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Rational Points on Modular Curves

▶ For N ∈ Z>0, the modular curve X1(N) classifies
elliptic curves together with a point of order N.

▶ Similarly, X0(N) classifies pairs (E ,CN) of elliptic curves E
together with a cyclic subgroup CN of order N.
This point can also be viewed as an isogeny
ι : E → E ′ := E/CN with kernel cyclic of order N.

▶ Mazur (1977): Computation of X1(p)(Q).
▶ Mazur (1978): Computation of X0(p)(Q).
▶ Kamienny–Merel–Oesterlé (1990’s): Let [K : Q] = d > 5.

Then X1(p)(K ) consists only of cusps if p > (3d/2 + 1)2.
▶ Kamienny, Merel, Derickx–Kamienny–Stein–Stoll (2021):

Computation of X1(p)(K ) for [K : Q] ≤ 7.
▶ Open problem: Computation of X0(p)(K ) for K quadratic?
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Atkin-Lehner Quotients

Let d be a divisor of N with (d ,N/d) = 1.
The Atkin-Lehner involution wd is given by

wd : (E ,CN) 7→ (E/Cd , (CN + E [d ])/Cd).

Consider the quotients

X0(N)+ := X0(N)/wN ,

X0(N)∗ := X0(N)/⟨wd : (d ,N/d) = 1⟩.

▶ Rational points on X0(N)∗ correspond to Q-curves.
▶ Knowing X0(N)+(Q) is helpful for determining all

quadratic points on X0(N).
▶ Elkies’ conjecture: For N ≫ 0, X0(N)∗(Q) consists only of

cusps and CM points.
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Example of an Atkin-Lehner Involution

Let N = pq be a product of two distinct primes.
A point on X0(N) is represented by (E ,CN) or, equivalently,
by an isogeny ι : E → E/CN , where CN is a cyclic subgroup.

Atkin-Lehner involution wp
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All Hyperelliptic Quotients

Theorem (Hasegawa, 1997)

There are 64 values of N for which X0(N)∗ is hyperelliptic.

Of these, there are only 7 values of N for which X0(N)∗ is
hyperelliptic with genus g ≥ 3, namely

g = 3: 136, 171, 207, 252, 315,

g = 4: 176,

g = 5: 279.

4 / 17



Genus 2 Levels

For the following levels N the curve X0(N)∗ has genus 2:

67, 73, 85, 88, 93, 103, 104, 106, 107, 112,
115, 116, 117, 121, 122, 125, 129, 133, 134, 135,
146, 147, 153, 154, 158, 161, 165, 166, 167, 168,
170, 177, 180, 184, 186, 191, 198, 204, 205, 206,
209, 213, 215, 221, 230, 255, 266, 276, 284, 285,
286, 287, 299, 330, 357, 380, 390.
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rank is 0 or 1, so we can use classical Chabauty techniques

Bars, González, and Xarles (2019) using elliptic curve Chabauty

Balakrishnan et al. (2021) using quadratic Chabauty

Arul and Müller (2022) using quadratic Chabauty

There are 15 remaining levels, which we also address in our paper.
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Main Result

Theorem (BDMTV, BGX, AM, and ACKP)

Let N be such that X0(N)∗ is hyperelliptic.
Then X0(N)∗(Q) only consists of the known points of small height.

More precisely, let N be a square-free positive integer such that
X0(N)∗ is of genus 2. If X0(N)∗ has no exceptional rational points,
then N ∈ {67, 107, 146, 167, 205, 213, 390}.

For each of the remaining 32 levels N ∈ {73, 85, 93, 103, 106,
115, 122, 129, 133, 134, 154, 158, 161, 165, 166, 170, 177, 186,
191, 206, 209, 215, 221, 230, 255, 266, 285, 286, 287, 299, 330,
357}, there is at least one exceptional rational point.
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Exceptional Isomorphisms

If
N ∈ {134, 146, 206},

then the curves can be addressed using the observation

X0(2p)
∗ ∼= X0(p)

∗ = X0(p)
+ for p ∈ {67, 73, 103}.

Note that
X0(266)

∗ ∼= X0(133)
∗,

thus the remaining cases are

N ∈ {133, 147, 166, 177, 205, 213, 221, 255, 287, 299, 330}.
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The Chabauty-Coleman Method

▶ Let g be the genus of X (not necessarily modular) and r the
Mordell-Weil rank of its Jacobian J (more precisely, its p-adic
closure).

▶ Use a basepoint x0 ∈ X (Q) to embed X ↪→ J, x 7→ [x − x0].
▶ Let p be a prime of good reduction for X .
▶ If r < g , we use the classical Chabauty-Coleman method:

There exists an 0 ̸= ω ∈ H0(JQp ,Ω
1) such that

X (Q) ⊆ X (Qp)1 :=

{
x ∈ X (Qp) :

∫ x

x0

ω = 0

}
⊆ X (Qp).

▶ Choose ω to be a linear combination of a basis of H0(X ,Ω1),
which annihilates a generating set of G .

▶ The analytic set X (Qp)1 is finite and computable if we know
a finite index subgroup G of J(Q).
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The Quadratic Chabauty Method

▶ Same setup.
▶ There is a global p-adic height h : X (Qp) → Qp, which

decomposes into local heights

h = hp +
∑
ℓ ̸=p

hℓ.

▶ h − hp is locally analytic, and the hℓ have finite image on
X (Q) depending on the reduction at ℓ.

