Cosset-L.-Robert :

Õ(`g) if ` ≡ 1 mod 4;
Õ(`2g) if ` ≡ 3 mod 4.

dimension g, cyclic isogenies
Dudeau-Jetchev-Robert-Vuile, linear complexity but not
practical;
dimension 2: Couveignes, `-isogenies in Õ(`2).
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Link with change of level

We have to endow B with a theta structure Θn
B. Two

approaches:
Compute f̂ ∗(Θn

A) via the isogeny theorem (a level `n theta
structure for B), then going down from level `n to level n:

(B, f̂ ∗(Θn
A))

(A,Θn
A) (B,Θn

B)

f̂

go up from level n to level `n then compute f via the
isogeny theorem:

(A,Θn`
A )

(A,Θn
A) (B,Θn

B)

f
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A result

Theorem
Let (A,Θn

A) an Abelian variety. Let K ⊂ A[`] be a subgroup
isotropic for the Weil pairing and let B = A/K . One can
compute the theta null point associated to (B,Θn

B) and the
isogeny f : A→ B in time O((n`)g log(`)) operations in the base
field.
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Representations

For practical implementation, we work in:
level 4: 4g coordinates, gives a projective embedding of A;
level 2: 2g coordinates, gives a projective embedding of
K = A/(−1).

Computation of level 2 or 4 theta null points:
via Thomae’s like formulas when A = J(C);
by picking up a point of Ag(4) a projective embedding of
which is given by Riemann and symmetry equations.
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Implementations

There are two implementations available:
a magma implementation: AVIsogeny by
Bisson-Cosset-Robert.
a sagemath implementation by Somoza.

All the details and link to implementations are in the paper !
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Other applications and open questions

Ohter application of change of level formulas:
Higher level Thomae formulas;
Computation of modular functions of arbitrary level.

Open question:
The case ` = 2;
Change of level algorithm to compute modular forms.
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Thanks for your attention
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