▶ If r = g and the Néron-Severi rank of Jac(X ) is > 1, we use
the quadratic Chabauty method (depending on modularity):

X (Q) ⊆ X (Qp)2 :=
{
x ∈ X (Qp) : h(x)−hp(x) ∈ Υ

}
⊆ X (Qp),

where Υ = {0} if all hℓ = 0 for ℓ ̸= p.

9 / 17



Quadratic Chabauty: Computation of Local Heights

Type I1-1-0 of Namikawa–Ueno

▶ genus2reduction shows: The special fibers of a regular
semistable model are irreducible.
So its dual graph has exactly one vertex.

▶ The local heights hℓ for ℓ ̸= p factor through the vertices of
the dual graph (Betts–Dogra). So they are trivial,
and we need to solve h(x)− hp(x) = 0 on X (Qp).

▶ So we can treat the cases in red using quadratic Chabauty
because they satisfy r = g and have Néron-Severi rank g > 1:

N ∈ {133, 147, 166, 177, 205, 213, 221, 255, 287, 299, 330}.
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The Mordell-Weil Sieve

Assume that one can compute J(Q).

For a finite set S of good primes and an integer M > 1,
consider the commutative diagram:

X (Q) J(Q)/MJ(Q)

∏
ℓ∈S

X (Fℓ)
∏
ℓ∈S

J(Fℓ)/MJ(Fℓ)

α

β

Conjecturally, one can always choose S and M such that the
Mordell-Weil sieve computes X (Q).

11 / 17



Example: X0(133)
∗

It has a hyperelliptic model

y2 = x6 + 4x5 − 18x4 + 26x3 − 15x2 + 2x + 1,

and it satisfies r = g = 2, so we use quadratic Chabauty
with QC primes p ∈ {5, 59}, additional MWS primes 109, 131,
317, 509 and M = 5n · 59m to sieve out 4 and 62 fake residue discs.

Table: Rational non-cuspidal points, j-invariants,
and CM discriminants D of the associated Q-curves.

Point j or Q(j) CM D

−∞ Q(
√
2,
√
69) no

(0,−1) −215 33 yes −19
(0, 1) −215 3 53 yes −27
(1,−1) 24 33 53 yes −12

(1, 1) (48(−227± 63
√
13))3 yes −91

( 35 ,
−83
125 ) Q(

√
−31,

√
−3651) no

( 35 ,
83
125 ) 0 yes −3

12 / 17



Choice of QC and MWS Primes

N QC primes MWS primes M ′ #X0(N)∗(Q) #non-CM

133 5, 59 109, 131, 317, 509 1 8 2
177 5 19 1 6 1
205 17, 61, 71 ≤ 184571 3 6 0
213 79 59, 149, 211, 4177 1 4 0
221 29 3, 47 1 6 1
287 19, 29 3, 5 1 4 1
299 29, 37, 43 ≤ 9292 3 · 5 4 1

Table: Data used to do the quadratic Chabauty computations and
information on X0(N)∗(Q). (MWS primes means the additional primes in
the Mordell-Weil sieve compared to the QC primes.)

143, 71, 179, 359, 439, 617, 661, 967, 1033, 1997, 2063, 2213, 2381, 2753,
3373, 9579, 15083, 18457

27, 59, 89, 103, 137, 317, 443, 541, 787, 929
13 / 17



Runtimes and Memory Usage

Table: Runtimes and memory usage for Chabauty and Mordell-Weil sieve
in the cases where we applied quadratic and elliptic curve Chabauty.

N runtime in seconds RAM used in MB

133 110 130
177 22 130
205 546 406
213 16822 225
221 80 130
287 1533 130
299 6669 3196

147 37 85
255 47 96
330 25 85

14 / 17



Modular Coverings of X0(N)∗

▶ If X0(N)∗(Q) is finite and known, one can compute the
Q-points for all modular coverings X0(N)/W ′(N) if one
knows the quotient morphisms (going down).

▶ Assume X0(N) is non-hyperelliptic and given by the canonical
embedding associated to H0(X0(N),Ω1) ≃ S2(Γ0(N)) over Q,
diagonalized such that the Atkin-Lehner involutions are
simultaneously diagonal with ±1’s on the diagonal.

▶ We then compute the quotient maps

X0(N) ↠ X0(N)/W ′(N) ↪→ P(1, . . . , 1, 2, . . . , 2)

for non-hyperelliptic X0(N)/W ′(N) by finding relations
between the q-expansions in S2(Γ0(N)), computing the
Atkin-Lehner action, and using invariant theory.
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Example: Modular Coverings of X0(133)
∗

Table: Intermediate coverings of X0(133) → X0(133)
∗ and low-degree

points.

Curve Low-degree points

X0(133)/⟨w7⟩ • 3 rational points.
• Points over Q(

√
d) for

d = −3,−91, 138, 113181

X0(133)/⟨w19⟩ • 2 rational points.
• Points over Q(

√
d) for

d = 2,−3,−7,−19,−31

X0(133)/⟨w133⟩ • 9 rational points.
• Points over Q(

√
d) for

d = 13, 69,−3651

X0(133) • 4 cuspidal rational points.
• Points over Q(

√
d) for d = −3,−19

• Points over Q(
√
d1, d2) for (d1, d2) =

(−7, 13), (2, 69), (−31,−3651)
16 / 17



Work in Progress

▶ X0(N)∗ of higher genus, not hyperelliptic
(joint with Lea Beneish and Boya Wen)

▶ Application to quadratic points on X0(N) for N small
▶ Quotients of Shimura curves
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Thank you for your attention!


